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Tate Cycles on Abelian Varieties with
Complex Multiplication

V. Kumar Murty and Vijay M. Patankar

Abstract. We consider Tate cycles on an Abelian variety A defined over a sufficiently large number field
K and having complex multiplication. We show that there is an effective bound C = C(A,K) so that to
check whether a given cohomology class is a Tate class on A, it suffices to check the action of Frobenius
elements at primes v of norm ≤ C . We also show that for a set of primes v of K of density 1, the space
of Tate cycles on the special fibre Av of the Néron model of A is isomorphic to the space of Tate cycles
on A itself.

1 Introduction and Statement of Results

Let K be a field that is finitely generated over its prime field. In our case, K will in
fact be a number field or a finite field. Let A be an Abelian variety defined over K of
dimension d, say. For a prime ` with 6̀ | char(K), and n ≥ 1, we have the `-adic Tate
module

T`(A) = proj lim A[`n] ' Z2d
` .

In a natural way, it is a GK = Gal(K/K)-module. Also set

V`(A) = T`(A)⊗Z` Q`.

Set A = A ×K K. Then, we may identify V`(A) with H1,`(A) and the cohomology of
A with the exterior algebra on the dual of V`(A). As usual, for a GK -module W , we
denote by W (k) the k-fold Tate twist of W .

For any field F with K ⊆ F ⊆ K, set

Tk
` (A, F) = H2k

` (A)(k)Gal(K/F),

T∗` (A) =
⊕

k

∑
K⊆F⊆K

Tk
` (A, F).

This is the space of Tate cycles on A. It is a finite dimensional Q` vector space, and
we may in fact restrict the field F above to be of finite degree over K. Thus, for some
finite extension M of K, we have

T∗` (A) = ⊕kH2k
` (A)(k)Gal(K/M) = ⊕kT

k
` (A,M).

Again, for K ⊆ F ⊆ K, let Zk(A, F) denote the free Abelian group generated by
algebraic cycles of co-dimension k on A (modulo homological equivalence) with a
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representative defined over F. The `-adic cycle class map is

c`,k,F : Zk(A, F)⊗Z Ql → Tk
` (A, F).

Conjecture 1.1 ([16] Tate) The `-adic cycle class map is surjective.

This was proved by Tate for k = 1 in the case K is a finite field and by Faltings in
the case where K is a number field. This conjecture is not known to be independent
of `.

There is a related conjecture involving L-functions associated with A.

Conjecture 1.2 (Tate) If K is a number field, L(H2k
` (A), s) has a meromorphic con-

tinuation to Re(s) = 1 + k and

ords=1+k L
(

H2k
` (A), s

)
= − dimTk

` (A,K).

If K is a finite field,

ords=k L
(

H2k
` (A), s

)
= − dimTk

` (A,K).

Our aim is to study (in the case K is a number field) the relationship between
T∗` (A) and T∗` (Av). Here v is a prime of K of good reduction for A, ` is assumed to
be distinct from the characteristic of the residue field kv (of K at v), and Av stands for
the reduction of A modulo v.

At a prime v of good reduction for A, we have the natural reduction map, A→ Av,
which induces a natural map (under pull-back) H∗` (Av) ' H∗` (A). Let

(1.1) ιv : H∗` (A) −→ H∗` (Av)

be the inverse of this isomorphism. We may view both sides as Q`[Gv]-modules,
where Gv ⊂ GK is the decomposition group at v (subgroup of GK unique up to
conjugation). Indeed, the left-hand side H∗` (A) is naturally a Gv-module under re-
striction from GK . The right-hand side is naturally a Q`[Gkv ] module, where Gkv is
the Galois group of the residue field kv at v. Since Gkv is naturally a quotient of Gv, we
can consider H∗` (Av) as a Q`[Gv]-module. Also, as v is a prime of good reduction, the
criterion of Néron–Ogg–Shafarevich [13] implies that the inertia subgroup at v acts
trivially on H∗` (A). Thus, the two sides in (1.1) are isomorphic as Q`[Gv]-modules,
and so restriction gives us a map

(1.2) ιv : T∗` (A)→ T∗` (Av),

which is, in fact, injective.
We begin with the following observation. A class ω ∈ H2m

` (A)(m) for which ιv(ω)
is in Tm

` (Av, kv) at almost all places v of K (i.e., at all but finitely many places of
K) is in Tm

` (A,K). Indeed, this follows from the Chebotarev density theorem. This
observation can be strengthened as follows.

