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Characterizations of invertible, unitary,
and normal composition operators

R.K. Singh and Ashok Kumar

Let C¢ be a composition operator on LZ(A) , where A 1is a

O-finite measure on a set X . Conditions under which C¢ is

invertible, unitary, and normal are investigated in this paper.

1. Preliminaries
Let (X, S, ) be a o-finite positive measure space, and let ¢ be
a measurable non-singular (X¢_1(E) = 0 whenever A(E) =0 ] transform-

ation from X into itself. Then we define a linear transformation C¢ on

the Hilbert space LQ(A) into the space of all complex-valued functions on

2(

X by C¢f =fo¢ for f in L“(X) . 1In case C¢ is a bounded operator

with range in L2(A) , we call it a composition operator induced by ¢ .
The Radon-Nikodym derivative of the measure A¢_l with respect to the

measure A will be denoted by fb .

If £ and F are sets in S , then E A F = (E-F) v (F-E) . The
notation 'E < F' will mean A(E-F) = 0 . The sets E and F are said
to be equivalent, in symbols 'E =F' , if AME A F) =0 . Two sigma-
subalgebras Sl and 32 contained in S will be called equivalent, if to

every set E in either one of them there corresponds a set F in the
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other so that £ = F .
Every essentially bounded complex-valued measurable function 6 on X

induces the multiplication operator M6 on L2(A) , which is defined by
_ . 2
Mef = @8+f for all f in LT(\) .
Let p = {pl, p2, p3, ...} be a sequence of strictly positive

numbers. Then Ze(p) denotes the Hilbert space of all sequences {xn}
- 2

of complex numbers such that pilxil < ®© . The Banach algebra of all
ey

bounded linear operators on LZ(A) will be denoted by B(L2(X))
THEOREM 1.1. Let C, ¢ B(L2(\)) . Then €, is bounded auay from

zero, if and only if there exists an M > 0 such that A¢_1(E) > MA(E)
for every E €S . Also

int llc, AIZ/NAIZ = m(c,) = sup{M : A6"H(E) = M(E) for all E €S} .
Iflko ~ © ¢

The proof is dual to the proof of [7, Theorem 1] or [5, Theorem

2.1.1]. //

COROLLARY 1.1. If ¢, € B(z2())) , then m(cy) = Lfol , where
HlFgll  demotes the essential infimm of f . //

LEMMA 1.2, et M, € B(L2(\)) . Then My is one-to-one if and only
if © # 0 almost everywhere. //

2. Invertible composition operators

DEFINITION. Let (X, S, A) be a measure space. Then a measurable
transformation ¢ on X into itself is said to be one-to-one (or left
invertible) if there exists a measurable transformation ¢ on X into
itself such that - (¢ o ¢)(x) = x almost everywhere. It is said to be onto
{or right invertible) if there exists a measurable transformation w such

that (¢ o w)(x) = x almost everywhere. It is said to be invertible if
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there is a measurable transformation ¥ such that

(¢ o p)(x) = (P o ¢$)(x) = x almost everywhere. Such a Y is called the
inverse of ¢ , and is denoted by ¢_l .
DEFINITION. Let f be a complex-valued measurable function on X .
Then
ess. range f = {e : e € C, )\(f_l(F)) £ 0
for every neighborhood F of c}

The following theorem characterizes one-to-one composition operators.

THEQOREM 2.1. Let C¢ € B(L2(>\)] . Then the following statements are

equivalent:

(i) C, 1is one-to-one;

¢

(i11) ess. range f = ess. range C¢f for every f € L2(}\) 3

(1) ME) = 0, whenever Ao N(E) =0 for E €S ;

(tv) f,# 0 almost everywhere, where fo = d)\d>_l/d>\ .

