
Forum of Mathematics, Sigma (2023), Vol. 11:e37 1–48
doi:10.1017/fms.2023.33

RESEARCH ARTICLE

Superscars for arithmetic point scatters II
Pär Kurlberg1, Stephen Lester 2 and Lior Rosenzweig3

1Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; E-mail: kurlberg@kth.se.
2Department of Mathematics, King’s College London, W2CR 2LS, UK; E-mail: steve.lester@kcl.ac.uk.
3Mathematics Unit, Afeka Tel Aviv Academic College of Engineering, Mivtza Kadesh St., Tel-Aviv, Israel;
E-mail: LiorR@afeka.ac.il.

Received: 18 June 2021; Revised: 2 December 2022; Accepted: 28 February 2023

2020 Mathematics Subject Classification: Primary – 81Q50; Secondary – 58J51, 37C83, 81Q10

Abstract
We consider momentum push-forwards of measures arising as quantum limits (semiclassical measures) of eigen-
functions of a point scatterer on the standard flat torus T2 = R2/Z2. Given any probability measure arising by
placing delta masses, with equal weights, on Z2-lattice points on circles and projecting to the unit circle, we show
that the mass of certain subsequences of eigenfunctions, in momentum space, completely localizes on that measure
and are completely delocalized in position (i.e., concentration on Lagrangian states). We also show that the mass,
in momentum, can fully localize on more exotic measures, for example, singular continuous ones with support on
Cantor sets. Further, we can give examples of quantum limits that are certain convex combinations of such mea-
sures, in particular showing that the set of quantum limits is richer than the ones arising only from weak limits of
lattice points on circles. The proofs exploit features of the half-dimensional sieve and behavior of multiplicative
functions in short intervals, enabling precise control of the location of perturbed eigenvalues.

1. Introduction

Let (𝑀, 𝑔) be a smooth, compact Riemannian manifold with no boundary, unit mass, and let Δ𝑔 denote
the Laplace–Beltrami operator. Also, let {𝜙𝜆} be an orthonormal basis of eigenfunctions of Δ𝑔 with
eigenvalues 0 ≤ 𝜆1 ≤ 𝜆2 ≤ . . .. For an observable 𝑓 ∈ 𝐶∞(S∗𝑀), where S∗𝑀 denotes the unit cotangent
bundle of M, let Op( 𝑓 ) denote its quantization, defined as a pseudo-differential operator (cf. [9] for
details.) A central problem in quantum chaos (cf. [52, Problem 3.1]) is to understand the set of possible
quantum limits (sometimes called semiclassical measures) describing the distribution of mass of the
eigenfunctions {𝜙𝜆} within S∗𝑀 , in the limit as the eigenvalue 𝜆 tends to infinity. A cornerstone result in
this direction is the quantum ergodicity theorem of Shnirelman [45], Colin de Verdiére [8] and Zelditch
[51] which states that if the geodesic flow on M is ergodic there exists a density one subsequence of
eigenfunctions {𝜙𝜆 𝑗 } such that

𝜇𝜙𝜆 𝑗 ( 𝑓 ) = 〈Op( 𝑓 )𝜙𝜆 𝑗 , 𝜙𝜆 𝑗 〉 →
∫
S∗𝑀

𝑓 (𝑥)𝑑𝜇𝐿 (𝑥)

as 𝜆 𝑗 → ∞, where 𝑑𝜇𝐿 is the normalized Liouville measure on S∗𝑀 . (Note that any quantum limit, by
Egorov’s theorem, is invariant under the classical dynamics.)

While the quantum ergodicity theorem implies that the mass of almost all eigenfunctions equidis-
tributes in S∗𝑀 with respect to 𝑑𝜇𝐿 , it does not rule out the existence of sparse subsequences along
which the mass of the eigenfunctions localizes. Whether or not this happens crucially depends on the
geometry of M, cf. Section 1.3.
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2 P. Kurlberg, S. Lester and L. Rosenzweig

In this article, we study quantum limits of ‘point scatterers’ on 𝑀 = T2 = R2/2𝜋Z2. These are
singular perturbations of the Laplacian on M and were used by Šeba [40] in order to study the transition
between integrability and chaos in quantum systems. The perturbation is quite weak and has essentially
no effect on the classical dynamics, yet the quantum dynamics ‘feels’ the effect of the scatterer, and an
analog of the quantum ergodicity theorem is known to hold [38, 27] (namely, equidistribution holds for
a full density subset of the ‘new’ eigenfunctions), even though classical ergodicity does not hold.

The model also exhibits scarring along sparse subsequences of the new eigenfunctions [25]. In par-
ticular, there exist quantum limits whose momentum push-forwards, which can be viewed as probability
measures on the unit circle, are of the form 𝑐𝜇sing + (1 − 𝑐)𝜇uniform, for some 𝑐 ∈ [1/2, 1]. Here, both
𝜇uniform and 𝜇sing are normalized to have mass one, and 𝜇sing can be taken to be a sum of delta measures
giving equal mass to the four points ±(1, 0),±(0, 1). We note that 𝜇uniform is the push-forward of the
Liouville measure and hence maximally delocalized, whereas 𝜇sing is maximally localized since any
quantum limits in this setting must be invariant under a certain eight fold symmetry (cf. equation (1.7)).

Stronger localization, that is, going beyond 𝑐 = 1/2, is interesting given a number of ‘half delocal-
ization’ results for quantum limits for some other (strongly chaotic) systems, namely quantized cat maps
and geodesic flows on manifolds with constant negative curvature −1. In the former case, Faure and
Nonnenmacher showed [12] that if a quantum limit 𝜈 is decomposed as 𝜈 = 𝜈pp + 𝜈Liouville + 𝜈𝑠𝑐 , with 𝜈pp
denoting the pure point part and 𝜈𝑠𝑐 denoting the singular continuous part, then 𝜈Liouville(T2) ≥ 𝜈pp(T2),
and thus 𝜈pp(T2) ≤ 1/2. (We emphasize that T2 is the full phase space in this setting.) In the latter case,
it was shown that the Kolmogorov-Sinai (KS) entropy with respect to any measure arising as a quantum
limit is at least 1/2. We remark that for arithmetic point scatterers, the KS entropy is zero with respect
to any flow invariant probability measure, in particular for any measure arising as a quantum limit.

The aim of this paper is to exhibit essentially maximal localization for a quantum ergodic system,
namely arithmetic toral point scatterers. In particular, we construct quantum limits (in momentum)
corresponding to 𝑐 = 1 in the above decomposition; other interesting examples include singular con-
tinuous measures with support, say, on Cantor sets. This can be viewed as a step towards a ‘measure
classification’ for quantum limits of quantum ergodic systems.

1.1. Description of the model

Let us now describe the basic properties of the point scatterer. This is discussed in further detail in
[38, 39, 27, 25, 40, 42]. To describe the quantum system associated with the point scatterer, consider
−Δ |𝐷𝑥0

, where

𝐷𝑥0 = { 𝑓 ∈ 𝐿2 (T2) : 𝑓 (𝑥) = 0 in some neighborhood of 𝑥0}.

By von Neumann’s theory of self-adjoint extensions (see Appendix A of [38]) there exists a one
parameter family of self-adjoint extension of −Δ |𝐷𝑥0

parameterized by a phase 𝜑 ∈ (−𝜋, 𝜋]. Moreover,
for 𝜑 ≠ 𝜋 the eigenvalues of these operators may be divided into two categories. The old eigenvalues
which are eigenvalues of −Δ , with multiplicity decreased by one, along with new eigenvalues which are
solutions to the spectral equation∑

𝑚≥1
𝑟 (𝑚)

(
1

𝑚 − 𝜆
− 𝑚

𝑚2 + 1

)
= tan(𝜑/2)

∑
𝑚≥1

𝑟 (𝑚)
𝑚2 + 1

, (1.1)

where

𝑟 (𝑚) = #{(𝑎, 𝑏) ∈ Z2 : 𝑎2 + 𝑏2 = 𝑚}.

We will refer to the case when 𝜑 is fixed as 𝜆 → ∞ the weak coupling quantization. In this regime
work of Shigehara [42] suggests that the level spacing of the eigenvalues should have Poisson spacing
statistics, and this is supported by work of Rudnick and Ueberschär [39] along with Freiberg, Kurlberg
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and Rosenzweig [14]. In the hope of exhibiting wave chaos, Shigehara proposes the following strong
coupling quantization ∑

|𝑚−𝜆 | ≤𝜆1/2

𝑟 (𝑚)
(

1
𝑚 − 𝜆

− 𝑚

𝑚2 + 1

)
=

1
𝛼
, (1.2)

where 𝛼 ∈ R is called the physical coupling constant and reflects the strength of the scatterer. The strong
coupling quantization restricts the spectral equation to the physically relevant energy levels. Notably,
this forces a renormalization of equation (1.1)

tan(𝜑/2)
∑
𝑚≥1

𝑟 (𝑚)
𝑚2 + 1

∼ −𝜋 log𝜆

so that 𝜑 depends on𝜆 in this case (see [48] equation (3.14)). We note that the weak coupling quantization
corresponds to a fixed self-adjoint extension, whereas the strong coupling quantization can be viewed
as an energy-dependent, albeit very slowly varying, family of self-adjoint extensions.

From the spectral equation, it follows that new eigenvalues interlace with integers which are repre-
sentable as the sum of two integer squares. We denote these eigenvalues as follows:

0 < 𝜆0 < 1 < 𝜆1 < 2 < 𝜆2 < 4 < 𝜆4 < 5 < 𝜆5 < · · ·

and write Λ𝑛𝑒𝑤 for the set of all such eigenvalues. Also, given 𝑛 = 𝑎2 + 𝑏2, let 𝑛+ denote the smallest
integer greater than n which is also a sum of two squares. Let

𝑠𝑛 = 𝜆𝑛 − 𝑛 > 0 (1.3)

denote the distance between 𝜆𝑛 and the nearest old eigenvalue n to the left. In addition, given 𝜆 ∈ Λ𝑛𝑒𝑤
the associated Green’s function is given by

𝐺𝜆 (𝑥) = − 1
4𝜋2

∑
𝜉 ∈Z2

exp(−𝑖𝜉 · 𝑥0)
|𝜉 |2 − 𝜆

𝑒𝑖 𝜉 ·𝑥 , 𝑔𝜆(𝑥) =
1

‖𝐺𝜆‖2
𝐺𝜆(𝑥) (1.4)

(see equation (5.2) of [38]). Also, note that the new eigenvalues interlace between the old eigenvalues;
hence, 𝐺𝜆 is well defined for 𝜆 ∈ Λ𝑛𝑒𝑤 . Since the torus is homogeneous, we may without loss
of generality assume that 𝑥0 = 0. Our main focus will be the behavior of the matrix coefficients
{〈Op( 𝑓 )𝑔𝜆, 𝑔𝜆〉}𝜆∈Λ𝑛𝑒𝑤 as f ranges over the set of pure momentum observables (i.e., 𝑓 ∈ 𝐶∞(𝑆1) ⊂
𝐶∞(S∗(T2)); for such f the matrix coefficients are explicitly given by (cf. equation (5.3))

〈Op( 𝑓 )𝑔𝜆, 𝑔𝜆〉 =
1∑

𝑛≥0
𝑟 (𝑛)
(𝑛−𝜆)2

(
𝑓 (1)
𝜆2 +

∑
𝑛>0

1
(𝑛 − 𝜆)2

∑
𝑎2+𝑏2=𝑛

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

))
. (1.5)

1.2. Results

Our first main result shows that along a zero density, yet relatively large, subsequence of new eigenvalues
{𝜆 𝑗 } the mass of 𝑔𝜆 𝑗 , in momentum space, localizes on measures arising fromZ2-lattice points on circles
(after projecting them to the unit circle). To describe these measures in more detail, consider an integer
𝑛 = 𝑎2 + 𝑏2, with 𝑎, 𝑏 ∈ Z, and the following probability measure on the unit circle 𝑆1 ⊂ C

𝜇𝑛 =
1

𝑟 (𝑛)
∑

𝑎2+𝑏2=𝑛

𝛿 (𝑎+𝑖𝑏)/ |𝑎+𝑖𝑏 | .
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We remark that 𝜇𝑛 can be viewed as the matrix coefficient of the ‘flat’ (old) Laplace eigenfunction
𝜓𝑛 (𝑥) = 1

2𝜋
√
𝑟 (𝑛)

∑
𝜉 ∈Z2: |𝜉 |2=𝑛 𝑒

−𝑖 𝜉 ·𝑥 , in the sense that, for f a pure momentum observable, we have

〈Op( 𝑓 )𝜓𝑛, 𝜓𝑛〉 =
∑

𝑎2+𝑏2=𝑛

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
= 𝜇𝑛 ( 𝑓 ). (1.6)

Following Kurlberg and Wigman [29], we call a measure 𝜇∞ attainable if it is a weak limit point of
the set {𝜇𝑛}𝑛=𝑎2+𝑏2 . Any such measure is invariant under rotation by 𝜋/2, as well as under reflection in
the x-axis; for convenience let

Sym8 :=
{〈(

0 −1
1 0

)
,

(
−1 0
0 1

)〉}
⊂ 𝐺𝐿2 (Z) (1.7)

denote the group generated by these transformations.
Theorem 1.1. Let 𝑚0 = 𝑎2 + 𝑏2 ∈ N be odd.1 In each of the weak and strong coupling quantizations,
there exists a subset of eigenvalues E𝑚0 ⊂ Λ𝑛𝑒𝑤 with

#{𝜆 ≤ 𝑋 : 𝜆 ∈ E𝑚0 }
#{𝜆 ≤ 𝑋 : 𝜆 ∈ Λnew}

� 1
(log 𝑋)1+𝑜 (1)

such that for any pure momentum observable 𝑓 ∈ 𝐶∞(𝑆1) ⊂ 𝐶∞(S∗(T2))

〈Op( 𝑓 )𝑔𝜆, 𝑔𝜆〉
𝜆→∞
𝜆∈E𝑚0−−−−−→ 1

𝑟 (𝑚0)
∑

𝑎2+𝑏2=𝑚0

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
.

