Characterizations of invertible, unitary, and normal composition operators R.K. Singh and Ashok Kumar

Let C_{ϕ} be a composition operator on $L^2(\lambda)$, where λ is a σ -finite measure on a set X. Conditions under which C_{ϕ} is invertible, unitary, and normal are investigated in this paper.

1. Preliminaries

Let (X, S, λ) be a σ -finite positive measure space, and let ϕ be a measurable non-singular $(\lambda \phi^{-1}(E) = 0 \text{ whenever } \lambda(E) = 0)$ transformation from X into itself. Then we define a linear transformation C_{ϕ} on the Hilbert space $L^2(\lambda)$ into the space of all complex-valued functions on X by $C_{\phi}f = f \circ \phi$ for f in $L^2(\lambda)$. In case C_{ϕ} is a bounded operator with range in $L^2(\lambda)$, we call it a composition operator induced by ϕ . The Radon-Nikodym derivative of the measure $\lambda \phi^{-1}$ with respect to the measure λ will be denoted by f_0 .

If *E* and *F* are sets in *S*, then $E \ \Delta F = (E-F) \cup (F-E)$. The notation $E \subset F'$ will mean $\lambda(E-F) = 0$. The sets *E* and *F* are said to be equivalent, in symbols E = F', if $\lambda(E \ \Delta F) = 0$. Two sigmasubalgebras S_1 and S_2 contained in *S* will be called equivalent, if to every set *E* in either one of them there corresponds a set *F* in the

Received 28 June 1978.

other so that E = F .

Every essentially bounded complex-valued measurable function θ on X induces the multiplication operator M_{θ} on $L^2(\lambda)$, which is defined by $M_{\theta}f = \theta \cdot f$ for all f in $L^2(\lambda)$.

Let $p = \{p_1, p_2, p_3, \ldots\}$ be a sequence of strictly positive numbers. Then $l^2(p)$ denotes the Hilbert space of all sequences $\{x_n\}$ of complex numbers such that $\sum_{i=1}^{\infty} p_i |x_i|^2 < \infty$. The Banach algebra of all bounded linear operators on $L^2(\lambda)$ will be denoted by $B(L^2(\lambda))$.

THEOREM 1.1. Let $C_{\phi} \in B(L^{2}(\lambda))$. Then C_{ϕ} is bounded away from zero, if and only if there exists an M > 0 such that $\lambda \phi^{-1}(E) \ge M\lambda(E)$ for every $E \in S$. Also

 $\inf_{\substack{\|C_{\phi}f\|^2/\|f\|^2 = m(C_{\phi}) = \sup\{M : \lambda\phi^{-1}(E) \ge M\lambda(E) \text{ for all } E \in S\} } .$

The proof is dual to the proof of [7, Theorem 1] or [5, Theorem 2.1.1]. //

 $\begin{aligned} & \text{COROLLARY 1.1. If } C_{\phi} \in B\big(L^2(\lambda)\big) \text{, then } m\big(C_{\phi}\big) = {}_{\infty} \|f_0\| \text{, where} \\ & {}_{\infty}\|f_0\| \text{ denotes the essential infimum of } f_0 \text{.} \\ \end{aligned}$

LEMMA 1.2. Let $M_{\theta} \in B(L^2(\lambda))$. Then M_{θ} is one-to-one if and only if $\theta \neq 0$ almost everywhere. //

2. Invertible composition operators

DEFINITION. Let (X, S, λ) be a measure space. Then a measurable transformation ϕ on X into itself is said to be one-to-one (or left invertible) if there exists a measurable transformation ψ on X into itself such that $(\psi \circ \phi)(x) = x$ almost everywhere. It is said to be onto (or right invertible) if there exists a measurable transformation ω such that $(\phi \circ \omega)(x) = x$ almost everywhere. It is said to be invertible if

there is a measurable transformation ψ such that

 $(\phi \circ \psi)(x) = (\psi \circ \phi)(x) = x$ almost everywhere. Such a ψ is called the inverse of ϕ , and is denoted by ϕ^{-1} .

