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Characterizations of invertible, unitary,
and normal composition operators

R.K. Singh and Ashok Kumar

2
Let C. be a composition operator on L (X) , where X i s a

o-f ini te measure on a set X . Conditions under which C, i s
<P

invertible, unitary, and normal are investigated in this paper.

1 . Prelimi nari es

Let [X, S, X) be a a - f in i t e posit ive measure space, and l e t <Ji be

a measurable non-singular (X<j> (E) = 0 whenever \{E) = 0 ) transform-

ation from X into i t s e l f . Then we define a l inear transformation C, on

o

the Hilbert space L (X) into the space of a l l complex-valued functions on

X by C.f = / o (j> for f in L (X) . In case C, i s a bounded operator
o

with range in L (X) , we ca l l i t a composition operator induced by <j> .

The Radon-Nikodym derivative of the measure X<f> with respect to the

measure X will be denoted by f- .

If E and F are sets in S , then E A F = (E-F) u (F-£) . The

notation 'E c F ' wi l l mean X(E-F) = 0 . The sets E and F are said

to be equivalent, in symbols 'E = F' , if \{E A F) = 0 . Two sigma-

subalgebras S and S contained in S wil l be called equivalent, if to

every set E in either one of them there corresponds a set F in the
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other so that E = F .

Every essentially bounded com pi ex-valued measurable function 9 on AT

2
induces the multiplication operator Af. on L (X) , which is defined by

MQf = 6-f for all / in L
2{X) .

Let p = {p , p 2 , p , ...} be a sequence of strictly positive

p
numbers. Then I (p) denotes the Hilbert space of all sequences {x }

oo

of complex numbers such t h a t £ p . | x . | < °° . The Banach a lgebra of a l l

bounded l i n e a r o p e r a t o r s on L (X) w i l l be denoted by B[L (X)) .

THEOREM 1.1. Let C' € B[L2(X)) . Then C is bounded away from

zero, if and only if there exists an M > 0 such that X<$>~ (E) > MX(E)

for every E Z S . Also

inf \\C,/||2/||/||2 = m[C ) = supJM : X*"1(£') > MX(E) for all E € S\ .
II/II/O 'P *

The proof is dual to the proof of [7, Theorem 1] or [5, Theorem

2.1.1]. / /

COROLLARY 1.1. If C e B{L2(X)) , then m[c ) = J | /Q | | , where

oJI/,-,11 denotes the essential infimum of f . //

LEMMA 1.2. Let M~ e B[L2{X)) . Then M. is one-to-one if and only

if 0 # 0 almost everywhere. / /

2. Invertible composition operators

DEFINITION. Let (X, S, X) be a measure space. Then a measurable

transformation <j> on X into itself is said to be one-to-one (or left

invertible) if there exists a measurable transformation I|I on X into

i tself such that (ip ° <!>)(x) = x almost everywhere. It is said to be onto

(or right invertible) if there exists a measurable transformation u such

that (<j> o to)(x) = x almost everywhere. It is said to be invertible if
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there i s a measurable transformation ij; such that

(<t> ° ^)(x) = (^ ° $)(x) = x almost everywhere. Such a ij) is called the

inverse of <j> , and is denoted by <j>

DEFINITION. Let f be a complex-valued measurable function on X .

Then

ess. range / = {a : c € C, \{f~l{F)) t 0

for every neighborhood F of a) .

The following theorem characterizes one-to-one composition operators.

THEOREM 2.1 . Let C. € B[L2(X)) . Then the following statements are

equivalent:

(i) C, is one-to-one;

( i i ) e s s . r a n g e / = e s s . r a n g e C . f f o r e v e r y f Z L ( X ) ;

(Hi) \{E) = 0 , whenever X^iE) = 0 for E e S ;

(iv) fn.?0 almost everywhere, where f = d\§~ /dk .

Proof. (i) °* (ii). In view of [7, Theorem 1 ] , i t is always t rue that

ess. range C.f a ess . range f . To show the reverse inclusion l e t

a € ess. range f and F be a neighborhood of a . Then / (F) i s a

non-null set and since (by hypothesis) C, i s one-to-one, <j>~ (/ (F)) i s

a non-null se t . Hence e € ess. range C.f .

(ii) =» (Hi). Let Xif1^) = 0 . Then ess. range C.X^ = {0} , where
(p ti

X,-, denotes the characteristic function of E , and hence
hi

ess. range X~ = {0} . This implies that \{E) = 0 .