The key idea of the proof is to show that some new eigenvalues 𝜆 lie very close to certain old
eigenvalues n, and this implies that 𝑔𝜆 is very well approximated by the flat eigenfunction 𝜓𝑛 (cf.
equations (1.5) and (1.6)), and consequently, in momentum space, the mass of 𝑔𝜆 completely localizes
on the measure 𝜇𝑚0 . Further, for any attainable measure 𝜇∞ there exists {𝑚0,ℓ }ℓ such that 𝜇𝑚0 ,ℓ weakly
converges to 𝜇∞, and this implies the following corollary.
Corollary 1.1. Let 𝜇∞ be an attainable measure. Then there exists {𝜆 𝑗 } 𝑗 ⊂ Λnew such that for any pure
momentum observable 𝑓 ∈ 𝐶∞(𝑆1)

〈Op( 𝑓 )𝑔𝜆 𝑗 , 𝑔𝜆 𝑗 〉
𝑗→∞
−−−−→

∫
𝑆1

𝑓 𝑑𝜇∞.

We note that the set of attainable measures is much smaller than the set of probability measures on
𝑆1 that are Sym8-invariant, in particular the set of attainable measures is not convex (cf. [29, Section
3.2].) In our next result, we show that in the strong coupling quantization there is a subsequence of
new eigenvalues along which the entire mass of 𝑔𝜆 localizes on a certain convex combination of two
measures arising from lattice points on the circle. In particular, the set of quantum limits, in momentum
space, is strictly richer than the set of attainable measures.
Theorem 1.2. Let 𝑚0, 𝑚1 be odd integers which are each representable as a sum of two squares. Then
in the strong coupling quantization there exists a subsequence of eigenvalues E𝑚0 ,𝑚1 ⊂ Λnew such that

1As far as possible quantum limits go, 𝑚0 being odd is not a restriction as any 𝜇𝑛 for n even can be approximated by 𝜇𝑚0 for
𝑚0 odd.
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for each 𝜆 ∈ E𝑚0 ,𝑚1 there is an integer ℓ𝜆 with 𝑟 (ℓ𝜆) ≠ 0 and 𝑟 (ℓ𝜆) � 1 such that for pure momentum
observables 𝑓 ∈ 𝐶∞(𝑆1)

〈Op( 𝑓 )𝑔𝜆, 𝑔𝜆〉 = 𝑐𝜆 ·
1

𝑟 (𝑚0)
∑

𝑎2+𝑏2=𝑚0

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+ (1 − 𝑐𝜆) ·

1
𝑟 (𝑚1ℓ𝜆)

∑
𝑎2+𝑏2=𝑚1ℓ𝜆

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂

(
1

(log log𝜆)1/11

)
,

(1.8)

where

𝑐𝜆 =
1

1 + 𝑟 (𝑚0)/𝑟 (𝑚1ℓ𝜆)
.

Additionally,

#{𝜆 ≤ 𝑋 : 𝜆 ∈ E𝑚0 ,𝑚1 }
#{𝜆 ≤ 𝑋 : 𝜆 ∈ Λnew}

� 1
(log 𝑋)2+𝑜 (1) .

Note that, since
∑
𝑝 |ℓ𝜆 1 � 1, the measure 𝜇𝑚1ℓ𝜆 can be viewed as a fairly small perturbation of 𝜇𝑚1 .

Remark 1. By removing a further ‘thin’ set of eigenvalues (with spectral counting function of size
𝑂 (𝑥1−𝜖 ) for 𝜖 > 0, we can construct quantum limits that are flat in position (for details, cf. [25, Remark
4]), in addition to the momentum push-forward properties given in Theorems 1.1 and 1.2. In particular,
taking say 𝑚0 = 9 in Theorem 1.1 and noting that |𝑧 |2 = 9 for 𝑧 ∈ Z[𝑖] has the four solutions ±3,±3𝑖, this
then yields quantum limits that are completely localized on the superposition of two Lagrangian states –
essentially two plane waves, one in the horizontal and one in the vertical direction. This phenomenon is
sometimes called superscarring (cf. [6, 25]).

Further, assuming a plausible conjecture on the distribution of the prime numbers, we show that given
𝑚0, 𝑚1 as in Theorem 1.2 the quantum limit of 〈Op( 𝑓 )𝑔𝜆, 𝑔𝜆〉 can be made to be any given convex
combination of 𝜇𝑚0 and 𝜇𝑚1 . The conjecture on the distribution of primes concerns obtaining a lower
bound on the number solutions (𝑢, 𝑣) in almost primes to the Diophantine equation

𝑎𝑋 − 𝑏𝑌 = 4,

where 𝑣 = 𝑝1𝑝2, 𝑢 = 𝑝3 with 𝑝 𝑗 a prime satisfying 𝑝 𝑗 = 𝑎2
𝑗 + 𝑏2

𝑗 and 𝑏 𝑗 = 𝑜(𝑎 𝑗 ) for 𝑗 = 1, 2, 3. The
precise formulation of this conjecture, which we call Hypothesis 1, is given in Section 5.5.
Theorem 1.3. Assume Hypothesis 1. Let 𝜇∞0 , 𝜇∞1 be attainable measures and 0 ≤ 𝑐 ≤ 1. Then in the
strong coupling quantization there exists {𝜆 𝑗 } 𝑗 ⊂ Λ𝑛𝑒𝑤 such that for any 𝑓 ∈ 𝐶∞(𝑆1)

〈Op( 𝑓 )𝑔𝜆 𝑗 , 𝑔𝜆 𝑗 〉
𝑗→∞
−−−−→ 𝑐

∫
𝑆1

𝑓 𝑑𝜇∞0 + (1 − 𝑐)
∫
𝑆1

𝑓 𝑑𝜇∞1 .

Further, assuming a variation of the prime k-tuple conjecture that also allows for prescribing Gaussian
angles, we can show (cf. Appendix C) that all Sym8-invariant probability measures on 𝑆1 arise as
quantum limits in momentum space.

1.3. Discussion

For integrable systems it is often straightforward to construct nonuniform quantum limits, for example,
‘whispering gallery modes’ for the geodesic flow in the unit ball, and for linear flows on T2, Lagrangian
states with maximal localization (i.e., a single plane wave) are easily constructed. We note that strong
localization in position for quantum limits on T2 was ruled out by Jakobson [20] – in position, any
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quantum limit is given by trigonometric polynomials whose frequencies lie on at most two circles (hence
absolutely continuous with respect to Lebesgue measure.) Further, for the sphere, Jakobson and Zelditch
in fact obtained a full classification – any flow invariant measure on 𝑆∗(𝑆2) is a quantum limit [21].

The quantum ergodicity theorem holds in great generality as long as the key assumption of ergodic
classical dynamics holds, but the existence of exceptional subsequence of nonuniform quantum limits
(‘scarring’) is subtle. For classical systems given by the geodesic flow on compact negatively curved
manifolds, the celebrated quantum unique ergodicity (QUE) conjecture [37] by Rudnick and Sarnak
asserts that the only possible quantum limit is the Liouville measure. Known results for QUE include
Lindenstrauss’ breakthrough [30] for Hecke eigenfunctions on arithmetic modular surfaces, together with
Soundararajan ruling out ‘escape of mass’ in the noncompact case [46]. On the other hand, for a generic
Bunimovich stadium (with strongly chaotic classical dynamics), Hassell [16] has shown that there exists
a subsequence of exceptional eigenstates where the mass localizes on sets of bouncing ball trajectories.

For quantized cat maps, again for Hecke eigenfunctions, QUE is known to hold [26]. However,
unlike for arithmetic modular surfaces, where Hecke desymmetrization is believed to be unnecessary,
it is essential for quantum cat maps. Namely, Faure, Nonnenmacher and de Bièvre [13] constructed,
in the presence of extreme spectral multiplicities and no Hecke desymmetrization, quantum limits of
the form 𝜈 = 1

2 𝜈pp + 1
2 𝜈Liouville; in [12], this was shown to be sharp in the sense that the Liouville

component always carries at least as much mass as the pure point one. (We note that, on assuming very
weak bounds on spectral multiplicities, Bourgain showed [7] that scarring does not occur.) For higher-
dimensional analogs of quantum cat maps, Kelmer has for certain maps shown [23] ‘super scarring’,
even after Hecke desymmetrization, on invariant rational isotropic subspaces. Further, these type of
scars persist on adding certain perturbations that destroy the spectral multiplicities [24]. Other models
where scarring is known to exist include toral point scatterers with irrational aspect ratios [28, 22, 3]
and quantum star graphs [4], though neither model is quantum ergodic [28, 4].

Classifying the set of possible quantum limits, in particular for quantum ergodic settings, is an
interesting question. Here, Anantharaman proved very strong results for geodesic flows on negatively
curved manifolds [1]: any quantum limit has positive KS entropy with respect to the dynamics of
the geodesic flow. In particular, this rules out localization on a finite number of closed geodesics (for
compact arithmetic surfaces this was already known due to Rudnick and Sarnak [37].) Moreover, in the
case of constant negative curvature, Anantharaman and Nonnenmacher showed [2] that the KS-entropy
is at least half of the maximum possible. The measure of maximum entropy is given by the Liouville
measure, and thus ‘eigenfunctions are at least half delocalized’. Dyatlov and Jin [10] consequently
showed that any quantum limit must have full support in 𝑆∗(𝑀), for compact hyperbolic surfaces M
with constant negative curvature; together with Nonnenmacher this was recently strengthened [11] to
the include the case of surfaces with variable negative curvature.

1.4. Outline of the proofs

Our arguments use the multiplicative structure of the integers to create an imbalance in the spectral
equation (1.2) along a zero density, yet relatively large subsequence of new eigenvalues. Through
exploiting this imbalance, we control the location of the new eigenvalues in our subsequence and show
that they lie close to integers which are sums of two squares (cf. Section 5.3, in particular equation (5.14)
for the argument placing full mass at one nearby eigenspace and 5.4, in particular equation (5.18) for
placing mass at two nearby eigenspaces.) This greatly amplifies the amount of mass of the corresponding
eigenfunctions in momentum space which lies on the terms which correspond to these integers, so much
so that the contribution of the remaining terms is negligible in comparison. Consequently, the mass
completely localizes on a convex combination of two measures and moreover our construction allows
us to completely control the first measure.

In Section 2, we use sieve methods to produce integers 𝑛 = 𝑝1𝑝2, where 𝑝 𝑗 , 𝑗 = 1, 2, is a prime with
𝑝 𝑗 = 𝑎2+𝑏2 = (𝑎+𝑖𝑏) (𝑎−𝑖𝑏), 0 < 𝑏 ≤ 𝑎, with 0 ≤ arctan(𝑏/𝑎) ≤ 𝜀, where 𝜀 is a small parameter, such
that 𝑄0𝑝1𝑝2+4 is also a sum of two squares, 𝑄1 |𝑄0𝑝1𝑝2+4 and (𝑄0𝑝1𝑝2+4)/𝑄1 has a bounded number
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of prime factors, where 𝑄0, 𝑄1 are large integers whose purpose we will describe later. In particular,
we exploit special features of the half-dimensional sieve using an ingenious observation of Huxley and
Iwaniec [18]. Further, in order to find suitable Gaussian primes in narrow sectors we use a classical
result of Hecke together with nontrivial bounds on exponential sums over finite fields to control sums
of integral lattice points in narrow sectors with norms lying in arithmetic progressions to large moduli.