DEFINITION. Let f be a complex-valued measurable function on X . Then

ess. range
$$f = \{c : c \in C, \lambda(f^{-1}(F)) \neq 0$$

for every neighborhood F of c} .

The following theorem characterizes one-to-one composition operators.

THEOREM 2.1. Let $C_{\phi} \in B(L^2(\lambda))$. Then the following statements are equivalent:

(i) C_{ϕ} is one-to-one;

(ii) ess. range f = ess. range $C_{\phi}f$ for every $f \in L^2(\lambda)$;

(iii) $\lambda(E) = 0$, whenever $\lambda \phi^{-1}(E) = 0$ for $E \in S$;

(iv) $f_0 \neq 0$ almost everywhere, where $f_0 = d\lambda \phi^{-1}/d\lambda$.

Proof. (i) \Rightarrow (ii). In view of [7, Theorem 1], it is always true that ess. range $C_{\phi}f \subset$ ess. range f. To show the reverse inclusion let $c \in$ ess. range f and F be a neighborhood of c. Then $f^{-1}(F)$ is a non-null set and since (by hypothesis) C_{ϕ} is one-to-one, $\phi^{-1}(f^{-1}(F))$ is a non-null set. Hence $c \in$ ess. range $C_{\phi}f$.

 $(ii) \Rightarrow (iii)$. Let $\lambda \phi^{-1}(E) = 0$. Then ess. range $C_{\phi} X_E = \{0\}$, where X_E denotes the characteristic function of E, and hence ess. range $X_F = \{0\}$. This implies that $\lambda(E) = 0$.

 $(iii) \Rightarrow (iv)$. Since $\lambda \phi^{-1}(E) = \int_E f_0 d\lambda$ for every $E \in S$, it follows that $f_0 \neq 0$ almost everywhere.

 $(iv) \Rightarrow (i)$. If $f_0 \neq 0$, then by Lemma 1.2, M_{f_0} is one-to-one.

Since $C_{\phi}^{*}C_{\phi} = M_{f_0}$ (see [6]), it follows that $C_{\phi}^{*}C_{\phi}$ is one-to-one, and hence C_{ϕ} is one-to-one. //

COROLLARY 2.1. Let C_{ϕ} be a one-to-one composition operator on $L^2(\lambda)$. Then $C_{\phi}f$ is a characteristic function, if and only if f is a characteristic function.

Proof. If f is a characteristic function, then clearly $C_{\phi}f$ is a characteristic function. Conversely, suppose $C_{\phi}f$ is a characteristic function. Then, since ess. range f = ess. range $C_{\phi}f$ by Theorem 2.1, it follows that f is a characteristic function. //

COROLLARY 2.2. If X is a non-atomic measure space, then the nullity of C_{ϕ} is either zero or infinite. //

COROLLARY 2.3. Let $C_{\phi} \in B(l^2(p))$. Then C_{ϕ} is one-to-one if and only if ϕ is onto. //

THEOREM 2.2. Let $C_{\phi} \in B(L^2(\lambda))$. Then C_{ϕ} is one-to-one if ϕ is onto and a right inverse of ϕ is a non-singular transformation.

Proof. Since ϕ is onto, there exists a measurable transformation ω such that $(\phi \circ \omega)(x) = x$ almost everywhere. Now let $E \in S$. Then $\omega^{-1}(\phi^{-1}(E)) = (\phi \circ \omega)^{-1}(E) = E$. Since ω is non-singular, $\lambda(E) = 0$ whenever $\lambda(\phi^{-1}(E)) = 0$. Hence, by Theorem 2.1, C_{ϕ} is one-to-one. //

The converse of the above theorem is not true in general, as is shown by the following example.

EXAMPLE 2.1. Let S be the set of all subsets of N, the set of natural numbers, and let λ be the counting measure. Then, if ϕ is the mapping defined by $\phi(n) = n$ if n is odd and $\phi(n) = n - 1$ if n is even, the operator C_{ϕ} is one-to-one on $L^2(N, S_1, \lambda)$, where $S_1 = \phi^{-1}(S) = \{\phi^{-1}(E) : E \in S\}$. But ϕ is clearly not onto. //

The following theorem characterizes surjective composition operators.