Proof. (i) = (ii). In view of [7, Theorem 1], it is always true that
ess. range Cq)fc ess. range f . To show the reverse inclusion let
¢ € ess. range f and F be a neighborhood of ¢ . Then f_l(F) is a
non-null set and since (by hypothesis) (, is one-to-one, ¢-l(f_l(F)) is

¢

a non-null set. Hence ¢ € ess. range C¢f .

(ii) = (ii1). Let )\q)_l(E’) = 0. Then ess. range C¢XE = {0} , where

XE denotes the characteristic function of £ , and hence

ess. range X, = {0} . This implies that A(E) =0 .

(i21) = (iv). Since )\¢_1(E') = J fod)\ for every E € S , it follows
E
that fo # 0 almost everywhere.

(iv) = (7). 1If fo # 0 , then by Lemma 1.2, Mf is one-to-one.
0
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Since C*C, =M (see [61), it follows that C*C, is one-to-one, and
% ¢ fb ¢
hence C¢ is one-to-one. //

COROLLARY 2.1. Let C¢ be a one-to-one composition operator on

22(0) . Then C¢f is a characteristic function, if and only if f is a
characteristic function.

Proof. If f 1is a characteristic function, then clearly C¢f is a
characteristic function. Conversely, suppose C¢f is a characteristic
function. Then, since ess. range f = ess. range C¢f by Theorem 2.1, it
follows that f 1is a characteristic function. //

COROLLARY 2.2. If X <s a non-atomic measure space, then the

nullity of C, 1is either zero or infinite. //

¢

COROLLARY 2.3. et Cj € B(1%(p)) . Then C, is one-to-one if and

only if ¢ s onto. /!

THEOREM 2.2 Let ¢, € B(L°(\)) . Then ¢,

onto and a right inverse of ¢ 1is a non-singular transformation.

is one-to-one 1f ¢ 1is

Proof. Since ¢ 1is onto, there exists a measurable transformation w
such that (¢ o w)(x) = x almost everywhere. Now let E € S . Then
w—l(¢-l(E)) = (¢ o w)_l(E) = E . Since w is non-singular, A(E) =0

whenever A(¢-1(E)) = 0 . Hence, by Theorem 2.1, C¢ is one-to-one. //

The converse of the above theorem is not true in general, as is shown

by the following example.

EXAMPLE 2.1. Let S be the set of all subsets of N , the set of
natural numbers, and let A Dbe the counting measure. Then, if ¢ 1is the

mapping defined by ¢(n) =n if n is odd and ¢(n) =n - 1 if =n is

even, the operator C, is one-to-one on L2(N, Sl’ A) , where

¢

S, = ¢_l(3) = {¢—1(E) : E €8S} . But ¢ is clearly not onto. //
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The following theorem characterizes surjective composition operators.

THEOREM 2.3. Let C¢€B(L2(>\)). Then ¢

ig onto, i1f and only <if

¢

£
there exists an o € R such that fb >0>0 on X°© , and ¢'l(S) =S,

T
where X 0 ={z:z €X and fu(x) # 0} and ¢7H(S) = {$7H(E) : F € S} .
We first prove the following lemma.

LEMMA 2.4. Let C¢ € B(Lz(x)) . Then the range of C¢ is dense in

22(x, 71(s), A)

Proof. Let f belong to the range of C Then f =C

¢

g for some

¢

g in Lg(x) . Since the set of all simple functions is dense in L2(A) .

there exists a sequence {gn} of simple functions such that 9, +g . The

boundedness of C¢ implies that C¢gn > C¢g = f . Clearly C¢gn

to L2(X, 6(S), A) for all n ; it follows that f belongs to

belongs

LE(X, ¢_l(S), A] . Since X is o-finite, we can write X = U X,

3

=1 v
where the Xi's are disjoint and A(Xi) < o for every % . Let XE be
in L2(x, $7(S), A) . Then

(o] fee]
X, =X =y X =Yy cx, ,
B ¢*1(F) i1 ¢—1(Fi) = o Fi
where Fi =Fn Xi . The sum on the right-hand side converges to XE

almost everywhere. By the Lebesgue Dominated Convergence Theorem, it
converges to XE in L2—norm, and hence XE is in the closure of the

range of C¢ . This is enough to show that the range of C¢ is dense in

2, 07N, A) ./

Proof of the theorem. Suppose ¢-l(S) = S . Then by the above lemma

f
the range of C¢ is dense in L2(A) , and if fb >a>0 on X 0 , then
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by [8, Theorem 2.2] the range of C, 1is closed. Hence (, is onto.