Proposition 1.3 Let S be a set of places of K with positive Dirichlet density, say δ > 0.
A class ω ∈ H2m

` (A)(m) for which ιv(ω) is in Tm
` (Av, kv) at all places v in S is in Tm

` (A).
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Proof Note that the `-adic representation ρ` : GK → Aut(H2m
` (A)(m)) is unrami-

fied at all but finitely many places v of K. Let L be the sub-extension of K fixed by
Ker(ρ`). Then L is a Galois extension of K and is unramified at all except finitely
many places of K. At a finite prime v, to be a Tate class means that it is fixed by the
Frobenius automorphism in Gal(kv/kv) given by x 7→ xNv, where Nv is the cardinality
of kv (also the norm of v). The Frobenius automorphism lifts to Frobv (at almost all
v) and thus, by (1.1) as above and the assumption, ω is fixed by Frobv ∈ Gal(L/K).
Let GS be the group generated by {Frobv |v ∈ S} in Gal(L/K) as a topological group.
Let LGS be the sub-extension of L cut out by GS. The places of S split completely in
LGS . This implies that LGS is a finite extension of K. Moreover, by the Chebotarev
density theorem, [Gal(L/K) :GS] = [LGS :K] ≤ 1/δ. Thus, it follows that if for all
v ∈ S, ιv(ω) is in Tm

` (Av, kv), then ω is in Tm
` (A, LGS ), i.e., it is a Tate class.

With more work, we will show that in the case of Abelian varieties with complex
multiplication, the condition of the above result can be replaced with a condition at
a finite set of primes. Moroever, this can be done in an effective manner. Here also,
the role of split primes is crucial.

We recall that for each prime `, Serre and Tate [13] define a conductor of A (in
terms of the Artin and the Swan character). It is an integer that they prove is inde-
pendent of ` ([13, pp. 499–500]).

Theorem 1.4 Let A be an Abelian variety with complex multiplication and let K
be a number field over which both A and its endomorphisms are defined. Denote by
d the dimension of A and by N the conductor of A. Then there is an effective bound
C = C(A,K) such that if ω ∈ H2m

`0
(A)(m), for some prime `0, is a Tate class considered

as an element of H2m
`0

(Av)(m) for all v of K with NK/Q v ≤ C, then ω is Tate, i.e.,
ω ∈ Tm

`0
(A,K).

Several remarks are in order.

Remark 1.5 The main point of the above theorem is that the bound C (defined by
(6.2)) depends only on the Abelian variety A (in fact, only on the conductor, the di-
mension, and the discriminant of the field of complex multiplication) and the num-
ber field K and does not depend on `0. However, if we fix a prime `, it is possible
to prove (using the Chebotarev density theorem and Nakayama’s lemma for finitely
generated modules over Z`) the existence of a constant (that would depend on A, K
and `) so that a similar statement as in the theorem above is true.

Remark 1.6 The proof of Theorem 1.4 will produce an explicit expression for C
(as defined by (6.2)) only in terms of the degree nK , the discriminant dK of K, the
conductor N, the dimension d of A and the discriminant dF of the field F of multi-
plication of A. We have not made any effort to find an optimal bound. However, we
note that with the assumption of the Riemann Hypothesis for Dedekind zeta func-
tions, the estimate for C that comes from the proof of Theorem 1.4 can essentially be
replaced by (log C)2. It would be very interesting to study to what extent it would be
possible to get a bound that is uniform in each of the parameters nK , dK ,N, dF and d.
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Remark 1.7 Tate [17, Section 3, pp. 76–77] discusses the notion of an “almost
algebraic” cycle. A Tate cycle is said to be almost algebraic if all but finitely many of
its specializations are algebraic. According to Tate, this notion seems to be part of
the folklore. Tate adds: “it is mentioned explicitly in [11, 5.2] that Künneth com-
ponents of the ‘diagonal’ are almost algebraic (by [1, Theorem 2(1)])”. Thus these
“Künneth components of the diagonal” are examples of almost algebraic cycles that
are not known to be algebraic. Tate further mentions a weaker conjecture than Con-
jecture 1.1: The space of Tate cycles is spanned by almost algebraic cycles.

Remark 1.8 Let us assume the Tate conjecture for Abelian varieties over finite
fields. Suppose that ω is a class in H2m

` (A)(m) with the property that ιv(ω) is alge-
braic for each prime v of K of norm ≤ C . Then ιv(ω) is algebraic for all but finitely
many v. Indeed, by the above Theorem, ω is a Tate class, and hence so is its reduction
ιv(ω). Now, by our assumption, it follows that ιv(ω) is algebraic. Hence ω is almost
algebraic.

Our next result is about the field of definition of Tate cycles on an Abelian variety
over a finite field obtained by reduction of Tate cycle on a fixed Abelian variety over
a number field.

Theorem 1.9 Let A be an Abelian variety defined over a number field K. Then there
is a bound D = D(A) so that for all v of good reduction, all Tate cycles on Av are defined
over an extension of the residue field kv of degree≤ D.

Remark 1.10 In fact our proof of this theorem can be suitably adapted to show
that all the Tate cycles on an Abelian variety A over a number field K with complex
multiplication by F are defined over a “specific” extension of K that depends on d =
dim(A), the conductor of A, and the normal closure of F.