The subsequence of almost primes {𝑛ℓ } constructed as described above creates the imbalance in the
spectral equation (1.2) by boosting the contribution of the terms 𝑚 = 𝑄0𝑛ℓ , 𝑄0𝑛ℓ +4, without perturbing
the target measure(s). The next step in our argument is to show that this imbalance typically overwhelms
the contribution of the remaining terms. To do this, we first show in Section 3 that for all new eigenvalues
lying outside a small exceptional set the spectral equation (1.2) can be effectively truncated to integers
m with essentially |𝑚 − 𝜆 | � (log𝜆)10. This is done by controlling sums of 𝑟 (𝑛) over short intervals
and uses a second moment estimate of the Dedekind zeta-function 𝜁Q(𝑖) . In Section 4, we apply this
result to new eigenvalues which lie between 𝑄0𝑛ℓ and 𝑄0𝑛ℓ + 4 and show that for almost all such new
eigenvalues the remaining terms in the spectral sum (i.e., |𝑚 − 𝜆 | � (log𝜆)10, 𝑚 ≠ 𝑄0𝑛ℓ , 𝑄0𝑛ℓ + 4)
is relatively small, provided that we take 𝑄0, 𝑄1 sufficiently large thereby boosting the contribution of
the closest two terms. This is accomplished by using bounds for sums of multiplicative functions over
polynomials due to Henriot [17]. Crucially, we need good estimates for these sums in terms of the
discriminant of the polynomials.

Finally, to get complete control on the first measure in Theorem 1.2 we choose 𝑄0 so that it is the
product of a given fixed integer 𝑚0 and large primes 𝑝𝑘 = 𝑎2 + 𝑏2 with 0 ≤ arctan(𝑏𝑘/𝑎𝑘 ) ≤ 𝑝−1/10

𝑘

so that the probability measure on 𝑆1 associated with 𝑄0𝑛ℓ weakly converges to the measure associated
with 𝑚0 as ℓ → ∞. This last construction uses work of Ricci [35] on Gaussian primes in narrow sectors.

1.5. Notation

We write 𝑓 (𝑥) � 𝑔(𝑥) provided that 𝑓 (𝑥) = 𝑂 (𝑔(𝑥)). Additionally, if for all x under consideration
| 𝑓 (𝑥) | ≥ 𝑐𝑔(𝑥) we write 𝑓 (𝑥) � 𝑔(𝑥). If we have both 𝑓 (𝑥) � 𝑔(𝑥) and 𝑓 (𝑥) � 𝑔(𝑥), we write
𝑓 (𝑥) � 𝑔(𝑥). For some additional notation related to sieves, see Section 2.1.1.

2. Sieve estimates

Let 𝐵0 be a sufficiently large integer, define 𝜀 = (log log 𝑥)−1/11, and let

P𝜀,𝑥 = {𝑝 ≥ (log 𝑥)𝐵0 : 𝑝 = 𝑎2 + 𝑏2 and 0 < arctan(𝑏/𝑎) ≤ 𝜀},
P ′
𝜀,𝑥 = {𝑝 ∈ P𝜀 : 𝑝 ≤ 𝑥1/9}.

(2.1)

For brevity, we will write P𝜀 and P ′
𝜀 for P𝜀,𝑥 and P ′

𝜀,𝑥 , respectively. Also, given 𝑓 , 𝑔 : N → C we
define the Dirichlet convolution of f and g by

( 𝑓 ∗ 𝑔) (𝑛) =
∑
𝑎𝑏=𝑛

𝑓 (𝑎)𝑔(𝑏).

Also, let 𝑄0, 𝑄1 ≤ (log 𝑥)1/10 be odd coprime integers whose prime factors are all ≡ 1 (mod 4).
Moreover, we assume that 𝑄0 = 𝑓 2

0 𝑒0𝑟
𝑎0
0 , 𝑄1 = 𝑓 2

1 𝑒1𝑟
𝑎1
1 , where 𝑒0, 𝑒1 are square-free, 𝑓0, 𝑓1 � 1

and 𝑟0, 𝑟1 are primes congruent to 1 (mod 4). Throughout, the arithmetic function 𝑏(𝑛) is the indicator
function of the set of integers which are representable as a sum of two squares. Also, for S ⊂ Nwe define

1S (𝑛) =
{

1 if 𝑛 ∈ S ,

0 otherwise,

and let 𝜑(𝑛) = #{𝑚 < 𝑛 : (𝑚, 𝑛) = 1}.
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Proposition 2.1. Let 𝜂 > 0 be sufficiently small, and let 𝑦 = 𝑥𝜂 . Suppose 𝑦 > 𝑄0𝑄1. Then∑
𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

( 𝑄0𝑛+4
𝑄1

,
∏

𝑝≤𝑦 𝑝)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛)𝑏(𝑄0𝑛 + 4) � 𝜀2𝑄0

𝜂1/2𝜑(𝑄0)
· 𝑥 log log 𝑥

𝜑(𝑄1) (log 𝑥)2 .

This proposition builds on a result of Friedlander and Iwaniec [15, Ch. 4]. The main novelty here is
that we capture almost primes 𝑛 = 𝑝1𝑝2 such that each prime factor 𝑝 = 𝑎2 + 𝑏2, with 0 ≤ 𝑏 ≤ 𝑎, has
the property that 𝑎 + 𝑖𝑏 lies within a certain small sector.

We also will require the following result.

Proposition 2.2. We have that∑
𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

(1P𝜀 ∗ 1P′
𝜀
) (𝑛)𝑏(𝑄0𝑛 + 4) � 𝜀2 𝑥 log log 𝑥

𝜑(𝑄1) (log 𝑥)3/2 .

Since Proposition 2.2 follows from a similar, yet simpler argument than the one used to prove Propo-
sition 2.1, we will omit its proof. The rest of this section will be devoted to proving Proposition 2.1.

2.1. The Rosser–Iwaniec sieve

Let us first introduce the Rosser–Iwaniec 𝛽-sieve and the classical sieve terminology. We start with a
sequence of A = {𝑎𝑛} of nonnegative real numbers, a set of primes P and a parameter z. Define

𝑃(𝑧) =
∏
𝑝∈P
𝑝<𝑧

𝑝. (2.2)

Our goal is to obtain an estimate for the sieved set

S (A,P , 𝑧) :=
∑
𝑛≤𝑥

(𝑛,𝑃 (𝑧))=1

𝑎𝑛.

This will be accomplished through calculating, for square-free 𝑑 ∈ N,

𝐴𝑑 (𝑥) :=
∑
𝑛≤𝑥

𝑛≡0 (mod 𝑑)

𝑎𝑛. (2.3)

We now make the hypothesis that our estimate for 𝐴𝑑 (𝑥) will be of the form

𝐴𝑑 (𝑥) = 𝑔(𝑑)𝑋 + 𝑟𝑑 , (2.4)

where 𝑔(𝑑) is a multiplicative function with 0 ≤ 𝑔(𝑝) < 1. The number 𝑟𝑑 should be thought of as a
remainder term, so X is an approximation to 𝐴1 (𝑥), and the function 𝑔(𝑑) can be interpreted as a density.

Let

𝑉 (𝑧) =
∏
𝑝 |𝑃 (𝑧)

(1 − 𝑔(𝑝)).
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We further suppose for all 𝑤 < 𝑧 that

𝑉 (𝑤)
𝑉 (𝑧) =

∏
𝑤≤𝑝<𝑧
𝑝∈P

(1 − 𝑔(𝑝))−1 ≤
(

log 𝑧

log 𝑤

) 𝜅 (
1 +𝑂

(
1

log 𝑤

))
(2.5)

for some 𝜅 > 0. The constant 𝜅 is referred to as the dimension of the sieve.
Our arguments also require sieve weights. Let Λ = {𝜆𝑑}𝑑 be a sequence of real numbers, where d

ranges over square-free integers. The sequence Λ is referred to as an upper bound sieve provided that

1𝑛=1 =
∑
𝑑 |𝑛

𝜇(𝑑) ≤
∑
𝑑 |𝑛

𝜆𝑑 , ∀𝑛 ∈ N, (2.6)

where 1𝑛=1 equals one if 𝑛 = 1 and equals zero otherwise. We call Λ a lower bound sieve if∑
𝑑 |𝑛

𝜆𝑑 ≤ 1𝑛=1, ∀𝑛 ∈ N. (2.7)

For a sieve Λ = {𝜆𝑑}, we use the notation

(𝜆 ∗ 1) (𝑛) =
∑
𝑑 |𝑛

𝜆𝑑 . (2.8)

(This will be used to show the existence of primes, or almost primes, with desired properties.) Addi-
tionally, we say that the sieve Λ has level D if 𝜆𝑑 = 0 for 𝑑 > 𝐷.

Given 𝜅 > 0, the 𝛽-sieve gives both an upper and lower bound for S (A,P , 𝑧) whenever 𝑠 =
log 𝐷/log 𝑧 is sufficiently large in terms of 𝜅. The bounds consist of an error term, which is a sum of the
remainder terms |𝑟𝑑 | for 𝑑 ≤ 𝐷 and a main term 𝑋𝑉 (𝑧)𝐹 (𝑠), 𝑋𝑉 (𝑧) 𝑓 (𝑠) (resp.), where 𝐹, 𝑓 are certain
continuous functions with 0 ≤ 𝑓 (𝑠) < 1 < 𝐹 (𝑠). For precise definitions, motivation and context, we
refer the reader to [15, Chapter 11].

Theorem 2.1 (Cf. [15, Theorem 11.13]). Let 𝐷 ≥ 𝑧, and write 𝑠 = log𝐷
log 𝑧 . Then there exists 𝛽-sieve

weights such that

S (𝐴,P , 𝑧) ≤ 𝑋𝑉 (𝑧)
(
𝐹 (𝑠) +𝑂 ((log 𝐷)−1/6

)
+ 𝑅(𝐷, 𝑧)

S (𝐴,P , 𝑧) ≥ 𝑋𝑉 (𝑧)
(
𝑓 (𝑠) +𝑂 ((log 𝐷)−1/6

)
− 𝑅(𝐷, 𝑧)

for 𝑠 ≥ 𝛽(𝜅) − 1 and 𝑠 ≥ 𝛽(𝜅) (resp.), where

𝑅(𝐷, 𝑧) ≤
∑
𝑑≤𝐷
𝑑 |𝑃 (𝑧)

|𝑟𝑑 |

and 𝛽(𝜅) denotes the sifting limit of dimension 𝜅 (cf. [15, Ch. 6.4].)

In particular, note that for 𝜅 = 1/2 (which is of particular interest to us since we sieve out by the
density 1/2 sequence of primes ≡ 3 (mod 4) to detect sums of two squares), it is well known that
𝛽(𝜅) = 1 (e.g., see [15, Ch. 14.2]), which will be important for us as the ‘sifting variable’ s (which
measures the sifting range relative to the sifting level, for example, smaller s corresponds to a smaller
sifting range) only needs to be ≥ 1 to provide a lower bound for S (𝐴,P , 𝑧), whereas for the linear sieve
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𝛽(1) = 2 so that one needs 𝑠 ≥ 2. In our arguments, we will use 𝛽-sieve weights, which are as defined
in [15] Sections 6.4–6.5. In particular for these weights, we have |𝜆𝑑 | ≤ 1. We will sometimes refer to
the fundamental lemma of the sieve, by which we mean the following result (see [15, Lemma 6.11].)

Theorem 2.2. Let Λ± = {𝜆±𝑑} be upper and lower bound (resp.) 𝛽-sieves of level D with 𝛽 ≥ 4𝜅+1. Also,
let 𝑠 = log 𝐷/log 𝑧. Then for any multiplicative function satisfying equation (2.5) and 𝑠 ≥ 𝛽 + 1 we have∑

𝑑 |𝑃 (𝑧)
𝜆±𝑑𝑔(𝑑) = 𝑉 (𝑧)

(
1 +𝑂

(
𝑠−𝑠/2

))
.

We also require the following estimate for the convolution of two sieves (see equation (5.97) and
Theorem 5.9 of [15]).