¢ 0
Conversely, suppose C¢ is onto. Then C¢ has closed range, and
o
hence fb is bounded away from zero on X [&8, Theorem 2.2]. The set
¢_l(S) is always a sub-set of S . To show the reverse inclusion, let
E €S, and assume A(F) < » . Since C¢ is onto, there exists g in
L2(A) such that C¢g =X, . Let F= {x : 2 €X and g(x) =1} . Then

clearly C¢XF = X , and hence ¢_l(F) =E . Thus FE ¢ ¢—l(3) . This
shows that ¢_l(S) =S . //

THEOREM 2.5. Let C, € B(L%())) . Then Cy has dense vange, if and

only if ¢7H(S) =S .

Proof. The theorem follows from the fact that the range of ( is

¢

dense in L2(X, ¢—l(3), A) . //
COROLLARY 2.4. Let C, € B(L?(\)} . Then ¢, has demse range, if

¢ <s one-to-one.

Proof. Suppose ¢ 1is one-to-one. Then there exists a measurable
transformation w such that (w o ¢)(x) = x almost everywhere. If

1

(

E €S, then (wo¢) () =¢ (wE) =F. Let F=uw'(E) . Then

6" L(F) =Z . Hence E € ¢"(S) . //

The converse of the above corollary is not true in general, as is

evident from Example 2.1, where C is onto, but ¢ 1is not one-to-one.

¢

COROLLARY 2.5. Let C, € B(1%(p)) . Then ¢

and only if ¢ <is one-to-one.

® has dense range, if

Proof. Sufficiency follows from Corollary 2.h.

To prove the necessary part, suppose ¢ 1is not one-to-one. Then

¢[n1] = ¢[n2] for some ny ¥ n, - It is easy to show that neither {nl}
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nor {nz} belongs to ¢_l(3) . Hence, by Theorem 2.5, C¢ does not have
dense range. //

COROLLARY 2.6. Let inf p; =« >0 and supp, =B <. Then Cb
18 onto, if and only if ¢ 1is one-to-one.

Proof. This follows from [8, Theorem 2.5 and corollary]. //

Now we proceed to give a characterization of the invertible

composition operators.

THEOREM 2.6. Let C, ¢ B(Z3(\)) . Then ¢, is invertible if and

only if there exists an o € R such that fO = o > 0 almost everywhere on
X,and ¢"HS) =S .

Proof. This follows from Theorem 2.1 and Theorem 2.3. //

REMARK. If the underlying measure algebra has only two elements, that

is S = {#, X} , then every composition operator on L2(A) is invertible.

COROLLARY 2.7. Let C, ¢ B(1%(p)) . Then ¢, is ome-to-one with

dense range, i1f and only if ¢ <is invertible. //

COROLLARY 2.8. Let infp, =a >0 and supp, <B <. Then

C¢ € B(Zz(p)) is invertible, if and only if ¢ 1is invertible. //

Example 2.1 shows that the invertibility of (, does not necessarily

¢
imply the invertibility of ¢ ; in general the invertibility of ¢ and
the non-singularity of ¢-l does not imply invertibility of C¢ , as is
shown in the following examples.

EXAMPLE 2.2. Let X %be the set of natural numbers and

={1, 2,3, ...} . Let ¢ be the mapping defined by &(n) = n° when

i
l

2
n-l) +1 with aj; =0, and ¢(n) =n-1

otherwise. Consider the sequence of characteristic functions X

n=a , where a = Gz
n n

{a%}
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- 2 2
Then ||C X He/Nx l
¢t 2 2
a a’}
n n

= l/an . This shows that C¢ is not bounded

below, and hence (C is not invertible.