As is well known (and as implied by (1.2)) the dimension of the space of Tate
cycles does not decrease under reduction modulo v. Our next result shows that in
the CM case, for a set of primes of Dirichlet density 1, it does not increase either. The
proof of this theorem uses Thereom 1.9.

Theorem 1.11 Let A be an Abelian variety of CM type. Let K be sufficiently large so
that all the Tate cycles on A and all the endomorphisms of A are defined over K. Then,
for a set of primes v of K of Dirichlet density 1,

T∗` (A) ' T∗` (Av).

In particular, the Tate conjecture for A implies the Tate conjecture for Av for a set of
primes v of Dirichlet density 1.

Remark 1.12 The condition that K be sufficiently large is necessary as the follow-
ing example illustrates. Let E be an elliptic curve over Q with complex multiplication
by an imaginary quadratic field, say K = Q(

√
−d), with d a square-free and positive

integer. Let A = E×E. Then Z1(A,K) is generated by E×{0}, {0}×E, the diagonal
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∆ := {(x, x)|x ∈ E}, and the graph of complex multiplication

∆′ := {(x, [
√
−d]x)|x ∈ E},

where [
√
−d] denotes the endomorphism of E whose square is [−d].

Then E has super-singular reduction at a prime p of Q that remains inert in K and
of good reduction for E. Let Ap denote the reduction of A modulo p over Fp. Then,
Z1(Ap, Fp) is generated by Ep × {0}, {0} × Ep, ∆p (the reduction of ∆ modulo
p), ∆′p (the reduction of ∆′ modulo p), ∆φ := {(x, φ(x))|x ∈ Ep}, and ∆ψ :=
{(x, ψ(x))|x ∈ Ep}, where φ and ψ are the other two generators of EndFp

(Ep). This

proves that for such primes p, the rank of T1
` (A) is 4 and the rank of T1

` (Ap) is 6.
Thus, the reduction map as in (1.2) is strictly injective for a set of primes p of Q of
Dirichlet density 1

2 ! However, this is not a problem, as the set of primes of Q that are
inert in K, has Dirichet density 0 considered as a set of primes of K.

Remark 1.13 The theorem is not true for Abelian varieties without complex mul-
tiplication as the following example illustrates. Let E be an elliptic curve over Q
without complex multiplication. Let A = E×E be as above. Then Z1(A,K) is gener-
ated by E×{0}, {0}× E and the diagonal ∆ for any number field K. Let v be a finite
place of K of good reduction for E and let kv be the finite residue field at v. Then E
always acquires the extra endomorphism (the Frobenius) and Z1(Av, kv) has rank at
least 4. Thus, T`(A) strictly injects into T`(Av) for all but finitely many places of K.

Remark 1.14 In our previous work [7], we studied the problem of when Av stays
simple for a set of primes of positive density, given that A is simple (or absolutely
simple). If Av splits, this gives rise to extra classes in the Néron–Severi group of Av

(and hence also extra Tate cycles on Av).

In Section 2, we recall some basic properties of a compatible family of λ-adic rep-
resentations. In Section 3, we recall some basic properties of the theory of complex
multiplication. In Section 4, we develop an analytic estimate that will be crucial in
the proofs of our main results. In Section 5, we present the Main Lemma, and in the
following three sections, we give the proofs of Theorems 1.4, 1.9, and 1.11.

2 Brief Background on Compatible Family of λ-adic Representations

We recall (from [10]) some basics about compatible families of λ-adic Galois repre-
sentations.

Let K be a number field. Let K be a separable algebraic closure of K. Let GK

denote the Galois group of K over K. Let Eλ be a non-archimedean local field (finite
extension of some p-adic field). Let V be a vector space over Eλ. Let Aut(V ) be the
general linear group of V with topology induced by that on End(V ). If n = dim(V ),
we have Aut(V ) ' GL(n, Eλ).

Definition 2.1 A λ-adic representation of GK (or of K) is a continuous homomor-
phism ρ : GK → Aut(V ), where V is vector space over a non-archimedean local field
Eλ, a finite extension of Qp.
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For any number field F, we denote by ΣF the set of finite places of F. Recall that
a λ-adic representation ρ is said to be rational (resp., integral) if there exists a finite
subset S of ΣK such that

(a) for any place v in ΣK − S, ρ is unramified at v;
(b) for v /∈ S, the coefficients of Pv,ρ(T) belong to Q (resp., Z).