Theorem 2.3. Let Λ1 = {𝜆𝑑} and Λ2 = {𝜆′

𝑑} be upper-bound sieve weights of level 𝐷1, 𝐷2 (resp.).
Also, let 𝑔1, 𝑔2 be multiplicative functions satisfying equation (2.5) with 𝜅 = 1. Then���� ∑

𝑑,𝑒
(𝑑,𝑒)=1

𝜆𝑑𝜆
′
𝑒𝑔1 (𝑑)𝑔2(𝑒)

���� ≤ (4𝑒2𝛾 + 𝑜(1))
∏
𝑝

(1 + ℎ1 (𝑝)ℎ2 (𝑝))
2∏
𝑗=1

∏
𝑝<𝐷 𝑗

(1 − 𝑔 𝑗 (𝑝))

as min{𝐷1, 𝐷2} → ∞, where for 𝑗 = 1, 2, ℎ 𝑗 (𝑛) = 𝑔 𝑗 (𝑛) (1 − 𝑔 𝑗 (𝑛))−1 and 𝛾 is Euler’s constant.

If in addition 𝑔1 (𝑝), 𝑔2(𝑝) ≤ 1/𝑝 so that ℎ1(𝑝)ℎ2 (𝑝) � 1/𝑝2, which will be the case for us, then���� ∑
𝑑,𝑒

(𝑑,𝑒)=1

𝜆𝑑𝜆
′
𝑒𝑔1 (𝑑)𝑔2(𝑒)

���� ≤ 𝐶
∏
𝑝<𝐷1

(1 − 𝑔1 (𝑝))
∏
𝑝<𝐷2

(1 − 𝑔2 (𝑝)), (2.9)

where 𝐶 > 0 is an absolute constant.

2.1.1. Notation
We will also use the notation

𝑃3 (𝑧1, 𝑧2) :=
∏

𝑧1≤𝑝≤𝑧2
𝑝≡3 (mod 4)

𝑝, and 𝑃3 (𝑧) := 𝑃3 (3, 𝑧).

Additionally, let 1(𝑛) = 1N(𝑛) = 1 denote the identity function and let 𝜏(𝑛) = (1 ∗ 1) (𝑛) =
∑
𝑑 |𝑛 1.

Also, define

B(𝑥; 𝑞, 𝑎, 𝜀) :=
∑

𝑥≤𝑛≤2𝑥
𝑛≡𝑎 (mod 𝑞)

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) − 1

𝜑(𝑞)
∑

𝑥≤𝑛≤2𝑥
(𝑛,𝑞)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛). (2.10)

Further, 𝛿 > 0 will denote a small, but fixed real number.

2.2. Preliminary lemmas

We begin by showing that the difference between the upper and lower bound sieves is ‘small’.
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Lemma 2.1. Let Λ± = {𝜆±𝑑} be upper and lower bound linear sieves (resp.) each of level 𝑤 = 𝑥
√
𝜂 ,

where 𝜂 > 0 is sufficiently small, whose sieve weights are supported on integers d such that 𝑑 |𝑃(𝑦),
where 𝑦 = 𝑥𝜂 , 𝑦 > 𝑄0𝑄1, and (𝑑, 2𝑄0 𝑓1𝑟1) = 1; in particular,

𝜆±𝑑 = 0 if (𝑑, 2𝑄0 𝑓1𝑟1) > 1. (2.11)

Then ∑
𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

(
(𝜆+ ∗ 1)

(
𝑄0𝑛 + 4

𝑄1

)
− (𝜆− ∗ 1)

(
𝑄0𝑛 + 4

𝑄1

))
(1P𝜀 ∗ 1P′

𝜀
) (𝑛)

� 𝜀2𝜂1/(4𝜂1/2)−1 𝑄0
𝜑(𝑄0)

𝑥 log log 𝑥

𝜑(𝑄1) (log 𝑥)2 + 𝑥

(log 𝑥)10 .

Remark 2. We imposed the assumption that 𝜂 > 0 is sufficiently small so small that the error
𝑂 (𝜂1/(4𝜂1/2) ) in equation (2.16) is less than 1/2. The requirement 𝑦 > 𝑄0𝑄1 is not essential; in the case
𝑦 < 𝑄0𝑄1 the argument proceeds similarly, but some additional, straightforward estimates are needed
to treat the contribution of the primes between y and 𝑄0𝑄1.

Proof. Switching order of summation, it follows that∑
𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

(
(𝜆+ ∗ 1)

(
𝑄0𝑛 + 4

𝑄1

)
− (𝜆− ∗ 1)

(
𝑄0𝑛 + 4

𝑄1

))
(1P𝜀 ∗ 1P′

𝜀
) (𝑛)

=
∑
±

±
∑
𝑑<𝑤
𝑑 |𝑃 (𝑦)

(𝑑,2𝑄0 𝑓1𝑟1)=1

𝜆±𝑑

∑
𝑥≤𝑛≤2𝑥

𝑄0𝑛+4≡0 (mod 𝑑)𝑄1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛).

(2.12)

The inner sum on the right-hand side (RHS) of equation (2.12) equals

1
𝜑(𝑑𝑄1)

∑
𝑥≤𝑛≤2𝑥
(𝑛,𝑑𝑄1)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) + B(𝑥; 𝑑𝑄1, 𝛾, 𝜀), (2.13)

where 𝛾 is the unique reduced residue (mod 𝑑𝑄1) satisfying 𝛾 ·𝑄0 ≡ −4 (mod 𝑑𝑄1) and B is as defined
in equation (2.10). Also,∑

𝑥≤𝑛≤2𝑥
(𝑛,𝑑𝑄1)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) =

∑
𝑥≤𝑛≤2𝑥

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) +𝑂

( ∑
𝑝1 𝑝2≤2𝑥

(𝑝1 𝑝2 ,𝑑𝑄1)≠1

1P𝜀 (𝑝1)1P′
𝜀
(𝑝2)

)
. (2.14)

Since 𝑑𝑄1 ≤ 𝑥1/9 (as 𝜂 is small) and 𝑝2 ≤ 𝑥1/9 the contribution to the error term from 𝑝1𝑝2 ≤ 𝑥 with
𝑝1 | (𝑝1𝑝2, 𝑑𝑄1) is �

∑
𝑝2≤𝑥1/9

∑
𝑝1≤𝑥1/9 1 � 𝑥2/9. Also, since 𝑝2 ≥ (log 𝑥)𝐵0

∑
𝑝1 𝑝2≤2𝑥

(𝑝1 𝑝2 ,𝑑𝑄1)=𝑝2

1P𝜀 (𝑝1)1P′
𝜀
(𝑝2) ≤

∑
𝑝2 |𝑑𝑄1

𝑝2≥(log 𝑥)𝐵0

∑
𝑝1≤2𝑥/𝑝2

1 � 𝑥

log 𝑥

∑
𝑝2 |𝑑𝑄1

𝑝2≥(log 𝑥)𝐵0

1
𝑝2

� 𝑥(log log 𝑥)
(log 𝑥)𝐵0

.

(2.15)
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Hence, using equations (2.13), (2.14) and (2.15) along with the fundamental lemma of the sieve (see
Theorem 2.2 and recall |𝜆𝑑 | ≤ 1) with 𝑔(𝑑) = 𝜑(𝑄1)/𝜑(𝑄1𝑑),2 and 𝑠 = log 𝑤/log 𝑦 = 𝜂−1/2 we have
that ∑

𝑑<𝑤
𝑑 |𝑃 (𝑦)

(𝑑,2𝑄0)=1

𝜆±𝑑

∑
𝑥≤𝑛≤2𝑥

𝑄0𝑛+4≡0 (mod 𝑑)𝑄1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛)

=
1

𝜑(𝑄1)
∑

𝑥≤𝑛≤2𝑥
(1P𝜀 ∗ 1P′

𝜀
) (𝑛)

∏
𝑝≤𝑦

(𝑝,2𝑄0 𝑓1𝑟1)=1

(
1 − 𝜑(𝑄1)

𝜑(𝑄1𝑝)

)
(1 +𝑂 (𝜂1/(4𝜂1/2) ))

+𝑂

( ∑
𝑑<𝑤

(𝑑,2)=1

|B(𝑥; 𝑑𝑄1, 𝛾, 𝜀) |
)
+𝑂

(
𝑥 log log 𝑥

(log 𝑥)𝐵0−1

)
.

(2.16)

Applying Theorem A.1 from the appendix, since 𝑤 = 𝑥
√
𝜂 < 𝑥1/2−𝑜 (1) we get that∑

𝑑<𝑤
(𝑑,2)=1

|B(𝑥; 𝑑𝑄1, 𝛾, 𝜀) | �
𝑥

(log 𝑥)10 .

Using the two estimates above in equation (2.12) (note the main terms in equation (2.16) are the same
for each of the sieves Λ± so they cancel in equation (2.12)) and applying equation (A.3) (with 𝑞 = 1)
from the appendix to estimate the sum over n completes the proof upon noting that∏

𝑝≤𝑦
(𝑝,2𝑄0 𝑓1𝑟1)=1

(
1 − 𝜑(𝑄1)

𝜑(𝑄1𝑝)

)
� 𝑄0

𝜑(𝑄0) log 𝑦
=

𝑄0
𝜑(𝑄0)𝜂 log 𝑥

. �

We next give a lower bound on the upper bound sieve, which together with Lemma 2.1 is strong
enough (given suitable parameter choices) to show the existence of infinitely many integers with exactly
two prime factors with the desired properties.

Lemma 2.2. Let 𝑤 = 𝑥
√
𝜂 , 𝑦 = 𝑥𝜂 and Λ+ be as in Lemma 2.1. Let 𝛿 > 3√𝜂 > 0 and 𝑧 = 𝑥

1
2−𝛿 . Then

there exists a constant 𝐶1 > 0 such that∑
𝑥≤𝑛≤2𝑥

(𝑄0𝑛+4,𝑃3 (𝑦,𝑧))=1
𝑄1 |𝑄0𝑛+4

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) (𝜆+ ∗ 1)

(
𝑄0𝑛 + 4

𝑄1

)
≥ 𝐶1

𝜀2𝛿1/2

𝜂1/2
𝑄0

𝜑(𝑄0)
𝑥 log log 𝑥

𝜑(𝑄1) (log 𝑥)2 .

Proof. We now implement the sieve as discussed in Section 2. We start with the sifting sequence

A =

{
(1P𝜀 ∗ 1P′

𝜀
)
(
𝑚 − 4
𝑄0

)
(𝜆+ ∗ 1)

(
𝑚

𝑄1

)
: 𝑄1 |𝑚,𝑄0 |𝑚 − 4

}
and primes P = {𝑝 ≥ 𝑦 : 𝑝 ≡ 3 (mod 4)}. With (2.11) in mind, we may choose

𝑋 :=
∑
𝑒<𝑤
𝑒 |𝑃 (𝑦)

𝜆+𝑒
𝜑(𝑒𝑄1)

∑
𝑥≤𝑛≤2𝑥
(𝑛,𝑄1𝑒)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛)

=
∑

𝑥≤𝑛≤2𝑥
(𝑛,𝑄1)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛)

∑
𝑒<𝑤
𝑒 |𝑃 (𝑦)

(𝑒,2𝑄0 𝑓1𝑟1𝑛)=1

𝜆+𝑒
𝜑(𝑒𝑄1)

.
(2.17)

2Note that g is multiplicative on the set of square-free d with (𝑑, 𝑓1𝑟1) = 1.
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Arguing as in the proof of Lemma 2.1, to estimate the inner sum we apply the fundamental lemma of the
sieve (see equation (2.16) and take 𝐷 = 𝑤, 𝑧 = 𝑦 in Theorem 2.2 and note that we then have 𝑠 = 𝜂−1/2)
to get that it is

1
𝜑(𝑄1)

∑
𝑒<𝑤
𝑒 |𝑃 (𝑦)

(𝑒,2𝑄0 𝑓1𝑟1𝑛)=1

𝜆+𝑒
𝜑(𝑒𝑄1)

𝜑(𝑄1) =
1

𝜑(𝑄1)
∏
𝑝≤𝑦

(𝑝,2𝑄0 𝑓1𝑟1𝑛)=1

(
1 − 𝜑(𝑄1)

𝜑(𝑄1𝑝)

)
(1 +𝑂 (𝜂1/(4𝜂1/2) )).

For 𝑛 = 𝑝1𝑝2, recalling that 𝑓1 � 1 and 𝑟1 is prime, the RHS above is

� 1
𝜑(𝑄1)

∏
𝑝≤𝑦

(𝑝,𝑄0)=1

(
1 − 1

𝑝 − 1

)
� 1

𝜑(𝑄1)
· 𝑄0
𝜑(𝑄0)

1
log 𝑦

.