(Hi) =» (iv). Since AcjT1^) = fQdX for every E 6 S , i t follows

that /„ t 0 almost everywhere.

iv,) "* ( i J . If / . + 0 , then by Lemma 1.2, AT, i s one-to-one.
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Since C*C = M. (see [6]) , i t follows that C*C, is one-to-one, and

hence C, is one-to-one. / /

COROLLARY 2.1. Let C. be a one-to-one composition operator on

L (A) . Then C.f is a characteristic function, if and only if f is a

characteristic function.

P r o o f . I f / i s a c h a r a c t e r i s t i c f u n c t i o n , t h e n c l e a r l y C.f i s a

c h a r a c t e r i s t i c f u n c t i o n . C o n v e r s e l y , suppose C.f i s a c h a r a c t e r i s t i c

f u n c t i o n . Then , s i n c e e s s . r a n g e f = e s s . r a n g e C.f by Theorem 2 . 1 , i t

f o l l o w s t h a t f i s a c h a r a c t e r i s t i c f u n c t i o n . / /

COROLLARY 2.2. If X is a non-atomic measure space, then the

nullity of C. is either zero or infinite. //

COROLLARY 2.3. Let C € B{l2{p)) . Then C is one-to-one if and

only if <}> i s onto. / /

THEOREM 2.2. Let C € B[L2{\)) . Then C is one-to-one if $ is

onto and a right inverse of <f> is a non-singular transformation.

Proof. Since <j> is onto, there exists a measurable transformation u

such that (4> o ui)(x) = x almost everywhere. Now let E € S . Then

uT1(<t>~1(£)) = (<!> o OJ)"1(£') = E . Since u is non-singular, \(E) = 0

whenever X[^>~ {E)) = 0 . Hence, by Theorem 2.1, C, is one-to-one. / /

The converse of the above theorem is not true in general, as is shown

by the following example.

EXAMPLE 2.1 . Let S be the set of a l l subsets of N , the set of

natural numbers, and le t X be the counting measure. Then, if <J> is the

mapping defined by <J>(n) = n if n is odd and (J)(n) = n - X if n is

even, the operator C, is one-to-one on L \N, S , XJ , where

S = ^ ( S ) = {^{E) : E £ S) . But <j> is clearly not onto. / /
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The following theorem characterizes surjective composition operators.

THEOREM 2.3 . Let C d B[L2(\)) . Then C is onto, if and only if

f0 ,
there exists an a € i? such that f > a > 0 on X , and <j> (S) = S ,

f
where X = {x : x € X and fQ(x) * 0} and §~X{S) = {(j)~1(£') : E 6 S] .

We f i r s t prove the following lemma.

LEMMA 2.4. Let C € s(i2(A)) . Then the range of C is dense in

L2{X, <fi"1(S), A) .

Proof. Let / belong to the range of C. . Then / = C.g for some

g in L (A) . Since the set of all simple functions is dense in L (A) ,

there exists a sequence {g } of simple functions such that g •*• g . The

boundedness of C, implies that C g -*• C g = f . Clearly C g belongs

to L2[X, (()"1(S), A) for all n ; it follows that / belongs to
oo

L2[X, i()"1(S), A) . Since X i s a - f i n i t e , we can write X = U X. ,

where the X.'s are dis joint and A.fA'.] < «> for every •£ . Let X be
"L % £>

2 /" —1 "\
i n L [X, (j) ( S ) , AJ . Then

OO 00

y = y — V y — V r Y

where F. = F n X. . The sum on the right-hand side converges to X~
1, % a

almost everywhere. By the Lebesgue Dominated Convergence Theorem, i t
2

converges to X^ in L -norm, and hence X-r, i s in the closure of the

range of C, . This i s enough to show that the range of C. i s dense in

L2{X, <t>-l(S), A) .

Proof of the theorem. Suppose (j> (S) = S . Then by the above lemma

2 0
the range of C. is dense in L (A) , and if f. t a > 0 on X , then
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by IS, Theorem 2.2] the range of C is closed. Hence C i s onto.