Let E be a number field. For each finite prime λ of E, let ρλ be a rational λ-adic
representation of K. For any given finite prime λ of E, let us denote by `λ the prime
of Q that lies below the prime λ of E. The system {ρλ} is said to be strictly compatible
if there exists a finite subset S of ΣK , called the exceptional set, such that:

(a) for Sλ := {v|v lies over `λ} and every v /∈ S ∪ Sλ, ρλ is unramified at v and
Pv,ρλ(T) has rational integral coefficients;

(b) Pv,ρλ(T) = Pv,ρλ′ (T) if v /∈ S ∪ Sλ ∪ Sλ′ .

Definition 2.2 Let ρ(= ρλ) be a λ-adic representation of GK . Then we say that
ρ is pure of weight w ∈ Z if there is a finite set S of finite places of K such that, for
each finite place v /∈ S ∪ Sλ, ρ(Frobv) is unramified, and the eigenvalues of ρ(Frobv)
are algebraic integers whose complex conjugates have complex absolute value qw/2

v ,
where qv is the cardinality of the residue field of K at v. We say that a compatible
family {ρλ} is of weight w ∈ Z if for each finite place λ of E, ρλ is of pure weight w.

As usual, we denote by χ` the cyclotomic character giving the action of Gal(K/K)
on `-power roots of unity. The {χ`} form a compatible family of `-adic representa-
tions.

3 Abelian Varieties with Complex Multiplication and the
Shimura–Taniyama Theorem

We now briefly recall a few basic facts about Abelian varieties of Complex Multiplica-
tion (CM) type. The main references are [3, 8, 13, 14].

Let A be an Abelian variety defined over a number field K of dimension d :=
dim(A). Let F be a number field of degree 2d. Then A is said to have CM by F if there
exists an embedding

ι : F → EndQ (A) := EndQ (A)⊗Z Q.

It is a fact that such an F must be a totally imaginary extension of a totally real number
field. Let E be the Galois closure of F. To such an Abelian variety, the Shimura–
Taniyama theory associates Hecke characters ψi,λ of the following type. For each
1 ≤ i ≤ 2d and for each finite place λ of E (lying over a prime `), we have a family of
continuous characters of the Galois group GK := Gal(K/K):

ψi,λ : GK → E×λ

with the property that for all v not dividing `N, ψi,λ(Frobv) ∈ F×. Thus, the field
generated by ψi,λ(Frobv) for all v over Q is contained in E. We have the following
well-known result ([8, Theorem 2′, p. 171]):
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Theorem 3.1 (Shimura–Taniyama) (With notations and definitions as above) Let A
be an Abelian variety defined over a number field with CM F. Let Hk

` (A) be the k-th
`-adic étale cohomology of A. Then

Hk
` (A)⊗Q`

Q` = ∧kH1
` (A)⊗Q`

Q` = ⊕IHI ,

where the direct sum is over subsets I ⊆ {ψ1,λ, . . . , ψ2d,λ} of cardinality k and where
each HI is a one dimensional GK invariant Q` subspace of Hk

` (A)⊗Q`
Q`. Further more,

for any finite place v of K away from ` and from places of bad reduction for A, and for
all x ∈ HI

(Frobv)−1(x) =
( ∏
ψi,λ∈I

ψi,λ(Frobv)
)
· x.

In fact, the Shimura–Taniyama theory implies that for 1 ≤ i ≤ 2d, (ψi,λ)λ forms a
compatible family of 1-dimensional continuous λ-adic representations of GK , where
λ runs over finite places of E. We denote these compatible families by ψi . Let Ψ :=
{ψ1, . . . , ψ2d} and Ψλ := {ψ1,λ, . . . , ψ2d,λ}.

Theorem 3.2 (With notations as above) Let λ be a prime of E lying over `. Then

H2k
` (A)⊗Q`

Eλ = ⊕IHI,λ

where I ⊆ Ψλ of size 2k and HI,λ is a 1 dimensional GK invariant Eλ-subspace such that
for any finite place v of K away from ` and places of bad reduction for A,

(Frobv)−1(x) =
( ∏
ψi,λ∈I

ψi,λ(Frobv)
)
· x

for x ∈ HI,λ.

We have the following corollary.

Corollary 3.3 With notations and definitions as above, {HI,λ} is a strictly-compatible
family of λ-adic representations of GK as λ varies over finite places of E.

4 The Least Prime That Does Not Split Completely

Let L and K be number fields with K ⊆ L. In the proof of our results, it will be neces-
sary to have an estimate for the norm of a prime v of K that does not split completely
in L. Such an estimate is given in [6, Theorem 1], assuming the Generalized Riemann
Hypothesis for the Dedekind zeta function ζL(s) of s and assuming that L/K is Galois.
In the case that K = Q , an unconditional estimate is given by X. Li in [4, Theorem
1], and also by Vaaler and Voloch in [18]. However, we need an (unconditional) es-
timate for a general K. Such an estimate is remarked after the proof of [6, Theorem
1]. What we prove is slightly weaker, though more than sufficient for our purposes.