Using equations (2.14) and (2.15) along with the prime number theorem for Gaussian primes in sectors
(see equations (A.1) and (A.3) in the appendix, with 𝑞 = 1) yields∑

𝑥≤𝑛≤2𝑥
(𝑛,𝑄1)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) ∼ 4𝜀2 · 𝑥 log log 𝑥

log 𝑥
.

We conclude that

𝑋 � 𝜀2 𝑄0
𝜑(𝑄0)

𝑥 log log 𝑥

𝜑(𝑄1) (log 𝑦) (log 𝑥) . (2.18)

For 𝑑 |𝑃3 (𝑦, 𝑧), note that (𝑑, 𝑒𝑄0𝑄1) = 1 for e such that 𝑝 |𝑒 ⇒ 𝑝 < 𝑦, and (1P𝜀 ∗ 1P′
𝜀
) (𝑛) = 0

if (𝑑, 𝑛) ≠ 1. To apply the sieve, we require an estimate for 𝐴𝑑 (cf. equations (2.3) and (2.4) for the
definition of 𝐴𝑑) and recalling our choice for X and the definition of B in equation (2.10) it follows that

𝐴𝑑 (𝑄0𝑥 + 4) :=
∑

𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

𝑄0𝑛+4≡0 (mod 𝑑)

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) (𝜆+ ∗ 1)

(
𝑄0𝑛 + 4

𝑄1

)

=
∑
𝑒<𝑤
𝑒 |𝑃 (𝑦)

𝜆+𝑒

∑
𝑥≤𝑛≤2𝑥

𝑄0𝑛+4≡0 (mod 𝑒)𝑄1
𝑄0𝑛+4≡0 (mod 𝑑)

(1P𝜀 ∗ 1P′
𝜀
) (𝑛)

=
∑
𝑒<𝑤
𝑒 |𝑃 (𝑦)

𝜆+𝑒
𝜑(𝑑𝑒𝑄1)

∑
𝑥≤𝑛≤2𝑥
(𝑛,𝑄1𝑒)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) + 𝑟𝑑 =

1
𝜑(𝑑) 𝑋 + 𝑟𝑑 ,

(2.19)

where

𝑟𝑑 �
∑
𝑒<𝑤

(𝑒,2)=1

|B(𝑥; 𝑑𝑒𝑄1, 𝛾, 𝜀) | (2.20)

and 𝛾 is the unique residue class (mod 𝑑𝑒𝑄1) with 𝑄0𝛾 ≡ −4 (mod 𝑒𝑄1) and 𝑄0𝛾 ≡ −4 (mod 𝑑); also
note that (𝑑, 𝑒𝑄1) = 1 and B is as in equation (2.10).
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Hence, the half-dimensional Rosser–Iwaniec sieve Theorem 2.1 with set of primes P = {𝑝 ≡ 3
(mod 4) : 𝑝 > 𝑦} (so that equation (2.21) holds with 𝜅 = 1/2), gives for any 𝐷 ≥ 𝑧 with 𝑠 = log 𝐷/log 𝑧∑

𝑥≤𝑛≤2𝑥
(𝑄0𝑛+4,𝑃3 (𝑦,𝑧))=1

𝑄1 |𝑄0𝑛+4

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) (𝜆+ ∗ 1)

(
𝑄0𝑛 + 4

𝑄1

)

≥ 𝑋𝑉 (𝑧)
(
𝑓 (𝑠) +𝑂

(
1

(log 𝐷)1/6

))
−

∑
𝑑<𝐷

𝑑 |𝑃3 (𝑦,𝑧)

|𝑟𝑑 |,

(2.21)

where

𝑉 (𝑧) =
∏
𝑦≤𝑝≤𝑧

𝑝≡3 (mod 4)

(
1 − 1

𝑝 − 1

)
�

√
log 𝑦

log 𝑧
� 𝜂1/2. (2.22)

Taking 𝐷 = 𝑧1+𝛿 , so 𝑠 = 1 + 𝛿, we have by Theorem A.1, which is proved in the appendix, that (taking
𝑞 = 𝑒𝑑𝑄1) ∑

𝑑<𝐷
𝑑 |𝑃3 (𝑦,𝑧)

|𝑟𝑑 | �
∑

𝑞<𝐷𝑄1𝑤
(𝑞,2)=1

(
𝜏(𝑞) max

(𝑎,𝑞)=1
|B(𝑥; 𝑞, 𝑎, 𝜀) |

)
� 𝑥

(log 𝑥)3 . (2.23)

Here, note that 𝐷𝑄1𝑤 < 𝑥
1
2−

𝛿
2 +

√
𝜂 < 𝑥

1
2−

𝛿
6 , and the contribution of the divisor function is handled

by using Cauchy–Schwarz along with the trivial bound |B(𝑥; 𝑞, 𝑎, 𝜀) | � 𝑥/𝑞. Also, note that 𝑓 (𝑡) ∼
2
√
𝑒𝛾

𝜋 ·
√
𝑡 − 1 as 𝑡 → 1+ (see the equation after (14.3) of [15]), so 𝑓 (𝑠) = 𝑓 (1 + 𝛿) �

√
𝛿. Using this

along with equations (2.17), (2.22) and (2.23) in equation (2.21) completes the proof. �

Sieving as in the previous lemma, we will now deduce the claimed upper bound in Proposition 2.1.

Lemma 2.3. Let 𝜂 > 0 be sufficiently small and 𝑦 = 𝑥𝜂 , with 𝑦 > 𝑄0𝑄1. Then∑
𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

( 𝑄0𝑛+4
𝑄1

,
∏

𝑝≤𝑦 𝑝)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛)𝑏(𝑄0𝑛 + 4) � 𝜀2𝑄0

𝜂1/2𝜑(𝑄0)
· 𝑥 log log 𝑥

𝜑(𝑄1) (log 𝑥)2 .

Proof. Write 𝑄0𝑛 + 4 = 𝑄1 𝑓 2𝑠, where s is square-free and note that since ((𝑄0𝑛 + 4)/𝑄1, 𝑃(𝑦)) = 1
all the prime divisors of f (and s as well) are ≥ 𝑦, in particular f is coprime to 𝑄0𝑄1. We now note that
𝑏(𝑠) ≤ 1𝑆 (𝑠) for 𝑆 = {𝑛 : (𝑛, 𝑃3 (𝑦, 𝑧)) = 1} and take Λ+ to be the upper bound sieve from Lemma 2.1,
which we use to bound the condition ((𝑄0𝑛 + 4)/𝑄1,

∏
𝑝≤𝑦 𝑝) = 1 to get that∑

𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

( 𝑄0𝑛+4
𝑄1

,
∏

𝑝≤𝑦 𝑝)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛)𝑏(𝑄0𝑛 + 4)

≤
∑

𝑓 ≤(log 𝑥)10

𝑝 | 𝑓 ⇒𝑝>𝑦

∑
𝑥≤𝑛≤2𝑥

( (𝑄0𝑛+4)/ 𝑓 2 ,𝑃3 (𝑦,𝑧′))=1
𝑓 2𝑄1 |𝑄0𝑛+4

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) (𝜆+ ∗ 1)

(
𝑄0𝑛 + 4

𝑄1

)
+𝑂 (𝑥/(log 𝑥)10),

(2.24)
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where the error term arises from the contribution of 𝑓 > (log 𝑥)10. The following sieving argument is
similar to the previous lemma (in fact we have already handled the case 𝑓 = 1). For f as above let

𝑋 𝑓 :=
∑
𝑒<𝑤
𝑒 |𝑃 (𝑦)

𝜆+𝑒
𝜑(𝑒𝑄1 𝑓 2)

∑
𝑥≤𝑛≤2𝑥

(𝑛, 𝑓 𝑄1𝑒)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) � 𝜀2 𝑄0

𝜑(𝑄0)
𝑥 log log 𝑥

𝜑(𝑄1 𝑓 2) (log 𝑦) (log 𝑥)
, (2.25)

where the last estimate follows from repeating the argument given in equation (2.18). Similarly, arguing
as in equation (2.19) we have for each 𝑑 |𝑃3 (𝑦, 𝑧) with d coprime to f that

𝐴𝑑 (𝑄𝑥 + 4; 𝑓 ) :=
∑

𝑥≤𝑛≤2𝑥
𝑄1 𝑓

2 |𝑄0𝑛+4
𝑄0𝑛+4≡0 (mod 𝑑)

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) (𝜆+ ∗ 1)

(
𝑄0𝑛 + 4

𝑄1

)
=

1
𝜑(𝑑) 𝑋 𝑓 + 𝑟𝑑, 𝑓 ,

where

𝑟𝑑, 𝑓 �
∑
𝑒<𝑤

(𝑒,2)=1

��B(𝑥; 𝑑𝑒 𝑓 2𝑄1, 𝛾, 𝜀)
��.

We will now apply an upper bound sieve. For 𝐷 = 𝑥1/50 and 𝑧′ = 𝑥1/100, Theorem 2.1 with set of primes
P = {𝑝 ≡ 3 (mod 4) : (𝑝, 𝑓 ) = 1 & 𝑝 > 𝑦} gives for each 𝑓 ≤ (log 𝑥)10 with prime divisors all > 𝑦
that the inner sum on the RHS of equation (2.24) is

≤ 𝑋 𝑓 𝑉 𝑓 (𝑧′)
(
𝐹 (2) +𝑂

(
1

(log 𝐷)1/6

))
+

∑
𝑑<𝐷

𝑑 |𝑃3 (𝑦,𝑧) , (𝑑, 𝑓 )=1

|𝑟𝑑, 𝑓 |, (2.26)

where the sum over d is 𝑂 (𝑥1/25) since 𝐷 = 𝑥1/50, and

𝑉 𝑓 (𝑧′) =
∏

𝑦≤𝑝≤𝑧′
𝑝≡3 (mod 4) , 𝑝� 𝑓

(
1 − 1

𝑝 − 1

)
� 𝑓

𝜑( 𝑓 ) 𝜂
1/2, (2.27)

where the upper bound follows from equation (2.22). Using equations (2.25) and (2.27) in equation (2.26)
then applying the resulting estimate in equation (2.24) and summing over f completes the proof. �

2.3. The Proof of Proposition 2.1

We first require a Brun–Titchmarsh type bound for primes in narrow sectors.

Lemma 2.4. Let 𝑄, 𝑞 ≤ 𝑥2/3−𝑜 (1) be odd. Then∑
𝑝=𝑎2+𝑏2≤𝑥

| arctan(𝑏/𝑎) |≤𝜀
𝑞𝑝+4=𝑄𝑝1 , 𝑝1 prime

1 � 𝜀
𝑞

𝜑(𝑞)
𝑥

𝜑(𝑄) (log 𝑥)2 .

Remark 3. The point of the lemma is that it holds for large moduli 𝑄 > 𝑥1/2. To accomplish this, we
use asymptotic estimates for Gaussian integers 𝛼 = 𝑎 + 𝑖𝑏 with 𝑁 (𝛼) ≤ 𝑥 and 𝑁 (𝛼) ≡ 𝑎 (mod 𝑄) and
| arg(𝛼) | ≤ 𝜀, where 𝑁 (𝛼) = 𝛼𝛼 is the norm of 𝛼. Details are given in Appendix, cf. section A.2.

The main step in the proof of Proposition 2.1 is the following lemma.
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Lemma 2.5. Let 𝑧 = 𝑥
1
2−𝛿 , where 𝛿 > 0 is sufficiently small and 𝑦 = 𝑥𝜂 with 0 < 𝜂 < 1/3. There exists

a constant 𝐶2 > 0 such that∑
𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

( 𝑄0𝑛+4
𝑄1

,𝑃 (𝑦)𝑃3 (𝑦,𝑧))=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) =

∑
𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

( 𝑄0𝑛+4
𝑄1

,𝑃 (𝑦))=1
𝑝 |𝑄0𝑛+4⇒𝑝≡1 (mod 4)

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) + 𝑅,

where

0 ≤ 𝑅 ≤ 𝐶2 · 𝜀2 · 𝛿
3/2

𝜂1/2
𝑄0

𝜑(𝑄0)
· 𝑥 log log 𝑥

𝜑(𝑄1) (log 𝑥)2 .