THEOREM 2.3. Let $C_{\phi} \in B(L^{2}(\lambda))$. Then C_{ϕ} is onto, if and only if there exists an $\alpha \in R$ such that $f_{0} \geq \alpha > 0$ on $X^{f_{0}}$, and $\phi^{-1}(S) = S$, where $X^{f_{0}} = \{x : x \in X \text{ and } f_{0}(x) \neq 0\}$ and $\phi^{-1}(S) = \{\phi^{-1}(E) : E \in S\}$.

We first prove the following lemma.

LEMMA 2.4. Let $C_{\phi} \in B(L^2(\lambda))$. Then the range of C_{ϕ} is dense in $L^2(X, \phi^{-1}(S), \lambda)$.

Proof. Let f belong to the range of C_{ϕ} . Then $f = C_{\phi}g$ for some g in $L^2(\lambda)$. Since the set of all simple functions is dense in $L^2(\lambda)$, there exists a sequence $\{g_n\}$ of simple functions such that $g_n \neq g$. The boundedness of C_{ϕ} implies that $C_{\phi}g_n \neq C_{\phi}g = f$. Clearly $C_{\phi}g_n$ belongs to $L^2(X, \phi^{-1}(S), \lambda)$ for all n; it follows that f belongs to $L^2(X, \phi^{-1}(S), \lambda)$. Since X is σ -finite, we can write $X = \bigcup_{i=1}^{\infty} X_i$, where the X_i 's are disjoint and $\lambda(X_i) < \infty$ for every i. Let X_E be in $L^2(X, \phi^{-1}(S), \lambda)$. Then

$$X_{E} = X_{\phi^{-1}(F)} = \sum_{i=1}^{\infty} X_{\phi^{-1}(F_{i})} = \sum_{i=1}^{\infty} C_{\phi} X_{F_{i}}$$

where $F_i = F \cap X_i$. The sum on the right-hand side converges to X_E almost everywhere. By the Lebesgue Dominated Convergence Theorem, it converges to X_E in L^2 -norm, and hence X_E is in the closure of the range of C_{ϕ} . This is enough to show that the range of C_{ϕ} is dense in $L^2(X, \phi^{-1}(S), \lambda)$. //

Proof of the theorem. Suppose $\phi^{-1}(S) = S$. Then by the above lemma the range of C_{ϕ} is dense in $L^2(\lambda)$, and if $f_0 \ge \alpha > 0$ on X^{f_0} , then

by [8, Theorem 2.2] the range of C_{ϕ} is closed. Hence C_{ϕ} is onto.

86

Conversely, suppose C_{ϕ} is onto. Then C_{ϕ} has closed range, and hence f_0 is bounded away from zero on χ^{f_0} [8, Theorem 2.2]. The set $\phi^{-1}(S)$ is always a sub-set of S. To show the reverse inclusion, let $E \in S$, and assume $\lambda(E) < \infty$. Since C_{ϕ} is onto, there exists g in $L^2(\lambda)$ such that $C_{\phi}g = X_E$. Let $F = \{x : x \in X \text{ and } g(x) = 1\}$. Then clearly $C_{\phi}X_F = X_E$, and hence $\phi^{-1}(F) = E$. Thus $E \in \phi^{-1}(S)$. This shows that $\phi^{-1}(S) = S$. //

THEOREM 2.5. Let $C_{\phi} \in B(L^2(\lambda))$. Then C_{ϕ} has dense range, if and only if $\phi^{-1}(S) = S$.

Proof. The theorem follows from the fact that the range of C_{ϕ} is dense in $L^2(X, \phi^{-1}(S), \lambda)$. //

COROLLARY 2.4. Let $C_{\phi} \in B(L^2(\lambda))$. Then C_{ϕ} has dense range, if ϕ is one-to-one.