Let us denote by nL and nK the degrees of L and K over Q respectively. Let dL

and dK denote the discriminants of L/Q and K/Q , respectively. We also note the
effective prime number theorem in K as given by Lagarias and Odlyzko (see [2] and
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[12, Théorème 2]). This theorem tells us that the number πK (x) of primes of K of
norm≤ x satisfies

(4.1) |πK (x)− Li x + Li(xβ)| ≤ c1x exp
(
−c2

√
log x/nK

)
provided x ≥ c3nK (log |dK |)2. Here, c1, c2, c3 > 0 are absolute and effective constants
and β is the possible exceptional zero of the Dedekind zeta function ζK (s) . If it exists,
it is real and satisfies

1− 1

4 log |dK |
< β < 1.

Let us set

(4.2) f (K) =

n2
K if ζK (s) does not have

an exceptional zero,
max(nK ! log |dK |, |dK |1/nK ) + n2

K otherwise.

Thus, for example, f (Q) = 1.

Theorem 4.1 There is an effective and absolute constant c > 0 with the following
property. Let K be a number field and let L/K be a finite non-trivial Galois extension of
degree n . Then, there exists a prime ideal ℘ of K such that

• ℘ is of degree 1 over Q and unramified in L;
• ℘ does not split completely in L, and

NK/Q℘ < max(55, ec f (K)|dL|4/(n−1)).

Proof From [15, Lemma 3], we have for σ > 1, the inequality

(4.3) −ζ
′
L

ζL
(σ) <

1

σ
+

1

σ − 1
+

1

2
log
( |dL|

22r2πnL

)
+

r1

2

Γ′

Γ
(σ/2) + r2

Γ′

Γ
(σ).

On the other hand, we have the Dirichlet series expansion

−ζ
′
L

ζL
(σ) =

∑
p,m

log Np

(Np)mσ
,

where the sum ranges over primes p of L and 1 ≤ m ∈ Z. If all primes ℘ of K that
are of degree 1 over Q and of norm less than y (say) ramify or split completely in L,
then we see that with n = [L :K] = nL/nK ,

−ζ
′
L

ζL
(σ) ≥ n

∑
N℘≤y

′ log N℘

(N℘ )σ
,

where the prime on the summation indicates that we range over primes ℘ of K that
are of degree 1 over Q and are unramified over L. Thus,

−ζ
′
L

ζL
(σ) ≥ n

∑
N℘≤y

log N℘

(N℘ )σ
− nS1 − nS2,

where

S1 =
∑

N℘≤y

r log N℘

(N℘ )σ
,
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and the sum is taken over primes ℘ of K that ramify in L, and

S2 =
∑

N℘≤y
℘ of degree≥2

log N℘

(N℘ )σ
.

For each prime ℘ counted in this sum, let p be the rational prime that it divides.
Then (log N℘ )/(N℘ )σ ≤ 2(log p)/p2σ . Moreover, given a rational prime p, there
are at most nK primes ℘ of K dividing p, and so

S2 ≤ 2nK

∑
p

log p

p2σ
≤ 2nK .

We are using the fact that for the Riemann zeta function, the inequality (4.3) gives∑
p

log p

p2σ
< −ζ

′

ζ
(2σ) < 1

for σ > 1. For S1, we have ([6, p. 558])

S1 ≤
∑
℘ |dL/K

log N℘ ≤ 2

n
log dL.

Thus,

(4.4) −ζ
′
L

ζL
(σ) ≥ n

∑
N℘≤y

log N℘

(N℘ )σ
− 2 log dL − 2nL.

To estimate the sum on the right, we use (4.1). Let us assume that y ≥ y0 =
c3nK (log |dK |)2. By partial summation, we have

(4.5)
∑

N℘≤y

log N℘

(N℘ )σ
= πK (y)(log y)y−σ +

∫ y

1
πK (t)t−1−σ(σ log t + 1)dt.

The first term on the right is bounded by using the estimate πK (x) ≤ nKπ(x). Thus,
we see that as σ > 1,

πK (y)(log y)y−σ ≤ c4nK .

Similarly, we see that∫ y0

1
πK (t)t−1−σ(σ log t + 1)dt ≤ 2c4nK log y0.

The estimate (4.1) implies that replacing πK (t) with Li(x)− Li(xβ) in the integral in
(4.5) results in an error of at most

≤ 2

∫ log y

1
exp(−c1

√
u/nK ) udu ≤ c5 n2

K .

The term coming from the possible exceptional zero contributes to the integral an
amount that is easily seen to be

� (σ − β)−1 < (1− β)−1.
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To estimate this, we note that by [15, equations (27) and (28)], we have

β < max
(

1− (4nK ! log |dK |)−1, 1− (c6|dK |1/nK )−1
)
.

This implies that

(1− β)−1 < max(4nK ! log |dK |, c6|dK |1/nK ).