Conversely, suppose C. i s onto. Then C, has closed range, and

hence f i s bounded away from zero on X IS, Theorem 2 .2 ] . The set

<j> (S) is always a sub-set of 5 . To show the reverse inclusion, l e t

E d S , and assume X{E) < °° . Since C i s onto, there exis ts g in

L2(X) such that C g = X£ . Let F = {x : x € X and g(x) = l} . Then

c lea r ly C,XF = X£ , and hence ())"1(F) = E . Thus E € (j)~1(S) . This

shows that ^""""(S) = S . / /

THEOREM 2.5. Let C € B[L2(X)) . Then C has dense range, if and

only If <fX(S>) = S .

Proof. The theorem follows from the fact that the range of C, is

dense in L2(x, ̂ {S), X) . II

COROLLARY 2.4. Let C (. B[L2(.X)) . Then C has dense range, if

4> is one-to-one.

Proof. Suppose <j> is one-to-one. Then there exists a measurable

transformation u such that (w ° <j))(x) = x almost everywhere. If

S f S , then (u ° <)))"1(£') = ^{^(E)) = E . Let F = u"1(£') . Then

(jT1^) = £• . Hence E € ^ ( S ) • / /

The converse of the above corollary is not true in general, as is

evident from Example 2.1, where C. is onto, but <J> is not one-to-one.

COROLLARY 2.5. Let C € B[l2(p)) . Then C has dense range, if

and only if <J> is one-to-one.

Proof. Sufficiency follows from Corollary 2.U.

To prove the necessary part , suppose (j> i s not one-to-one. Then

<j>(n ) = '{'("o) f ° r some n t n . I t i s easy to show that neither \n }
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nor {no\ belongs to <J> (5) . Hence, by Theorem 2.5, C, does not have

dense range. / /

COROLLARY 2.6. Let in f p. = a > 0 and sup p^ = 3 < °° . 2%ew C.

is ontOj i / cmci only if <j> is one-to-one.

Proof. This follows from i&, Theorem 2.5 and corollary]. / /

Now we proceed to give a characterization of the invertible
composition operators.

THEOREM 2.6. Let C £ B[L2{\)) . Then C is invertible if and

only if there exists an a € R such that f2 a > 0 almost everywhere on

X, and (fT^S) = S .

Proof. This follows from Theorem 2.1 and Theorem 2.3. //

REMARK. If the underlying measure algebra has only two elements, that

is S = {0, X) , then every composition operator on L (X) is invertible.

COROLLARY 2.7. Let C i B[l2{p)) . Then C is one-to-one with

dense range, if and only if <|> is invertible. //

COROLLARY 2.8. Let inf p. = a > 0 and sup p. < 6 < "> . Then

C. £ B[l (p)~) is invertible, if and only if <f> is invertible. II

Example 2.1 shows that the invertibility of C, does not necessarily

imply the invertibility of <)> ; in general the invertibility of (j> and

the non-singularity of $ does not imply invertibility of C , as is

shown in the following examples.

EXAMPLE 2.2. Let X be the set of natural numbers and

p = {l, 2, 3, ...} . Let (f> be the mapping defined by 4>(w) = n when

n = an , where an = [a J + 1 with a = 0 , and 4>(n) = n - 1

otherwise. Consider the sequence of characteristic functions X

2
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Then \\C.X' „ \\2/\\X ||2 = I/a . This shows that C is not bounded

below, and hence C, is not invertible.

EXAMPLE 2.3. Let X =• [0, l] and S be the a-algebra of Borel

sets of the unit interval with Lebesgue measure. If <$>{x) = Vx , then C,

is a bounded operator [7, Theorem 3]. It is clear that <j> is invertible

and <(> is non-singular. But, since 1 1 ^ [ 0 x/n]" ̂ [ O 1/n]" = 1^" '

C, is not bounded away from zero, and hence it is not invertible.

Now it is clear from the above examples that characterization of the

invertibility of C, in terms of the invertibility of <j> (and vice-versa)

is not possible in general. From what is done so far, it is evident that

the underlying a-algebra of measurable sets plays an important role in the

invertibility of C. . For some suitable 0-algebra the invertibility of

C. can be characterized in terms of the invertibility of <j>

DEFINITION. A topological space X is called an absolute Borel space

if it is homeomorphic to a Borel subset of the Hilbert cube. An absolute

Borel space with a cr-finite measure on its Borel subsets is called an

absolute measure space.