Proof. By construction, if (1P𝜀 ∗ 1P′
𝜀
) (𝑛) ≠ 0, then 𝑄0𝑛 + 4 ≡ 1 (mod 4) and 𝑄1 ≡ 1 (mod 4) so that

(𝑄0𝑛 + 4)/𝑄1 ≡ 1 (mod 4) and must have an even number of prime factors which are congruent to 3
(mod 4). Since 𝑧 > 𝑥1/4 the integers which contribute to R must have precisely two such prime factors.
Dropping several conditions on the integers n which contribute to R, it follows that R is bounded by
the number of integers 𝑛 = 𝑝1𝑝2 ≤ 2𝑥, (1P𝜀 ∗ 1P′

𝜀
) (𝑛) ≠ 0 such that (𝑄0𝑛 + 4)/𝑄1 = 𝑎𝑞1𝑞2, where

𝑏(𝑎) = 1, (𝑎, 𝑃(𝑦)) = 1, 𝑞1 ≡ 𝑞2 ≡ 3 (mod 4) and 𝑞1, 𝑞2 are primes with 𝑧 < 𝑞1, 𝑞2 ≤ 4𝑄0𝑥/𝑄1 so
𝑎 ≤ 4𝑄0𝑥/(𝑄1𝑧

2). By symmetry, it suffices to consider the terms with 𝑞1 ≤ 𝑞2. We get that

𝑅 ≤ 2
∑

𝑝2≤(2𝑥)1/9

1P′
𝜀
(𝑝2)

∑
𝑎≤ 4𝑄0𝑥

𝑄1𝑧2

(𝑎,𝑃 (𝑦))=1

𝑏(𝑎)
∑

𝑧<𝑞1≤
√

4𝑄0𝑥
𝑎𝑄1

∑
𝑞1≤𝑞2≤4𝑄0𝑥/𝑄1

∑
𝑝1≤2𝑥/𝑝2

𝑄0 𝑝1 𝑝2+4=𝑎𝑞1𝑞2𝑄1

1P𝜀 (𝑝1). (2.28)

Applying Lemma 2.4 with 𝑞 = 𝑄0𝑝2 and 𝑄 = 𝑎𝑞1𝑄1,

∑
𝑝1≤2𝑥/𝑝2

𝑄0 𝑝1 𝑝2+4=𝑎𝑞1𝑞2𝑄1

1P𝜀 (𝑝1) � 𝜀
𝑄0

𝜑(𝑄0)
𝑥

𝜑(𝑎𝑄1)𝑞1𝑝2 (log 𝑥)2 . (2.29)

Note that 𝑥/𝑝2 ≥ 2−1/9𝑥8/9 and 𝑄0𝑝2, 𝑎𝑞1𝑄1 ≤
(
𝑥
𝑝2

)2/3−𝑜 (1)
, for 𝛿 > 0 sufficiently small, so the

application of Lemma 2.4 is valid.
We claim that

∑
𝑎≤ 4𝑄0𝑥

𝑄1𝑧2

(𝑎,𝑃 (𝑦))=1

𝑏(𝑎)
𝜑(𝑎) �

√
log 𝑥/𝑧2

log 𝑦
, (2.30)

which we will justify below. Additionally,

∑
𝑧<𝑞1≤

√
4𝑄0𝑥
𝑎𝑄1

1
𝑞1

∼ log
log

√
2𝑄0𝑥
𝑎𝑄1

log 𝑧
�

log 𝑥
𝑧2

log 𝑧
+ log𝑄0

log 𝑧
�

log 𝑥
𝑧2

log 𝑧
� 𝛿. (2.31)
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Therefore, using equations (2.29), (2.30) and (2.31) in equation (2.28) we conclude that

𝑅 �𝜀 · 𝑄0
𝜑(𝑄0)

· 𝑥 log 𝑥/𝑧2

𝜑(𝑄1) (log 𝑥)2 log 𝑧

√
log 𝑥/𝑧2

log 𝑦

∑
𝑝2≤(2𝑥)1/9

1P′
𝜀
(𝑝2)
𝑝2

�𝜀2 · 𝛿
3/2

𝜂1/2 · 𝑄0
𝜑(𝑄0)

· 𝑥 · log log 𝑥

𝜑(𝑄1) (log 𝑥)2

as desired.
It remains to justify equation (2.30). Let 𝐹 (𝑛) be the completely multiplicative function defined

by 𝐹 (𝑝) = 1 if 𝑝 ≥ 𝑦 and zero otherwise. Then for all 𝑡 ≥ 𝑦, it follows from basic estimates for
multiplicative functions (see (1.85) of [19]) that∑

𝑛≤𝑡
(𝑛,𝑃 (𝑦))=1

𝑏(𝑛) 𝑛

𝜑(𝑛) ≤
∑
𝑛≤𝑡

𝑏(𝑛) 𝑛

𝜑(𝑛) 𝐹 (𝑛)

� 𝑡

log 𝑡

∏
𝑝≤𝑡

(
1 + 𝑏(𝑝)𝐹 (𝑝)

𝑝 − 1

)
� 𝑡√

log 𝑡 log 𝑦
.

For 1 ≤ 𝑡 ≤ 𝑦, the sum on the left-hand side (LHS) is empty so the bound is true in that case as well.
Hence, equation (2.30) follows from this estimate along with partial summation. �

Proof of Proposition 2.1. The upper bound has already been established in Lemma 2.3. It remains to
establish the lower bound. Let 𝛿 be sufficiently small in terms of 𝐶1 and 𝐶2. Applying the inequality
(2.7) for a lower bound sieve (also recall our notation (2.8)) along with Lemmas 2.1 and 2.2, using
a lower bound sieve to take care of the condition (𝑄0𝑛+4

𝑄1
, 𝑃(𝑦)) = 1 (and recalling that 𝑧 = 𝑥

1
2−𝛿 for

𝛿 > 0), we have that∑
𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

( 𝑄0𝑛+4
𝑄1

,𝑃 (𝑦)𝑃3 (𝑦,𝑧))=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) ≥

∑
𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

(𝑄0𝑛+4,𝑃3 (𝑦,𝑧))=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) (𝜆− ∗ 1)

(
𝑄0𝑛 + 4

𝑄1

)

=
∑

𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

(𝑄0𝑛+4,𝑃3 (𝑦,𝑧))=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) (𝜆+ ∗ 1)

(
𝑄0𝑛 + 4

𝑄1

)

+𝑂

(
𝜀2𝜂1/(4𝜂1/2)−1 𝑄0

𝜑(𝑄0)
𝑥 log log 𝑥

𝜑(𝑄1) (log 𝑥)2

)
≥𝐶1

𝜀2𝛿1/2

𝜂1/2
𝑄0

𝜑(𝑄0)
𝑥 log log 𝑥

𝜑(𝑄1) (log 𝑥)2
���1 +𝑂

���𝜂
1

4𝜂1/2 −
1
2

𝛿1/2
������.

(2.32)

Choosing 𝜂 sufficiently small in terms of 𝛿 (which we choose in a way that only depends on 𝐶1, 𝐶2; see
below) the O-term above is ≤ 1/2 in absolute value. Therefore, by equation (2.32) along with Lemma
2.5 it follows that∑

𝑥≤𝑛≤2𝑥
𝑄1 |𝑄0𝑛+4

( 𝑄0𝑛+4
𝑄1

,𝑃 (𝑦)𝑃3 (𝑦,𝑧))=1
𝑝 |𝑄0𝑛+4⇒𝑝≡1 (mod 4)

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) ≥

(
𝐶1
2

𝜀2𝛿1/2

𝜂1/2 − 𝐶2𝜀
2𝛿3/2

𝜂1/2

)
𝑄0

𝜑(𝑄0)
𝑥 log log 𝑥

𝜑(𝑄1) (log 𝑥)2 .
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The term
(
𝐶1
2 𝛿1/2 − 𝐶2𝛿

3/2
)

is positive for 𝛿 sufficiently small in terms of𝐶1 and𝐶2. Also, 𝑏(𝑄0𝑛+4) = 1
for n such that all the prime factors of 𝑄0𝑛+4 are congruent to 1 (mod 4). This completes the proof. �

3. Truncating the spectral equation

In this section, we show that it is possible to achieve a very short truncation of the spectral equation
which holds for almost all new eigenvalues.

Theorem 3.1. Let 𝐴 ≥ 1. Then for 𝐵 = 𝐵(𝐴) sufficiently large, we have for every eigenvalue 𝜆𝑛 ∈
Λ𝑛𝑒𝑤 ∩ [1, 𝑥] except those outside an exceptional set of size 𝑂 (𝑥/(log 𝑥)𝐴) that∑

𝑚: |𝑚−𝑛 | ≤ 𝑛
𝑥 (log 𝑥)𝐵

𝑟 (𝑚)
𝑚 − 𝜆𝑛

=

{
𝜋 log𝜆𝑛 +𝑂 (1) in the weak coupling quantization,
1
𝛼 +𝑂 (1) in the strong coupling quantization.

(3.1)

The above theorem is proved by capturing cancellation in the spectral equation even at very small
scales for almost all new eigenvalues. This is done by showing that the average behavior of sums of 𝑟 (𝑛)
over even very short intervals is fairly regular.

Lemma 3.1. Let 𝑥 ≥ 3 and 3 ≤ 𝐿 ≤ 𝑥. Then

1
𝑥

∑
ℓ≤𝑥

���� ∑
ℓ≤𝑛≤ℓ+ ℓ

𝐿

𝑟 (𝑛) − 𝜋
ℓ

𝐿

����2 � 𝑥

𝐿
(log 𝑥)2. (3.2)

Proof. We repeat a classical argument, which was used by Selberg [41] to study primes in short intervals.
Consider

𝜁Q(𝑖) :=
1
4

∑
𝑛≥1

𝑟 (𝑛)
𝑛𝑠

= 𝐿(𝑠, 𝜒4)𝜁 (𝑠) Re(𝑠) > 1,

where 𝐿(𝑠, 𝜒4) is the Dirichlet L-function attached to the nontrivial Dirichlet character (mod 4), and
𝜁 (𝑠) denotes the Riemann zeta-function. Note 𝐿(1, 𝜒4) = 𝜋/4. Applying Perron’s formula, then shifting
contours to Re(𝑠) = 1/2 (which is valid since it is well known that 𝜁Q(𝑖) (𝜎 + 𝑖𝑡) � 𝑡1−𝜎+𝑜 (1) , for
0 ≤ 𝜎 ≤ 1) and picking up a simple pole at 𝑠 = 1 we see that for 𝑣, 𝑣 + 𝑣/𝐿 ∉ Z∑

𝑣≤𝑛≤𝑣+ 𝑣
𝐿

𝑟 (𝑛) = 1
2𝜋𝑖

∫
(2)

4𝜁Q(𝑖) (𝑠)
(𝑣 + 𝑣

𝐿 )
𝑠 − 𝑣𝑠

𝑠
𝑑𝑠

= 4𝐿(1, 𝜒4) ·
𝑣

𝐿
+ 𝑣1/2

2𝜋

∫
R

4𝜁Q(𝑖) ( 1
2 + 𝑖𝑡)

(1 + 1
𝐿 )

1
2+𝑖𝑡 − 1

1
2 + 𝑖𝑡

· 𝑒𝑖𝑡 log 𝑣 𝑑𝑡.

Notice that the integral on the RHS is a Fourier transform. Writing 𝜈 = log(1 + 1
𝐿 ), making a change of

variables 𝑣 = 𝑒𝜏 and then applying Plancherel’s theorem yields

1
𝑥2

∫ 𝑥

1

( ∑
𝑣≤𝑛≤𝑣+ 𝑣

𝐿

𝑟 (𝑛) − 𝜋 · 𝑣

𝐿

)2
𝑑𝑣 ≤

∫
R

( ∑
𝑒𝜏 ≤𝑛≤𝑒𝜏+𝜈

𝑟 (𝑛) − 𝜋 · 𝑒
𝜏

𝐿

)2
𝑑𝜏

𝑒𝜏

=
8
𝜋

∫
R

|𝜁Q(𝑖) ( 1
2 + 𝑖𝑡) |2 |𝑤𝜈 ( 1

2 + 𝑖𝑡) |2 𝑑𝑡,

where 𝑤𝜈 (𝑠) = (𝑒𝜈𝑠 −1)/𝑠 � min{𝜈, 1/(1+ |𝑡 |)} uniformly for 1
4 ≤ Re(𝑠) ≤ 1. To estimate the integral

on the RHS, we apply the well-known bound∫ 𝑇

0
|𝜁Q(𝑖) ( 1

2 + 𝑖𝑡) |2 𝑑𝑡 � 𝑇 (log𝑇)2
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(see the introduction of [32]). Hence, we see that∫
R

|𝜁Q(𝑖) ( 1
2 + 𝑖𝑡) |2 |𝑤𝜈 ( 1

2 + 𝑖𝑡) |2 𝑑𝑡 �𝜈2
∫
|𝑡 | ≤1/𝜈

|𝜁Q(𝑖) ( 1
2 + 𝑖𝑡) |2 𝑑𝑡 +

∫
|𝑡 | ≥1/𝜈

|𝜁Q(𝑖) ( 1
2 + 𝑖𝑡) |2 𝑑𝑡

𝑡2

�𝜈(log 1/𝜈)2 � 1
𝐿
(log 𝐿)2.