Let us denote the right-hand side by cK . Finally, it remains to estimate∫ y

y0

(Li t)t−1−σ(σ log t + 1)dt.

and this is easily seen to be

σ

∫ y

1
t−σdt + O(

∫ y

1
t−σ(log t)−1)dt.

Taking σ = 1 + (log y)−1, this is easily seen to be ≥ (1 − e−1) log y − c7 log log y.
Putting all this together into (4.4), we deduce that

− ζ ′L
ζL

(σ) ≥ n(1− e−1) log y − n
(

cK + c5(log |dK |)2 + c7 log log y
)

− c8nL log y0 − 2 log dL − 2nL.

On the other hand, we can combine this with the upper bound given above (4.3). As
mentioned in [15, p. 142], we have Γ′(σ/2) < 0 and Γ′(σ) < 0 for 1 < σ < 5/4.
Moreover, Γ(x) > 0 for x > 0 real. Hence, we deduce that provided y > e4 ∼ 54.6,
there is an absolute and effective constant c9 > 0 such that

n(1− e−1) log y < 1 + log y +
5

2
log |dL| + c9n f (K)

with f (K) given by (4.2). It follows that there is a c > 0 such that

log y ≤ c f (K) +
4

(n− 1)
log |dL|.

Thus, if y > ec f (K)|dL|4/(n−1), we get a contradiction, and this proves the result.

We record here the following estimate of Hensel (see, for example, [5, pp. 44–45]),
which we shall also need. We have

log dL ≤ (nL − 1)
∑

p∈P(L/Q)

log p + nL(log nL)|P(L/Q)|,

where P(L/Q) is the set of rational primes p that ramify in L. In fact, when L is Galois
over K, the following stronger estimate holds:

log dL ≤ (nL − nK )
∑

p∈P(L/K)

log p + nL(log nL − log nK ) +
nL

nK
log dK .

In particular, if L/K is a Galois extension unramified outside of primes dividing
M, then

(4.6) log dL � nL log
(

M
nL

nK

)
+

nL

nK
log dK .
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5 Proof of the Main Lemma

Lemma 5.1 Suppose ω ∈ H∗l (A) is a (simultaneous) eigenvector for a conjugacy set
C ⊂ GK . Then so is every element of Ql[GK ](ω), the GK -module generated by ω inside
H∗l (A).

Proof We need to show that for any g ∈ GK , g(ω) is an eigenvector for any σ ∈ C .
We have

σ(g(ω)) = g((g−1σg)(ω))

= g(τ (ω)), for some τ ∈ C as C is a conjugacy set

= g(λτ · ω) for some λτ ∈ Q` by assumption

= λτ · g(ω).

The last step follows from the Q` linearity of the GK action.
For integers N,m, d ≥ 1 and a number field K, let us set

B = B(N,K,m, d) = e f (K)NmnK d2

( f (K) + nK log N)mnK d2+1.

Here

f (K) =

n2
K if ζK (s) does not have

an exceptional zero,
max(nK ! log |dK |, |dK |1/nK ) + n2

K otherwise.

as defined by (4.2), and nK = [K : Q].
Let GK denote the absolute Galois group of a number field K. Let E be some

number field and OE the ring of integers of E. For a finite place λ of E, we denote
by Eλ the completion of E at λ, and by Oλ the ring of integers of Eλ. Let {Mλ} be a
family of continuous Oλ[GK ]-modules such that {Mλ⊗Oλ

Eλ} is a strictly compatible
family of continuous semi-simple λ-adic integral representations of GK of weight 2w,
conductor N and dimension d, where λ varies over all finite places of E. Let S′ be the
set of exceptional places of K for the system {Mλ}.

Lemma 5.2 (Main Lemma) There are absolute and effective constants c1, c > 1 so
that if for some finite place λ0 of E, the set

S = {Frobv : Nv ≤ c1B(Nwd2 log dE,K, nE, d)c}

acts as scalars on Mλ0 , then GK acts as scalars on Mλ0 and hence on any Mλ where λ is
a finite place of E.

Proof By abuse of notation, we will use Mλ to denote Mλ as a module over OE and
as well as the associated vector space Mλ ⊗OE Eλ over Eλ.

First suppose that Frobv acts as a scalar µ on Mλ. Then (Nv)wd = µd, since the
characteristic polynomial of Frobv has coefficients in Z. So, in fact, µ = ε(Nv)w with
εd = 1. Since {ρλ} is a compatible family of rational integral representations, the
trace dε(Nv)w of Frobv, lies in Z and so ε = ±1.

If d = 1, then there is nothing to prove, so we may assume without loss of gener-
ality that d > 1. Suppose that GK does not act as scalars on Mλ0 . By compatibility,
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GK does not act as scalars on the family {Mλ}. We shall show that S does not act as
scalars either.