THEOREM 2.7. Let X be an absolute measure space, and let C be a

2
bounded operator on L (X) . Then C is invertible, if and only if <j)

is invertible with non-singular inverse and <j>~ induces a composition

operator on L (X) .

First we shall prove the following lemma.

LEMMA 2.8. If the composition operator C on L (A) is

invertible, then C~ takes characteristic functions into characteristic

functions.

2
Proof. Let XE be in L (X) . Then, since C is onto, there
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exists a function g in L (A) such that C.g = X^ . Since C. is one-

to-one, by Corollary 2.1, g is a characteristic function. //

Proof of the theorem. Suppose ty is the non-singular inverse of (J>

and C^ € B(L2U)) . Then C ^ = C ^ = J = C^ = Cfa , where I

denotes the identity operator. This shows that C, is invertible.

Conversely, suppose C. is invertible. Then, by Lemma 2.8, C.

takes characteristic functions into characteristic functions. On the

quotient o-algebra [S] of S modulo sets of measure zero we define a

mapping h as h([E]) = [F] when C, X^ = Xp (or, equivalently,

F = support C"1/ , for E = support f = {x : f(x) t 0} ) .

If E n E2 = 0 , then

From this it follows that ^ d X ] ) and ^([fi'J) are disjoint and

For all [# J and [ffj , we have

(2) g ^

From (l) and (2), it can be shown that

and

If {X.} is an increasing sequence of measurable' sets of finite measure

Ir-

as CO

such that X = U X. = U (JT1^.) , then
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] = [X] ch([X]) c [X]U ft U" 1 ^0 = U [x] =

Hence

This shows that ft is a homomorphism. Let {E } be a sequence of

disjoint measurable sets of finite measure. Then, since C~ is bounded,

oo oo

we have C"1/ = Y C~ [a -X^ ) , where f = Y a X~ and
n=l n n=l n

oo

a = l/n-X[E ) . This, together with the fact that U E = support f
n n n=l

 n

and j support C, [p. •-?„ J > is a sequence of disjoint measurable sets,

implies that

which proves that ft is a a-homomorphism. Since ft([#-,]) =

implies that [ffj = [E^\ and ft[[^(E)]) = [E] for every [E] € [S] ,

we conclude that ft is an automorphism. By [4, p. 139] there exists a

point mapping ty from X into itself such that h([E]) = [tjT (ff)] . This

shows that t|j is a non-singular transformation, and

C X„ = X = C.Xj-, . Now C. is bounded on the characteristic

• E ITHE) * E *
functions; it follows from [7, Theorem 1] that C is a bounded operator.

Since C = I = C , we get ((j) ° i£)(aO = (<JJ ° $)(x) = x almost every-

where. This shows that <j> is invertible, and $ induces a composition

operator. //

The above theorem is true for all such spaces where every automorphism

or a-homomorphism is induced by a unique point mapping. The following are

some examples of measure spaces where the theorem is valid.
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EXAMPLE 2.4 P , Lemma 5, P'- 112]. X i s a compact metric space and

X is a f in i te Borel measure on X .

EXAMPLE 2.5 [4, §32.1]. (X, S, X) i s any measure space such that

S is a-perfect and reduced. (A measure space (X, S, X) i s said to be

reduced, if for any two different points x, y in X there exists a non-

null set E (. S such that x d E and y $ E .)

3. Unitary composition operators

LEMMA 3.1 . Let C, i B{L2{\)) . Then C, = Ma for some 9 implies

that Q{x) = 1 almost everywhere.

CO

Proof. Let X = U E , where X(E ) < °o for each n , and E c E
-. n *• n' n m

n=l

i f m > n . If fn
=x

E > t h e n w e h a v e Cfcf = M
Qf f o r a 1 1 n i

oo

equivalently X = Q'X for all n . Since U (p""1^ ) = X , we
<f> [Enj n n=l

conclude that 6(x) = 1 aljnost everywhere. //

THEOREM 3.1. Let X be an absolute measure space, and let C. be a

2
bounded operator on L (X) . Then the following statements are equivalent:

(i) C, is unitary;

Hi) f = 1 almost everywhere and <J> is one-to-one;

(iii) f= 1 almost everywhere and C is invertible;

(iv) C* is a composition operator.

Proof. (i) =* (ii). Suppose C, is unitary. Then C. is invertible,

and it follows immediately from Theorem 2.7 that (p is one-to-one. We

know that M~ = C*C, = I ; hence / = 1 almost everywhere.