Proof. Suppose ϕ is one-to-one. Then there exists a measurable transformation ω such that $(\omega \circ \phi)(x) = x$ almost everywhere. If $E \in S$, then $(\omega \circ \phi)^{-1}(E) = \phi^{-1}(\omega^{-1}(E)) = E$. Let $F = \omega^{-1}(E)$. Then $\phi^{-1}(F) = E$. Hence $E \in \phi^{-1}(S)$. //

The converse of the above corollary is not true in general, as is evident from Example 2.1, where C_{ϕ} is onto, but ϕ is not one-to-one.

COROLLARY 2.5. Let $C_{\phi} \in B(l^2(p))$. Then C_{ϕ} has dense range, if and only if ϕ is one-to-one.

Proof. Sufficiency follows from Corollary 2.4.

To prove the necessary part, suppose ϕ is not one-to-one. Then $\phi(n_1) = \phi(n_2)$ for some $n_1 \neq n_2$. It is easy to show that neither $\{n_1\}$

nor $\{n_2\}$ belongs to $\phi^{-1}(S)$. Hence, by Theorem 2.5, C_{ϕ} does not have dense range. //

COROLLARY 2.6. Let $\inf p_i = \alpha > 0$ and $\sup p_i = \beta < \infty$. Then C_{ϕ} is onto, if and only if ϕ is one-to-one.

Proof. This follows from [8, Theorem 2.5 and corollary]. //

Now we proceed to give a characterization of the invertible composition operators.

THEOREM 2.6. Let $C_{\phi} \in B(L^2(\lambda))$. Then C_{ϕ} is invertible if and only if there exists an $\alpha \in \mathbb{R}$ such that $f_0 \ge \alpha > 0$ almost everywhere on X, and $\phi^{-1}(S) = S$.

Proof. This follows from Theorem 2.1 and Theorem 2.3. //

REMARK. If the underlying measure algebra has only two elements, that is $S = \{\emptyset, X\}$, then every composition operator on $L^2(\lambda)$ is invertible.

COROLLARY 2.7. Let $C_{\phi} \in B(l^2(p))$. Then C_{ϕ} is one-to-one with dense range, if and only if ϕ is invertible. //

COROLLARY 2.8. Let $\inf p_i = \alpha > 0$ and $\sup p_i < \beta < \infty$. Then $C_{\phi} \in B(l^2(p))$ is invertible, if and only if ϕ is invertible. //

Example 2.1 shows that the invertibility of C_{ϕ} does not necessarily imply the invertibility of ϕ ; in general the invertibility of ϕ and the non-singularity of ϕ^{-1} does not imply invertibility of C_{ϕ} , as is shown in the following examples.

EXAMPLE 2.2. Let X be the set of natural numbers and $p = \{1, 2, 3, ...\}$. Let ϕ be the mapping defined by $\phi(n) = n^2$ when $n = a_n$, where $a_n = (a_{n-1})^2 + 1$ with $a_0 = 0$, and $\phi(n) = n - 1$ otherwise. Consider the sequence of characteristic functions X $\{a_n^2\}$. Then $\|C_{\phi}X_{\{a_n^2\}}\|^2 \|X_{\{a_n^2\}}\|^2 = 1/a_n$. This shows that C_{ϕ} is not bounded below, and hence C_{ϕ} is not invertible.

EXAMPLE 2.3. Let X = [0, 1] and S be the σ -algebra of Borel sets of the unit interval with Lebesgue measure. If $\phi(x) = \sqrt{x}$, then C_{ϕ} is a bounded operator [7, Theorem 3]. It is clear that ϕ is invertible and ϕ^{-1} is non-singular. But, since $\|C_{\phi}X_{[0,1/n]}\|^2 / \|X_{[0,1/n]}\|^2 = 1/n$, C_{ϕ} is not bounded away from zero, and hence it is not invertible.

Now it is clear from the above examples that characterization of the invertibility of C_{ϕ} in terms of the invertibility of ϕ (and *vice-versa*) is not possible in general. From what is done so far, it is evident that the underlying σ -algebra of measurable sets plays an important role in the invertibility of C_{ϕ} . For some suitable σ -algebra the invertibility of C_{ϕ} can be characterized in terms of the invertibility of ϕ .