Let S′ be the exceptional set (of places of K) for the system {Mλ}. For a finite place
λ of E, let `λ denote the prime of Q that lies below λ. Let Sλ := {v|v lies over `λ},
the set of finite places of K that divide `λ. For v /∈ S′ ∪ Sλ, let

Pv,λ(T) := det
(

T − ρλ(Frobv)
)
.

By compatibility, Pv,λ(T) is independent of λ.
Let v /∈ S′ be the prime with least norm such that Frobv does not act as a scalar

on Mλ0 . (Note that Frobv is unique up to conjugation.) Since ρλ is a semi-simple
representation, this is equivalent to Pv(T) 6= (T − θv)d for any θv ∈ C. Thus by
compatibility, Frobv does not act as a scalar on Mλ for any λ.

Denote the eigenvalues of Frobv by {αi,v} for i = 1 to d. Let us choose ` unrami-
fied in E so that the distinct eigenvalues of Frobv remain distinct modulo `. This can
be done by choosing an ` that does not divide the discriminant of E and the norm of
the product of the differences of any two distinct eigenvalues of Frobv. We have∣∣∏(αi,v − α j,v)

∣∣ ≤ (2(Nv)w
) d2

,

where the product is over pairs of distinct eigenvalues of Frobv. Thus, we can find
such an ` satisfying

(5.1) ` � log
{

dE(2
(

Nv)w
) d2

} � wd2 log Nv + log dE,

where the implied constant is absolute.
Here, we are using the fact that for an integer m > 1, there exists a prime that is

O(log m) that does not divide m. Indeed, by the prime number theorem, the product
of all the primes less than 3 log m (say) would be larger than m. Hence, at least one
of these primes does not divide m.

It then follows that for at least one of the places λ of E that lie over `, the distinct
eigenvalues of Frobv remain distinct modulo λ. Thus, Frobv does not act as a scalar
on Mλ = Mλ/λMλ.

Let ρλ be the natural map from GK to PGL(Mλ), the projective general linear
group associated with Mλ. By above, the image of Frobv to PGL(Mλ) is not the iden-
tity. By applying Theorem 4.1 to this representation, it follows that there exists a
prime v′ (say) for which the image of Frobv′ in PGL(Mλ) is not the identity. In par-
ticular, v′ does not split completely in the fixed field L (say) of the kernel of ρλ. We
know that L is unramified outside `N, and as

log
nL

nK
≤ [E : Q]d2 log `,

it follows by (4.6) that

log dL � nL[E : Q]d2 log N` +
nL

nK
log dK .

Then by Theorem 4.1 and n = nL/nK ≥ 2, we can choose v′ satisfying

log Nv′ � f (K) +
nK

nL
log dL � f (K) + nK [E : Q]d2 log N`.
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By (5.1), we have

log Nv′ � f (K) + nK [E : Q]d2 log(Nwd2 log Nv + N log dE).

Since Frobv′ does not act as a scalar on Mλ, it does not act as a scalar on Mλ, and
hence on Mλ0 either, and as v is a prime of least norm with this property, we have an
absolute and effective constant c > 0 with

Nv ≤ Nv′ ≤
(

e f (K){N(wd2 log Nv + log dE}nK [E : Q]d2) c
.

Hence, we have proved that Nv is bounded by

�
(

e f (K)(Nwd2 log dE)nK nEd2) c(
f (K) + nK nEd2 log(Nwd2 log dE)

) cnK nEd2+1
.

Here the implied constant is absolute and effective. Thus,

Nv ≤ c1B(Nwd2 log dE,K, nE, d)c.

This contradicts our assumption and proves the lemma.

6 Proof of Theorem 1.4

By assumption, ω ∈ H2m
`0

(A). Let M`0 be the Q`0 [GK ] sub-module generated by ω

inside H2m
`0

(A). Let λ0 be a place of E lying over `0. Let Mλ0 := M`0 ⊗Q`0
Eλ0 . Then by

Theorem 3.2, Mλ0 is isomorphic (as Eλ0 [GK ] module) to a sum of H J,λ0 for certain
subsets J of Ψ of size 2m. Let us denote this set of subsets J of Ψ by J. Thus,

(6.1) Mλ0 = M`0 ⊗Q`0
Eλ0 = ⊕ J∈JH J,λ0 .

The right-hand side of (6.1) can be realised as the λ0 component of a family of λ-adic
representations, say {Mλ}, as follows. For any finite place λ of E, let

Mλ := ⊕ J∈JH J,λ.

By Corollary 3.3, {Mλ} is a strictly compatible family of semi-simple λ-adic repre-
sentations of GK . It is easy to see from the definition that the conductor of this family
is bounded by the conductor of the family {H2m

λ }. Moreover, the conductor of H2m
λ

can be bounded in terms of m and the conductor N of A. In particular, we can get a
bound depending on N and the dimension d of A that majorizes the conductor of all
the {H2m

λ }.
We have nE ≤ (2d)! and the discriminant satisfies

log dE ≤ (2d)! log dF.