(ii) °* (iii). Whenever (p is one-to-one, C, has dense range, and

hence C, is invertible (because C. is an isometry).
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(iii) =• (iv). Since C* = M. C'1 = C~X = C , C* is a composition
m t m n) — X (p

operator.

(iv) °* (i). Suppose Ci is a composition operator. Then there

exists a measurable transformation i|> such that CJ = C. . Since

C*C, = M~ , we get G.. = M~ . By Lemma 3.1, /_ = 1 almost every-

where. In view of Theorem 2.5 it is enough to show that <p (S) = S . For

this let E € S with \{E) < °° . Then, if XR is in the range of C, ,

2
Xp = C.h for some h in L (X) . Since C, is one-to-one, by Corollary

2.1, h = Xp for some F e S . Hence ^ = C ATf = X , which yields

E = d)~ (F) . This shows that £ € (p~ (S) . In case Xw is not in the

range of C, , then we can write X^ = f + g , where / £ (range C.) ,

the orthogonal complement of the range of C. , and g € range C, . If we

take g = C.g , then, since C* is a composition operator and

C*XE = CV + Cft = Cft = ClC$H = H ' " fOllOWS that 3 = XG for some
G € S . This gives f = X^ - Xr = X- r - Xn „ . The fact that

-\[(G-E) n G) = </, g) = 0 implies that G c E . Now let F = (p' 1^)

for some F € S (that is Xp € range C ) such that F Z3 E - G . Then

X((£-G) n F ) = </, X_ > = 0 , which implies that Ec G . Thus we get
1

X£ = Xg = g , and hence E € ̂ (S) . II

EXAMPLE 3.1 . Let X = R and <)>(«) = x + c . Then C, is a unitary

composition operator.

4. Normal composition operators

THEOREM 4 . 1 . Let C, be a bounded operator on L2{\) . Then C.

is normal, if and only if C, has dense range and fn°$ = fr\ almost
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everywhere.

Proof. Suppose C*C, = C,C* . Then

ker C. = ker C*C, = ker M- = ker C,C* = ker C* = (range C.)1' .
cp ij) (f / 0 <p ip <p <• B ip-1

If X(£) # 0 , where E = {x : fQ(x) = O) , then for every E' c E with

X(i?') < 0° we can find an element F of finite measure in S such that

<XT,,, C,X> = (X-,, X , > t 0 , which is a contradiction. Hence
E * F ^ ^ ( F )

X(£) = 0 . This shows that C, is one-to-one, and consequently it has

dense range. Furthermore,

and

' f°' •

where U E. = X and E. a E. for i < j and X(#.J < °° for all i .

Therefore f. = /. ° (p almost everywhere.

Conversely, suppose C. has dense range and / = f o (j> . Then

S ^ = fo ° ̂ 'f = ̂ o'^ = clc/ for a11 ̂  in the range of c<i, • Since
C*C. and C.C* are equal on a dense set, we have C*C^ = CJ2* . Hence
q> (p . ip (f> (p (p <p (p

C. is normal. //

COROLLARY 4 . 1 . Let C 6 B(Z2(ff)) . Tfcen C i s wrmaZ, if and

{ CO x

{x } : Y, \x I < °°[ • //
n n=l n >

COROLLARY 4.2. Let p = {p , p2, p^, •••} i>e a strictly increasing

(or strictly decreasing) sequence. Then C i. B[l (p)] -is normal, if and

only if <p is the identity. II

EXAMPLE 4.1. Let X = R , and cp(x) = ax + b . Then C is a
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normal composition operator.

Wow we give a typical example of a normal composition operator C,

which i s not onto.

oo

EXAMPLE 4 . 2 . L e t N. = { l . , 2 . , 3 . , . . . } a n d l e t X = U N. . L e t
Is tr Is Is * -. Is

^=l

the measure A be defined as

If <J> i s the mapping defined by

(n+2) . , when n i s odd,

1. , when n = 2 ,
Is

(n-2) . , when n is even and greater than 2 ,
Is

then f [n.) = 1/i for a l l n. € N. . Since (j> i s one-to-one, C has

dense range. Also i t i s clear that f = / „ ° <J) . Hence C, i s normal.

If m i s fixed, then llC.Xr i||2/||^r i | | 2 = 1/i , i (. N . This shows

tha t C, i s not onto.
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