¢

EXAMPLE 2.3. Let X = [0, 1] and S ©be the o-algebra of Borel
sets of the unit interval with Lebesgue measure. If ¢(xz) = Vx , then C

¢
is a bounded operator [7, Theorem 3]. It is clear that ¢ is invertible
-1 . . . 2 2 _
and ¢ is non-singular. But, since ”C¢X[O,l/n]” /”X[O,l/n]” =1/n ,
c is not bounded away from zero, and hence it is not invertible.

¢

Now it is clear from the above examples that characterization of the

invertibility of C¢ in terms of the invertibility of ¢ (and viee-versa)

is not possible in general. From what is done so far, it is evident that
the underlying 0O-algebra of measurable sets plays an important role in the

invertibility of C For some suitable O-algebra the invertibility of

o -
c can be characterized in terms of the invertibility of ¢

¢

DEFINITION. A topological space X is called an absolute Borel space
if it is homeomorphic to a Borel subset of the Hilbert cube. An absolute
Borel space with a O-finite measure on its Borel subsets is called an

absolute measure space.

THEOREM 2.7. Let X be an absolute measure space, and let C¢ be a

bounded operator on Lz(k) . Then C¢ is tnvertible, if and only if ¢

18 invertible with non-singular inverse and ¢'1 induces a composition
operator on Le(k) .

First we shall prove the following lemma.
LEMMA 2.8. If the composition operator C¢ on LQ(A) is

invertible, then ¢t takes characteristic functions into characteristic

¢

functions.

Proof. Let X, be in LZ(A) . Then, since (, is onto, there

¢
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exists a function g in Lz(k) such that C¢g = XE . Since C¢ is one-
to-one, by Corollary 2.1, g 1is a characteristic function. //

Proof of the theorem. Suppose Y is the non-singular inverse of ¢
and ¢, € 8(z%(X)) . Then CyCy = Cpop = 1 = Cyop = Cyy » where I
denotes the identity operator. This shows that C¢ is invertible.
Conversely, suppose C¢ is invertible. Then, by Lemma 2.8, C;l

takes characteristic functions into characteristic functions. On the

quotient O-algebra [S] of S modulo sets of measure zero we define a

mapping h as AK([E]) = [F] when C;lXE = XF (or, equivalently,
-1
F = support C¢ f , for E = support f = {x : flx) # 0} ).
If El n E2 = @ , then

1 clx o+ cTix

c.X = .
¢ “E E, ¢ °E) ¢ °E,

From this it follows that h([E;]) and h([E,]) are disjoint and
n([z,] v [5)) = a([5]) v A([E,) -

For all [5,] ana [£,] , we have

w([e,] o [£]) o n([5,]-15])

w([e,) o [2,]) v a(E,]-2]) -

From (1) and (2), it can be shown that

w(l5,] o [5,]) = w((5,]) o #([EL))

(1) h([El]]
(2) n([5,])

and
w([5]-[5,]) = 1([£]) - a([5,]) .

If {Xi} is an increasing sequence of measurable sets of finite measure
(=] o]
_ -1
such that X = U X. = U ¢ (Xi] , then
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:1 h{E’-l(Xi):” = EJO [Xi] = (x] < n([x]) < [X]

1= =1
Hence
r([x]) = [x]