Notice that w = m ≤ d, and the dimension of the Mλ is equal to
(2d

2m

)
≤ 22d. Thus,

if we set

(6.2) C(N, d, F,K) = c1B
(

24d(2d + 1)!N log dF,K, (2d)!, 22d
) c

where c, c1 and B are as in Lemma 5.2, then applying Lemma 5.2 to {Mλ}, we
get that GK acts as scalars (i.e., acts by a one dimensional character) on Mλ0 =
Q`0 [GK ](ω) ⊗Q`0

Eλ0 . This implies that Mλ0 = Q`0 · ω ⊗Q`0
Eλ0 . Thus, 1 =

dimEλ0
Mλ0 = dimQ`0

M`0 , proving Theorem 1.4.
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7 Proof of Theorem 1.9

Denote by P(Av,T) the characteristic polynomial of Frobv. Writing

P(Av,T) =
∏

(1− αiT) ∈ Z[T]

we see that the αi are algebraic of degree≤ deg P(Av,T) = 2 dim Av = 2 dim A.
Moreover, for any n ≥ 1, if kv,n denotes the extension of kv of degree n,

P(Av/kv,n,T) =
∏

(1− αn
i T).

Now,

dimTk
` (Av, kv,n) = #{I : αn

I = qkn},
where αI =

∏
αi∈I αi and I runs over subsets of {α1, . . . , α2d} of cardinality 2k. The

right-hand side is equal to

#{I : αI = qkζn for some ζn ∈ µn}

But αI is an algebraic number of degree ≤ b2k(A) = dim H2k
` (A) ≤

(2d
2k

)
. Hence

if αI = qkζn, then n is bounded. In other words, all Tate classes are defined over an
extension of kv of degree bounded independently of v.

8 Proof of Theorem 1.11

By definition, Tk
` (A) consists of cohomology classes x ∈ H2k

` (A) on which GK acts
by the character χk

` , where χ` is the cyclotomic character of GK acting on the Tate
module Z`(1). Note that we are assuming that K is sufficiently large so that all the
Tate classes appear over K. By Theorems 3.1 and 3.2, we see that GK acts on the
1-dimensional subspaces HI by the Hecke character ψI . Here,

ψI =
2k∏

j=1
ψi j ,

where I is the subset {i1, . . . , i2k} of {1, . . . , 2d}. Thus,

(8.1) dimTk
` (A) = #{I|ψI = χk

`}.

Similiarly, for a finite place v of K of good reduction for A,

(8.2) dimTk
l (Av) = #{I : ψI(Frobv) = ζn(Nv)k},

where ζn is some n-th root of unity where n ≤
(2d

2k

)
is bounded indepedently of v as

proved in Theorem 1.9. Indeed, by Theorems 3.1 and 3.2, we see that Frobv acts on
the 1-dimensional vector subspaces HI by multiplication by ψI(Frobv). On the other
hand, by the above and by Theorem 1.9, Tk

` (Av) consists precisely of those cohomol-
ogy classes on which Frobv acts by χk

`(Frobv) = ζn(Nv)k, and so (8.2) follows.
Thus, for all finite places v of good reduction, (8.1) and (8.2) imply:

S := {I : ψI = χk
`} ⊂ Sv := {I : ψI(Frobv) = ζn(Nv)k}.

Let

T := {v | S ( Sv}.
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For any v ∈ T, there exists some J /∈ S ( J depends on v) of cardinality 2k such
that ψ J(Frobv) 6= ζn(Nv)k, where ζn is some n-th root of unity. We can write T =⋃

J /∈S T J ,

T J := {v ∈ T | ψ J(Frobv) = ζn(Nv)k}.
We want to prove that T is of density 0. Suppose not. By the above, since there are
only finitely many index sets J, there exists a J0 /∈ S such that δ(T J0 ) > 0. Hence,
for all v ∈ T J0 , ψn

J0
(Frobv) = (Nv)kn = χkn

` (Frobv). Applying [9, Theorem 2, p. 163]
to the characters ψn

J0
and χkn

` , we deduce that ψn
J0

= χkn
` χ1, where χ1 is a character

of finite order. Hence ψn
J0

= χkn
` when restricted to GL := Gal(K/L), where L is the

fixed field cut out by Ker(χ1). Thus, ψ := ψn
J0
· χ−k

` is a character of GL of order n.
Thus ψ J0 = χk

` when restricted Gal(K/Lψ), where Lψ is the number field cut out by
Ker(ψ). This implies that J0 contributes to a new Tate cycle on A. However, this is a
contradiction, since by assumption all the Tate cycles are defined over K and J0 /∈ S.
This proves that T has density 0, which proves the result.
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