DEFINITION. A topological space X is called an absolute Borel space if it is homeomorphic to a Borel subset of the Hilbert cube. An absolute Borel space with a σ -finite measure on its Borel subsets is called an absolute measure space.

THEOREM 2.7. Let X be an absolute measure space, and let C_{ϕ} be a bounded operator on $L^2(\lambda)$. Then C_{ϕ} is invertible, if and only if ϕ is invertible with non-singular inverse and ϕ^{-1} induces a composition operator on $L^2(\lambda)$.

First we shall prove the following lemma.

LEMMA 2.8. If the composition operator C_{ϕ} on $L^2(\lambda)$ is invertible, then C_{ϕ}^{-1} takes characteristic functions into characteristic functions.

Proof. Let X_E be in $L^2(\lambda)$. Then, since C_{ϕ} is onto, there

exists a function g in $L^2(\lambda)$ such that $C_{\phi}g = X_E$. Since C_{ϕ} is one-to-one, by Corollary 2.1, g is a characteristic function. //

Proof of the theorem. Suppose ψ is the non-singular inverse of ϕ and $C_{\psi} \in B(L^2(\lambda))$. Then $C_{\phi}C_{\psi} = C_{\psi\circ\phi} = I = C_{\phi\circ\psi} = C_{\psi}C_{\phi}$, where Idenotes the identity operator. This shows that C_{ϕ} is invertible.

Conversely, suppose C_{ϕ} is invertible. Then, by Lemma 2.8, C_{ϕ}^{-1} takes characteristic functions into characteristic functions. On the quotient σ -algebra [S] of S modulo sets of measure zero we define a mapping h as h([E]) = [F] when $C_{\phi}^{-1}X_E = X_F$ (or, equivalently, $F = \text{support } C_{\phi}^{-1}f$, for $E = \text{support } f = \{x : f(x) \neq 0\}$).

If $E_1 \cap E_2 = \emptyset$, then

$$C_{\phi}^{-1} X_{E_1 \cup E_2} = C_{\phi}^{-1} X_{E_1} + C_{\phi}^{-1} X_{E_2}$$

From this it follows that $h([E_1])$ and $h([E_2])$ are disjoint and

$$h([E_1] \cup [E_2]) = h([E_1]) \cup h([E_2])$$

For all $\begin{bmatrix} E_1 \end{bmatrix}$ and $\begin{bmatrix} E_2 \end{bmatrix}$, we have

(1)
$$h([E_1]) = h([E_1] \cap [E_2]) \cup h([E_1] - [E_2]) ,$$

(2)
$$h([E_2]) = h([E_2] \cap [E_1]) \cup h([E_2] - [E_1]) .$$

From (1) and (2), it can be shown that

$$h([E_1] \cap [E_2]) = h([E_1]) \cap h([E_2])$$

and

$$h\left(\begin{bmatrix} E_1 \end{bmatrix} - \begin{bmatrix} E_2 \end{bmatrix}\right) = h\left(\begin{bmatrix} E_1 \end{bmatrix}\right) - h\left(\begin{bmatrix} E_2 \end{bmatrix}\right) .$$

If $\{X_i\}$ is an increasing sequence of measurable sets of finite measure such that $X = \bigcup_{i=1}^{\infty} X_i = \bigcup_{i=1}^{\infty} \phi^{-1}(X_i)$, then

$$\bigcup_{i=1}^{\infty} h\left(\left[\phi^{-1}(X_i)\right]\right) = \bigcup_{i=1}^{\infty} \left[X_i\right] = [X] \subseteq h([X]) \subseteq [X]$$