This shows that % is a homomorphism. Let {Eh} be a sequence of

disjoint measurable sets of finite measure. Then, since C'_l is bounded,

¢
1, v o1 od
we have C¢ f=3 C¢ (an.XE ) , wvhere f = 5 anXE and
=1 n n=1 n

a = 1/n-A(En) . This, together with the fact that U E = support f

n=1

and {support C;l(an-XE )} is a sequence of disjoint measurable sets,
n

implies that

(2]

h[ngl [En]] ualEE))

which proves that % is a O-homomorphism. Since h([El]) = h([E2])

implies that [El] = [E’2] and h([(b_l(E')]) = [E] for every [E] € [S] ,

we conclude that % is an automorphism. By [4, p. 1391 there exists a

point mapping Y from X into itself such that AK([E]) = [w_l(E)]

shows that ¢ 1is a non-singular transformation, and

C¢ XE X -1 = CwXE . Now Cw is bounded on the characteristic

Yy (F)
functions; it follows from [7, Theorem 1] that CW is a bounded operator.
Since C¢°W =1I= CW°¢ , wve get (0o Y)(z) = (Y o ¢)(x) = x almost every-

where. This shows that ¢ 1is invertible, and ¢—1 induces a composition

operator. //

The above theorem is true for all such spaces where every automorphism

or O-homomcrphism is induced by a unique point mapping. The following are

some examples of measure spaces where the theorem is wvalid.
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EXAMPLE 2.4 [1, Lemma 5, p:. 112]. X 1is a compact metric space and

A is a finite Borel measure on X .

EXAMPLE 2.5 [4, §32.1]. (X, S, X) 1is any measure space such that
S is 0J-perfect and reduced. (A measure space (X, S, A) is said to be
reduced, if for any two different points x, y in X there exists a non-

null set E € S such that x €E and y ¢ E .)

3. \Unitary composition operators

LEMMA 3.1. Let C ¢ B(LQ(A)) . Then C, =M, for some 6 <implies

o o} 0
that 8(x) = 1 almost everywhere.

oo
Proof. Let X = U E , where A(E ) <« for each n , and E CE
n n n m
n=1
i > = = .
if m>n . If jh XEn , then we have C¢fh Mefh for all n ;
equivalently X = 0-X for a1l n . Since U ¢—1(E ) =X , we
-1 E n
¢~ (&) n n=1
n
conclude that 6(x) = 1 almost everywhere. i

THEOREM 3.1. Let X be an absolute measure space, and let C¢ be a

bounded operator on LZ(A) . Then the following statements are equivalent:

() C¢ 18 unitary;

(it) fb = 1 almost everywhere and ¢ 1is one-to-one;

(i11) fb = 1 almost everywhere and C, is invertible;

¢

(iv) C* 4s a composition operator.

¢

Proof. (Z) = (iZ). Suppose C¢ is unitary. Then C, 1is invertible,

¢

and it follows immediately from Theorem 2.7 that ¢ is one-to-one. We

know that M, =C#C, = I ; hence f, =1 almost everywhere.
fo  T670 0

(it) = (iii). Whenever ¢ is one-~to-one, C(, has dense range, and

¢

hence (C is invertible (because C¢ is an isometry).

¢
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(ii1) = (iv). Since C* =M, C ' =cCt=cC , C%¥ 1is a composition

operator.
(iv) = (7). Suppose C$ is a composition onerator. Then there
exists a measurable transformation ¢ such that C; = Cw . Since
C*, =M we get C =M . By Lemma 3.1 = 1 almost every-
3 = Mgy o Ve Bt Cpoy =HMp - BY > To ¥

where. In view of Theorem 2.5 it is enough to show that ¢—l(S) =8 . For
this let E € S with A(E) < ® ., Then, if XE is in the range of C¢ ,

for some Ak in L2(A) . Since C(C, 1is one-to-one, by Corollary

b

for some F € S . Hence XE =CX,=X , which yields

Xg = Cgh
h =
$F Ty lp)