Combining the estimates above, we conclude that

1
𝑥

∫ 2𝑥

𝑥

( ∑
𝑣≤𝑛≤𝑣+ 𝑣

𝐿

𝑟 (𝑛) − 𝜋
𝑣

𝐿

)2
𝑑𝑣 � 𝑥

𝐿
(log 𝑥)2. (3.3)

We will now bound the sum over integers ℓ ≤ 𝑥 on the LHS of equation (3.2) in terms of an integral
over 1 ≤ 𝑣 ≤ 𝑥. Let

𝐹 (𝑣) =
∑

𝑣≤𝑛≤𝑣+ 𝑣
𝐿

𝑟 (𝑛) − 𝜋 · 𝑣

𝐿
,

and let 𝑣ℓ ∈ [ℓ, ℓ + 1] be a point where the minimum of |𝐹 (𝑣) | on [ℓ, ℓ + 1] is achieved. Observe that

𝐹 (ℓ) = 𝐹 (𝑣ℓ ) +𝑂 (𝑟 (ℓ) + 𝑟 (ℓ∗) + 1),

where ℓ∗ = �ℓ + 1 + (ℓ + 1)/𝐿�. Hence,

1
𝑥

∑
ℓ≤𝑥

𝐹 (ℓ)2 � 1
𝑥

∑
ℓ≤𝑥

𝐹 (𝑣ℓ)2 + 1
𝑥

∑
ℓ≤𝑥

(𝑟2 (ℓ) + 𝑟2(ℓ∗)) + 1

� 1
𝑥

∫ 𝑥

1
𝐹 (𝑥)2 𝑑𝑥 + log 𝑥 � 𝑥

𝐿
(log 𝑥)2,

where the last bound follows from equation (3.3) and the bound
∑
ℓ≤𝑥 𝑟 (𝑙)2 � 𝑥 log 𝑥 (which in turns

follows from a Wirsing type estimate (cf. [49]) or by taking 𝑘 = 1, 𝑅1(𝑋) = 𝑋 and 𝐹1 (𝑛) = 𝑟 (𝑛) in
Lemma 4.1). �

Lemma 3.2. Let 𝐴 ≥ 3 and 𝑥,𝑌 ≥ 3. Then for all but � 𝑥/(log 𝑥)𝐴 integers 𝑚 ∈ [1, 𝑥] we have���� ∑
𝑌 𝑚

𝑥 <𝑘≤𝑥1/2 𝑚
𝑥

𝑟 (𝑚 + 𝑘) − 𝑟 (𝑚 − 𝑘)
𝑘

���� ≤ (log 𝑥)3𝐴
√
𝑌

.

Proof. Let

𝑅𝑚(𝑡) =
∑

1≤𝑘≤𝑡
(𝑟 (𝑚 + 𝑘) − 𝑟 (𝑚 − 𝑘)).

It suffices to consider 𝑚 ∈ [𝑥/(log 𝑥)𝐴, 𝑥]. Hence, by summation by parts for each integer 𝑚 ∈
[𝑥/(log 𝑥)𝐴, 𝑥] we have that∑

𝑌 𝑚
𝑥 <𝑘≤𝑥1/2 𝑚

𝑥

𝑟 (𝑚 + 𝑘) − 𝑟 (𝑚 − 𝑘)
𝑘

=
𝑅𝑚(𝑥1/2 𝑚

𝑥 )
𝑥1/2 𝑚

𝑥

−
𝑅𝑚(𝑌 𝑚𝑥 )

𝑌 𝑚𝑥
+
∫ 𝑥1/2 𝑚

𝑥

𝑌 𝑚
𝑥

𝑅𝑚(𝑡)
𝑡2 𝑑𝑡.
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Using this along with Chebyshev’s inequality and the elementary inequality (|𝑎 | + |𝑏 | + |𝑐 |)2 ≤
32 (𝑎2 + 𝑏2 + 𝑐2), it follows that

#
⎧⎪⎪⎨⎪⎪⎩

𝑥

(log 𝑥)𝐴
≤ 𝑚 ≤ 𝑥 :

���� ∑
𝑌 𝑚

𝑥 <𝑘≤𝑥1/3 𝑚
𝑥

𝑟 (𝑚 + 𝑘) − 𝑟 (𝑚 − 𝑘)
𝑘

���� ≥ (log 𝑥)3𝐴
√
𝑌

⎫⎪⎪⎬⎪⎪⎭
≤ 9

𝑌

(log 𝑥)6𝐴

∑
𝑥

(log 𝑥)𝐴
≤𝑚≤𝑥

���
𝑅𝑚

(
𝑥1/2 𝑚

𝑥

)2(log 𝑥)2𝐴

𝑥
+

𝑅𝑚
(
𝑌 𝑚𝑥

)2 (log 𝑥)2𝐴

𝑌2 +
(∫ 𝑥1/2 𝑚

𝑥

𝑌 𝑚
𝑥

𝑅𝑚(𝑡)
𝑡2 𝑑𝑡

)2���.
(3.4)

In the integral, we make a change of variables and apply the Cauchy–Schwarz inequality to get for each
𝑚 ∈ [𝑥/(log 𝑥)𝐴, 𝑥] that(∫ 𝑥1/2 𝑚

𝑥

𝑌 𝑚
𝑥

𝑅𝑚(𝑡)
𝑡2 𝑑𝑡

)2

≤ (log 𝑥)2𝐴

𝑌

∫ 𝑥1/2

𝑌

1
𝑡2 𝑅𝑚

(
𝑡
𝑚

𝑥

)2
𝑑𝑡. (3.5)

Observe that

𝑅𝑚

(
𝐻

𝑚

𝑥

)
=

∑
𝑚≤𝑛≤𝑚+𝑚

𝑥 𝐻

𝑟 (𝑛) −
∑

𝑚−𝑚
𝑥 𝐻 ≤𝑛≤𝑚

𝑟 (𝑛).

Hence, by Lemma 3.1 with 𝐿 = 𝑥/𝐻 (along with an analogue of this lemma for the second sum, which
is proved in the same way) we get

1
𝑥

∑
𝑚≤𝑥

𝑅𝑚

(
𝐻

𝑚

𝑥

)2
� 𝐻 (log 𝑥)2,

for 1 ≤ 𝐻 ≤ 𝑥/3. Using this bound and equation (3.5) in equation (3.4) gives

#
⎧⎪⎪⎨⎪⎪⎩

𝑥

(log 𝑥)𝐴
≤ 𝑚 ≤ 𝑥 :

���� ∑
𝑌 𝑚

𝑥 <𝑘≤𝑥1/2 𝑚
𝑥

𝑟 (𝑚 + 𝑘) − 𝑟 (𝑚 − 𝑘)
𝑘

���� ≥ (log 𝑥)3𝐴
√
𝑌

⎫⎪⎪⎬⎪⎪⎭
� 𝑌 · 𝑥

(log 𝑥)4𝐴

(
(log 𝑥)2

𝑥1/2 + (log 𝑥)2

𝑌
+ (log 𝑥)3

𝑌

)
� 𝑥

(log 𝑥)4𝐴−3

since we may assume 𝑌 ≤ 𝑥1/2, otherwise the set on the LHS above is empty. �

Before proving the main result of this section, we require the following technical lemma.

Lemma 3.3. Let 𝑢, 𝑣 be sufficiently large positive real numbers such that 𝑣9/10 ≤ 𝑢 ≤ 2𝑣. Let 𝑡 > 1 be
a real number that is not expressible as a sum of two squares such that |𝑢 − 𝑡 | ≤ 𝑣1/3. Then

∑
𝑚: |𝑚−𝑢 |>𝑣

1
2

𝑟 (𝑚)
(

1
𝑚 − 𝑡

− 𝑚

𝑚2 + 1

)
= −𝜋 log 𝑡 +𝑂 (1).
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Proof. Let 𝐴(𝑥) =
∑

1≤𝑛≤𝑥 𝑟 (𝑛) = 𝜋𝑥 + 𝐸 (𝑥). It is well known that (cf. [43]) that 𝐸 (𝑥) � 𝑥
1
3 . Also, let

𝑓𝑡 (𝑥) = log |𝑥−𝑡 |
(𝑥2+1)1/2 , (so 𝑓𝑡 (𝑥) → 0 as 𝑥 → ∞). Since |𝑢 − 𝑡 | ≤ 𝑣1/3, partial summation gives

∑
𝑚: |𝑚−𝑢 |>𝑣

1
2

𝑟 (𝑚)
(

1
𝑚 − 𝑡

− 𝑚

𝑚2 + 1

)
=
∫ ∞

𝑢+𝑣
1
2

𝑓 ′𝑡 (𝑥)𝑑𝐴(𝑥) +
∫ (𝑢−𝑣

1
2 )−

1−
𝑓 ′𝑡 (𝑥)𝑑𝐴(𝑥)

= 𝜋
(
𝑓𝑡 (𝑢 − 𝑣

1
2 ) − 𝑓𝑡 (𝑢 + 𝑣

1
2 ) − log 𝑡

)
+𝑂

(
1 + max

±

𝑢
1
3

|𝑢 ± 𝑣
1
2 − 𝑡 |

)
.

The error is 𝑂 (1) since we assumed |𝑢 − 𝑡 | ≤ 𝑣1/3. Also,

𝑓𝑡 (𝑢 − 𝑣
1
2 ) − 𝑓𝑡 (𝑢 + 𝑣

1
2 ) = log

|𝑢 − 𝑡 − 𝑣
1
2 |

|𝑢 − 𝑡 + 𝑣
1
2 |

+𝑂 (1) � 1. �

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. Let 𝐴 ≥ 1. In the weak coupling quantization, it follows from the spectral
equation (1.1) along with Lemma 3.3 that∑

𝑚: |𝑚−𝑛 | ≤ 𝑛
𝑥 𝑥

1/2

𝑟 (𝑚)
𝑚 − 𝜆𝑛

= 𝜋 log𝜆𝑛 +𝑂 (1) (3.6)

for every integer 𝑥
(log 𝑥)𝐴 ≤ 𝑛 ≤ 𝑥, which is a sum of two squares. Note that the application of Lemma

3.3 is justified since it is well known that 𝜆𝑛 − 𝑛 ≤ 𝑛+ − 𝑛 ≤ 10𝑛1/4 (see for instance [31] p. 43).
In the strong coupling quantization, applying Lemma 3.3 twice we get for 𝑥

(log 𝑥)𝐴 ≤ 𝑛 ≤ 𝑥 that���� ∑
𝑚: |𝑚−𝑛 |> 𝑛

𝑥 𝑥
1/2

𝑟 (𝑚)
(

1
𝑚 − 𝜆𝑛

− 𝑚

𝑚2 + 1

)
−

∑
𝑚: |𝑚−𝜆𝑛 |>𝜆1/2

𝑛

𝑟 (𝑚)
(

1
𝑚 − 𝜆𝑛

− 𝑚

𝑚2 + 1

)���� � 1.

Hence, using this along with the spectral equation (1.2) we have∑
|𝑚−𝑛 | ≤ 𝑛

𝑥 𝑥
1/2

𝑟 (𝑚)
(

1
𝑚 − 𝜆𝑛

− 𝑚

𝑚2 + 1

)
=

∑
|𝑚−𝜆𝑛 | ≤𝜆1/2

𝑛

𝑟 (𝑚)
(

1
𝑚 − 𝜆𝑛

− 𝑚

𝑚2 + 1

)
+𝑂 (1)

=
1
𝛼
+𝑂 (1).

Hence, in the strong coupling quantization for each 𝑥
(log 𝑥)𝐴 ≤ 𝑛 ≤ 𝑥∑

𝑚: |𝑚−𝑛 | ≤ 𝑛
𝑥 𝑥

1/2

𝑟 (𝑚)
𝑚 − 𝜆𝑛

=
1
𝛼
+𝑂 (1). (3.7)

For 𝑥
(log 𝑥)𝐴 ≤ 𝑛 ≤ 𝑥, we now analyze the sum that appears on the LHS of both equations (3.6) and

(3.7). Let 𝐵 ≥ 1, to be determined later, and consider∑
|𝑚−𝑛 | ≤ 𝑛

𝑥 𝑥
1/2

𝑟 (𝑚)
𝑚 − 𝜆𝑛

=
∑

|𝑚−𝑛 | ≤ 𝑛
𝑥 (log 𝑥)𝐵

𝑟 (𝑚)
𝑚 − 𝜆𝑛

+
∑

𝑛
𝑥 (log 𝑥)𝐵< |𝑘 | ≤ 𝑛

𝑥 𝑥
1/2

𝑟 (𝑛 + 𝑘)
𝑘 − 𝑠𝑛

, (3.8)
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where recall 𝑠𝑛 = 𝜆𝑛 − 𝑛. Note that∑
𝑛≤𝑥

𝑠𝑛≥(log 𝑥)𝐵/2

𝑏(𝑛) ≤ 1
(log 𝑥)𝐵/2

∑
𝑛≤𝑥

𝑏(𝑛)𝑠𝑛

≤ 1
(log 𝑥)𝐵/2

∑
𝑛≤𝑥

𝑏(𝑛) (𝑛+ − 𝑛) � 𝑥

(log 𝑥)𝐵/2 .