Hence

$$h([X]) = [X]$$

This shows that h is a homomorphism. Let $\{E_n\}$ be a sequence of disjoint measurable sets of finite measure. Then, since C_{ϕ}^{-1} is bounded, we have $C_{\phi}^{-1}f = \sum_{n=1}^{\infty} C_{\phi}^{-1}(\alpha_n \cdot X_{E_n})$, where $f = \sum_{n=1}^{\infty} \alpha_n X_{E_n}$ and $\alpha_n = 1/n \cdot \lambda(E_n)$. This, together with the fact that $\bigcup_{n=1}^{\infty} E_n$ = support fand $\{\text{support } C_{\phi}^{-1}(\alpha_n \cdot X_{E_n})\}$ is a sequence of disjoint measurable sets, implies that

$$h\begin{pmatrix} \infty \\ \cup \\ n=1 \end{pmatrix} = \bigcup_{n=1}^{\infty} h([E_n]) ,$$

which proves that h is a σ -homomorphism. Since $h([E_1]) = h([E_2])$ implies that $[E_1] = [E_2]$ and $h([\phi^{-1}(E)]) = [E]$ for every $[E] \in [S]$, we conclude that h is an automorphism. By [4, p. 139] there exists a point mapping ψ from X into itself such that $h([E]) = [\psi^{-1}(E)]$. This shows that ψ is a non-singular transformation, and $C_{\varphi}^{-1}X_E = X_{\psi^{-1}(E)} = C_{\psi}X_E$. Now C_{ψ} is bounded on the characteristic functions; it follows from [7, Theorem 1] that C_{ψ} is a bounded operator. Since $C_{\varphi \circ \psi} = I = C_{\psi \circ \varphi}$, we get $(\phi \circ \psi)(x) = (\psi \circ \phi)(x) = x$ almost everywhere. This shows that ϕ is invertible, and ϕ^{-1} induces a composition operator. //

The above theorem is true for all such spaces where every automorphism or σ -homomorphism is induced by a unique point mapping. The following are some examples of measure spaces where the theorem is valid. EXAMPLE 2.4 [1, Lemma 5, p. 112]. X is a compact metric space and λ is a finite Borel measure on X.

EXAMPLE 2.5 [4, §32.1]. (X, S, λ) is any measure space such that S is σ -perfect and reduced. (A measure space (X, S, λ) is said to be reduced, if for any two different points x, y in X there exists a nonnull set $E \in S$ such that $x \in E$ and $y \notin E$.)

3. Unitary composition operators

LEMMA 3.1. Let $C_{\phi} \in B(L^2(\lambda))$. Then $C_{\phi} = M_{\theta}$ for some θ implies that $\theta(x) = 1$ almost everywhere.

Proof. Let $X = \bigcup_{n=1}^{\infty} E_n$, where $\lambda(E_n) < \infty$ for each n, and $E_n \subset E_m$ if m > n. If $f_n = X_{E_n}$, then we have $C_{\Phi}f_n = M_{\Theta}f_n$ for all n;

equivalently $X_{\phi^{-1}(E_n)} = \theta \cdot X_{E_n}$ for all n. Since $\bigcup_{n=1}^{\infty} \phi^{-1}(E_n) = X$, we conclude that $\theta(x) = 1$ almost everywhere. //

THEOREM 3.1. Let X be an absolute measure space, and let C_{φ} be a bounded operator on $L^2(\lambda)$. Then the following statements are equivalent:

(i) C_{ϕ} is unitary; (ii) $f_{0} = 1$ almost everywhere and ϕ is one-to-one; (iii) $f_{0} = 1$ almost everywhere and C_{ϕ} is invertible; (iv) C_{ϕ}^{\star} is a composition operator.

Proof. (i) \Rightarrow (ii). Suppose C_{ϕ} is unitary. Then C_{ϕ} is invertible, and it follows immediately from Theorem 2.7 that ϕ is one-to-one. We know that $M_{f_0} = C_{\phi}^* C_{\phi} = I$; hence $f_0 = 1$ almost everywhere.

 $(ii) \Rightarrow (iii)$. Whenever ϕ is one-to-one, C_{ϕ} has dense range, and hence C_{ϕ} is invertible (because C_{ϕ} is an isometry).