2.1, Xp
E = ¢'1(F) . This shows that E ¢ ¢_l(S) . Incase X is not in the

- i
range of (€, , then we can write XE = f+g , wvhere f ¢ (range C¢) ,

¢
the orthogonal complement of the range of C¢ , and g € range C¢ . If we

take g =C then, since (% is a composition operator and

691 ° ¢
CI¥X_ = C*f + C*g = C¥g = C*C = , it follows that = X, for some
op = Cof + €49 = C49 = C4Ced1 = 9 g =4
G €S . This gives f=X,-X,=X - X . The fact that

fi G E-G G-E

A((G-E) n G) =(f, g> = 0 implies that GCE . Now let F, = ¢ (F,)

for some F, ¢ S (that is Xp € range C¢ ) such that F, o E - G . Then
1
A((B=G) n Fl] =(f, Xp ) = 0, which implies that EC G . Thus ve get
1
Xp =X, =g , and hence F € ¢_l(S) . //

EXAMPLE 3.1. Let X =R and ¢{x) =x +¢ . Then C¢ is a unitary

composition operator.

4. Normal composition operators

THEOREM 4.1. Let C¢ be a bounded operator on LZ(A) . Then C

is normal, if and only if C¢ has dense range and fb o ¢ = fb almost

¢
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everywhere.

Proof. Suppose C;C¢ = C¢C$ .  Then

ker C¢ = ker C$C¢ = ker Mfo = ker C¢C$ = ker C$ = (range C

If ME) # 0 , where E = {x : fb(x) = 0} , then for every E' C E with

¢]L

ME') < ®» we can find an element F of finite measure in S such that

4 ) =« ) i i iction.
XE" C¢XF X@" X¢_1(F) # 0 , which is a contradiction Hence

AME) = 0 . This shows that C¢ is one-to-one, and consequently it has

dense range. Furthermore,

c*C X =f X ,
¢¢" -1 07 -1
o (&) o (E,)
and
C C3X =cc* X, =C(fX,) =7F o¢X ,
- E. E. -
¢y, l(Ev,) booE,  9¥O0 E; 0 ¢ l(Ea)
where U E. =X and E.CE, for 2 <j and A(E.) <« for all £
=1 Z J i

i

Therefore fb fb o ¢ almost everywhere.

Conversely, suppose C¢ has dense range and fb = fb o ¢ . Then

C¢C$f = fb o ¢of = fo-f = C$C¢f for all f in the range of C¢ . Since

and C,C* are equal on a dense set, we have C¥C = C . C* . Hence

*
5% %6 6“0 = 6%

c is normal. !/

¢

COROLLARY 4.1. Let C, ¢ B(13(W)) . Then ¢, is normal, if and

only if ¢ is invertible, where 12(N) = {{xn} ) ]xn|2 < w} . //
n=1

COROLLARY 4.2, Let p = {pl, Pps P3s ...} be a strictly inereasing

(or strictly decreasing) sequence. Then C¢ € B[Zg(p)) i8 normal, if and
only if ¢ is the identity. //

EXAMPLE 4.1, Let X =R, and ¢(z) = ax + b . Then C¢ is a

https://doi.org/10.1017/50004972700008479 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700008479

94 R.K. Singh and Ashok Kumar

normal composition operator.

Now we give a typical example of a normal composition operator C

¢
which is not onto.
[eo]
EXAMPLE 4.2. Tet N.={1.,2.,3., ...} andlet Xx= U &, Let
7 1’ 1 7 .
=1
the measure A Dbe defined as
i(n_l)/2 , when n 1is odd,
A(n,) =
v n/2
1/7 , wvhen n is even.
If ¢ is the mapping defined by
(n+2)i , when n is odd,
¢[ni) = li , when n =2,
/ (n—2)i , when #n 1is even and greater than 2 ,

= ; , €N, . i i ~to-
then fb(ni) 1/7i for all n; € : Since ¢ 1is one-to-one, C¢ has

dense range. Also it is clear that fo = fb °©¢ . Hence (€, 1is normal.

¢

If m is fixed, then ||C X |[2/|]X ||2 =1/i , 1 € N . This shows
¢ {mi} {mi}

that C¢ is not onto.
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