 $(iii) \Rightarrow (iv). \text{ Since } C_{\phi}^{\star} = M_{f_0} C_{\phi}^{-1} = C_{\phi}^{-1} = C_{\phi}^{-1}, C_{\phi}^{\star} \text{ is a composition operator.}$

 $(iv) \Rightarrow (i)$. Suppose C_{ϕ}^{\star} is a composition operator. Then there exists a measurable transformation ψ such that $C_{\phi}^{\star} = C_{\psi}$. Since $C_{\phi}^{\star}C_{\phi} = M_{f_0}$, we get $C_{\phi\circ\psi} = M_{f_0}$. By Lemma 3.1, $f_0 = 1$ almost everywhere. In view of Theorem 2.5 it is enough to show that $\phi^{-1}(S) = S$. For this let $E \in S$ with $\lambda(E) < \infty$. Then, if X_E is in the range of \mathcal{C}_{igcap} , $X_E = C_{\phi}h$ for some h in $L^2(\lambda)$. Since C_{ϕ} is one-to-one, by Corollary 2.1, $h = X_F$ for some $F \in S$. Hence $X_E = C_{\phi} X_F = X_{\phi^{-1}(F)}$, which yields $E = \phi^{-1}(F)$. This shows that $E \in \phi^{-1}(S)$. In case X_E is not in the range of C_{ϕ} , then we can write $X_E = f + g$, where $f \in (\text{range } C_{\phi})^{\perp}$, the orthogonal complement of the range of \mathcal{C}_{ϕ} , and $g \in \mathrm{range}\ \mathcal{C}_{\phi}$. If we take $g = C_{\phi}g_{1}$, then, since C_{ϕ}^{\star} is a composition operator and $C_{\Phi}^{*}X_{E} = C_{\Phi}^{*}f + C_{\Phi}^{*}g = C_{\Phi}^{*}g = C_{\Phi}^{*}C_{\Phi}g_{1} = g_{1}$, it follows that $g = X_{G}$ for some $G \in S$. This gives $f = X_E - X_G = X_{E-G} - X_{G-E}$. The fact that $-\lambda((G-E) \cap G) = \langle f, g \rangle = 0$ implies that $G \subset E$. Now let $F_1 = \phi^{-1}(F_2)$ for some $F_2 \in S$ (that is $X_{F_2} \in \text{range } C_{\phi}$) such that $F_1 \supset E - G$. Then $\lambda((E-G) \cap F_1) = \langle f, X_{F_2} \rangle = 0$, which implies that $E \subset G$. Thus we get $X_E = X_G = g$, and hence $E \in \phi^{-1}(S)$. //

EXAMPLE 3.1. Let X = R and $\phi(x) = x + c$. Then C_{ϕ} is a unitary composition operator.

4. Normal composition operators

THEOREM 4.1. Let C_{ϕ} be a bounded operator on $L^2(\lambda)$. Then C_{ϕ} is normal, if and only if C_{ϕ} has dense range and $f_0 \circ \phi = f_0$ almost

everywhere.

Proof. Suppose $C_{\phi}^*C_{\phi} = C_{\phi}C_{\phi}^*$. Then ker $C_{\phi} = \ker C_{\phi}^*C_{\phi} = \ker M_{\hat{f}_0} = \ker C_{\phi}C_{\phi}^* = \ker C_{\phi}^* = \left(\operatorname{range} C_{\phi}\right)^*$. If $\lambda(E) \neq 0$, where $E = \{x : f_0(x) = 0\}$, then for every $E' \subseteq E$ with $\lambda(E') < \infty$ we can find an element F of finite measure in S such that $\langle X_{E'}, C_{\phi}X_{F} \rangle = \langle X_{E'}, X_{\phi^{-1}(F)} \rangle \neq 0$, which is a contradiction. Hence $\lambda(E) = 0$. This shows that C_{ϕ} is one-to-one, and consequently it has dense range. Furthermore,

$$C^{*C}_{\phi} C^{*C}_{\phi} C^{*}_{\phi^{-1}}(E_{i}) = f_{0} C^{*}_{\phi^{-1}}(E_{i})$$

and

$$C_{\phi}C_{\phi}^{*}X_{\phi^{-1}(E_{i})} = C_{\phi}C_{\phi}^{*}C_{\phi}X_{E_{i}} = C_{\phi}(f_{0}\cdot X_{E_{i}}) = f_{0} \circ \phi \cdot X_{\phi^{-1}(E_{i})}$$

where $\bigcup_{i=1}^{\infty} E_i = X$ and $E_i \subseteq E_j$ for i < j and $\lambda(E_i) < \infty$ for all i. Therefore $f_0 = f_0 \circ \phi$ almost everywhere.

Conversely, suppose C_{ϕ} has dense range and $f_0 = f_0 \circ \phi$. Then $C_{\phi}C_{\phi}^*f = f_0 \circ \phi \cdot f = f_0 \cdot f = C_{\phi}^*C_{\phi}f$ for all f in the range of C_{ϕ} . Since $C_{\phi}^*C_{\phi}$ and $C_{\phi}C_{\phi}^*$ are equal on a dense set, we have $C_{\phi}^*C_{\phi} = C_{\phi}C_{\phi}^*$. Hence C_{ϕ} is normal. //

COROLLARY 4.1. Let $C_{\phi} \in B(l^2(N))$. Then C_{ϕ} is normal, if and only if ϕ is invertible, where $l^2(N) = \left\{ \{x_n\} : \sum_{n=1}^{\infty} |x_n|^2 < \infty \right\}$. //

COROLLARY 4.2. Let $p = \{p_1, p_2, p_3, ...\}$ be a strictly increasing (or strictly decreasing) sequence. Then $C_{\phi} \in B(l^2(p))$ is normal, if and only if ϕ is the identity. //

EXAMPLE 4.1. Let X = R, and $\phi(x) = ax + b$. Then C_{ϕ} is a

normal composition operator.

Now we give a typical example of a normal composition operator $\ {\cal C}_{\varphi}$ which is not onto.

EXAMPLE 4.2. Let $N_i = \{1_i, 2_i, 3_i, \ldots\}$ and let $X = \bigcup_{i=1}^{\infty} N_i$. Let the measure λ be defined as

$$\lambda(n_i) = \begin{cases} i^{(n-1)/2}, \text{ when } n \text{ is odd,} \\ \\ 1/i^{n/2}, \text{ when } n \text{ is even.} \end{cases}$$

If ϕ is the mapping defined by

$$\phi(n_i) = \begin{cases} (n+2)_i, \text{ when } n \text{ is odd,} \\ 1_i, \text{ when } n = 2, \\ (n-2)_i, \text{ when } n \text{ is even and greater than } 2, \end{cases}$$

then $f_0(n_i) = 1/i$ for all $n_i \in N_i$. Since ϕ is one-to-one, C_{ϕ} has dense range. Also it is clear that $f_0 = f_0 \circ \phi$. Hence C_{ϕ} is normal. If m is fixed, then $\|C_{\phi}X_{\{m_i\}}\|^2 / \|X_{\{m_i\}}\|^2 = 1/i$, $i \in N$. This shows that C_{ϕ} is not onto.

References

- J.R. Choksi, "Measurable transformations on compact groups", Trans. Amer. Math. Soc. 184 (1973), 101-124.
- [2] Paul R. Halmos, Measure theory (Van Nostrand, Toronto, New York, London, 1950. Reprinted: 1951).
- [3] Paul R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, New Jersey; Toronto; London; 1967).
- [4] Roman Sikorski, Boolean algebras, 3rd edition (Ergebnisse der Mathematik und ihrer Grenzgebiete, 25. Springer-Verlag, Berlin, Heidelberg, New York, 1969).

- [5] Raj Kishor Singh, "Composition operators" (Doctoral dissertation, University of New Hampshire, Durham, New Hampshire, 1972).
- [6] Raj Kishor Singh, "Compact and quasinormal composition operators", Proc. Amer. Math. Soc. 45 (1974), 80-82.
- [7] R.K. Singh, "Composition operators induced by rational functions", Proc. Amer. Math. Soc. 59 (1976), 329-333.
- [8] R.K. Singh and Ashok Kumar, "Multiplication operators and composition operators with closed ranges", Bull. Austral. Math. Soc. 16 (1977), 247-252.

Department of Mathematics, University of Jammu, Jammu, Tawi, India.