Hence, for all but 𝑂 (𝑥/(log 𝑥)𝐵/2) integers 𝑛 ≤ 𝑥 which are representable as a sum of two squares,
𝑠𝑛 < (log 𝑥)𝐵/2. For these integers, the second sum on the RHS of equation (3.8) equals

∑
𝑛
𝑥 (log 𝑥)𝐵≤𝑘≤ 𝑛

𝑥 𝑥
1/2

𝑟 (𝑛 + 𝑘) − 𝑟 (𝑛 − 𝑘)
𝑘

+𝑂
���(log 𝑥)𝐵/2

∑
𝑛
𝑥 (log 𝑥)𝐵≤ |𝑘 | ≤𝑥1/2

𝑟 (𝑛 + 𝑘)
𝑘2

���. (3.9)

Since

#
{

𝑥

(log 𝑥)𝐴
≤ 𝑛 ≤ 𝑥 : (log 𝑥)𝐵/2

∑
𝑛
𝑥 (log 𝑥)𝐵≤ |𝑘 | ≤𝑥1/2

𝑟 (𝑛 + 𝑘)
𝑘2 ≥ 1

}
≤ (log 𝑥)𝐵/2

∑
(log 𝑥)𝐵−𝐴≤ |𝑘 | ≤𝑥1/2

1
𝑘2

∑
𝑛≤𝑥

𝑟 (𝑛 + 𝑘) � 𝑥

(log 𝑥)𝐵/2−𝐴

the O-term in equation (3.9) is � 1 for all but 𝑂 (𝑥/(log 𝑥)𝐵/2−𝐴) integers 𝑥
(log 𝑥)𝐴 ≤ 𝑛 ≤ 𝑥. The first

sum in equation (3.9) is estimated using Lemma 3.2, with 𝑌 = (log 𝑥)𝐵; so for 𝐵 ≥ 6𝐴, this sum is � 1
for all but at most � 𝑥/(log 𝑥)𝐴 integers 𝑛 ≤ 𝑥. Hence, applying the two previous estimates in equation
(3.9) and using the resulting bound along with equation (3.8) in equations (3.6) and (3.7) completes the
proof upon taking 𝐵 ≥ 6𝐴. �

4. Estimates for new eigenvalues nearby almost primes

In this section, we analyze the location of eigenvalues in Λnew nearby certain integers which are almost
primes. To state the result, let

N1,𝑥 ={𝑛 ∈ N : (1P𝜀,𝑥 ∗ 1P′
𝜀,𝑥

) (𝑛) ≠ 0, 𝑏(𝑄0𝑛 + 4) = 1, & 𝑄1 |𝑄0𝑛 + 4},

N2,𝑥 =

{
𝑛 ∈ N1,𝑥 :

(
𝑄0𝑛 + 4

𝑄1
, 𝑃(𝑦)

)
= 1

}
,

(4.1)

where 𝑦 = 𝑥𝜂 with 𝜂 as in Proposition 2.1 and 𝑄0, 𝑄1, 𝜀, 1P𝜀 and 𝑏(·) are as defined in the beginning of
Section 2; we will write N1,𝑥 = N1,N2,𝑥 = N2 for brevity. For 𝑗 = 1, 2, let N 𝑗 (𝑥) = N 𝑗 ,𝑥 ∩ [𝑥, 2𝑥]. In
particular, for each 𝑛 ∈ N2(𝑥), 𝑄0𝑛 + 4 = 𝑄1ℓ𝑛, where ℓ𝑛 is an integer which is a sum of two squares.
Moreover, since every prime divisor of ℓ𝑛 is ≥ 𝑦 = 𝑥𝜂 , we have for 𝑛 ≤ 𝑥 that 𝑥𝜂 ·#{𝑝 |ℓ𝑛 } ≤ ℓ𝑛 ≤ 2𝑄0𝑥
and

#{𝑝 |ℓ𝑛} ≤
2
𝜂
. (4.2)

Note that by Propositions 2.1 and 2.2

#N1 (𝑥) �𝜀2 1
𝜑(𝑄1)

𝑥 log log 𝑥

(log 𝑥)3/2 ,

#N2 (𝑥) �𝜀2 𝑄0
𝜑(𝑄0𝑄1)

𝑥 log log 𝑥

(log 𝑥)2 .

(4.3)

The main result of this section is the following proposition.
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Proposition 4.1. For all 𝑛 ∈ N 𝑗 (𝑥), 𝑗 = 1, 2, apart for elements in an exceptional set of size

�
#N 𝑗 (𝑥)

𝜀2(log log 𝑥)1−𝑜 (1)

we have for 𝑚 = 𝑄0𝑛 that 𝑚+ = 𝑚 + 4 and

𝑟 (𝑚)
𝑚 − 𝜆𝑚

+ 𝑟 (𝑚+)
𝑚+ − 𝜆𝑚

=

{
𝜋 log𝜆𝑚 +𝑂

(
(log log 𝑥)5) in the weak coupling quantization,

𝑂
(
(log log 𝑥)5) in the strong coupling quantization.

We also require a sieve estimate for averages of correlations of multiplicative functions. The following
result is due to Henriot [17], which builds on the work of Nair and Tenenbaum [33]. See Corollary 1 of
[17] and the subsequent remark therein. Recall that 𝜏(𝑛) =

∑
𝑑 |𝑛 1 denotes the divisor function, and for

a polynomial 𝑅 =
∑

𝑎𝑛𝑋
𝑛 ∈ Z[𝑋], let ‖𝑅‖1 =

∑
|𝑎𝑛 | denote the norm of R.

Lemma 4.1. Let 𝑅1(𝑋), . . . , 𝑅𝑘 (𝑋) ∈ Z[𝑋] be irreducible, pairwise coprime polynomials, for which
each polynomial 𝑅 𝑗 does not have a fixed prime divisor.3 Let D be the discriminant of 𝑅 = 𝑅1 · · · 𝑅𝑘
and 𝜚𝑅 𝑗 (𝑛) = #{𝑎 (mod 𝑛) : 𝑅 𝑗 (𝑎) ≡ 0 (mod 𝑛)}. Then there exist 𝐶, 𝑐0 > 0 such that for any
nonnegative multiplicative functions 𝐹𝑗 , 𝑗 = 1, . . . , 𝑘 with 𝐹𝑗 (𝑛) ≤ 𝜏(𝑛)𝐸 for some 𝐸 ≥ 1, we have for
𝑥 ≥ 𝑐0‖𝑅‖1/10

1 and some 𝐴 ≥ 1 that

∑
𝑛≤𝑥

𝑘∏
𝑗=1

𝐹𝑗 (|𝑅 𝑗 (𝑛) |) � Δ𝐶𝐷 𝑥
∏
𝑝≤𝑥

(
1 − 𝜚𝑅 (𝑝)

𝑝

) 𝑘∏
𝑗=1

(∑
𝑛≤𝑥

𝐹𝑗 (𝑛)𝜚𝑅 𝑗 (𝑛)
𝑛

)
,

where

Δ𝐷 :=
∏
𝑝 |𝐷

(
1 + 1

𝑝

)
and the implicit constant, C and 𝑐0 depend at most on the degree of R and 𝐸 .

We first start with a technical lemma.

Lemma 4.2. Let f be a nonnegative multiplicative function with 𝑓 (𝑛) ≤ 𝜏(𝑛) and
𝑓 (𝑚𝑛) ≤ max{1, 𝑓 (𝑛)} 𝑓 (𝑚) for 𝑚 ∈ N and n such that 𝑏(𝑛) = 1. Then for 1 ≤ |ℎ| ≤ 𝑥1/30, with ℎ≠ 4
and 𝑗 = 1, 2, we have∑

𝑛∈N 𝑗 (𝑥)
𝑓 (𝑄0𝑛 + ℎ) � 1

𝜀2 · 𝑔(ℎ)
∏
𝑝 |𝑄0𝑄1

(
1 + 1

𝑝

)𝐶 ∏
𝑝≤𝑥

(
1 + 𝑓 (𝑝) − 1

𝑝

)
#N 𝑗 (𝑥), (4.4)

where 𝐶 > 0 is an absolute constant and

𝑔(ℎ) = 𝜏(|ℎ|)𝜏(|ℎ − 4|)
∏
𝑝 |ℎ

(
1 + 1

𝑝

)𝐶 ∏
𝑝 |ℎ−4

(
1 + 1

𝑝

)𝐶
.

3That is, polynomials𝑅 (𝑋 ) such that 𝑝 |𝑅 (𝑛) for all 𝑛 ∈ Z and p some prime; for example,𝑅 (𝑋 ) = 2𝑋2 and𝑅 (𝑋 ) = 𝑋 (𝑋+1) .
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Additionally, (for ℎ = 4) there exists 𝐶 > 0 such that

∑
𝑛∈N1 (𝑥)

𝑓 (𝑄0𝑛 + 4) � 1
𝜀2 · 𝑓 (𝑄1)

∏
𝑝 |𝑄0𝑄1

(
1 + 1

𝑝

)𝐶 ∏
𝑝≤𝑥

𝑝≡1 (mod 4)

(
1 + 𝑓 (𝑝) − 1

𝑝

)
#N1 (𝑥).

Remark 4. When applying this lemma, we will take 𝑓 (𝑛) = 1
4 · 𝑟 (𝑛), 𝑏(𝑛) or 2−𝜔1 (𝑛) , where 𝜔1(𝑛) =

#{𝑝 |𝑛 : 𝑝 ≡ 1 (mod 4)}. The hypotheses of the lemma are satisfied for each of these choices.

Proof. Let 𝑇𝑗 = 2 if 𝑗 = 1 and 𝑇𝑗 = 𝑦 = 𝑥𝜂 if 𝑗 = 2. Dropping several of the conditions on 𝑛 ∈ N 𝑗 , we
get that (here 𝑞 < 𝑝 denote primes; also recall that 𝑃(𝑧) is defined in equation (2.2))∑

𝑛∈N 𝑗 (𝑥/2)
𝑓 (𝑄0𝑛 + ℎ) ≤ 2

∑
𝑞≤

√
𝑥

𝑞≡1 (mod 4)

∑
𝑝≤𝑥/𝑞

𝑄1 |𝑄0 𝑝𝑞+4
( 𝑄0𝑝𝑞+4

𝑄1
,𝑃 (𝑇𝑗 ))=1

𝑏(𝑄0𝑞𝑝 + 4) 𝑓 (𝑄0𝑞𝑝 + ℎ).
(4.5)

Let 𝐾 = 𝑄0𝑞 and 𝑌 = 𝑥/𝑞. Note that the sum above is empty unless (𝐾,𝑄1) = 1. Since (𝐾,𝑄1) = 1,
there exist integers 𝐾,𝑄1 with 1 ≤ |𝐾 | < 𝑄1 and 1 ≤ |𝑄1 | < 𝐾 such that 𝐾𝐾 − 𝑄1𝑄1 = 1. Also, for
𝑍 ≥ 1 let 𝐹𝑍 be the totally multiplicative function given by 𝐹𝑍 (𝑝) = 1 if 𝑝 ≥ 𝑍 and zero otherwise.
The inner sum on the RHS of equation (4.5) is bounded by

�
∑

𝑛≤𝑌 ,𝑄1 |𝐾𝑛+4
𝐹√
𝑌 (𝑛)𝐹𝑇𝑗

(
𝐾𝑛 + 4
𝑄1

)
𝑏(𝐾𝑛 + 4) 𝑓 (𝐾𝑛 + ℎ) + 𝑌1/2+𝑜 (1)

=
∑

𝑚≤𝑌−4𝐾
𝑄1

𝐹√
𝑌 (𝑄1𝑚 − 4𝐾)𝐹𝑇𝑗

(
𝐾𝑚 − 4𝑄1

)
𝑏(𝐾𝑄1𝑚 − 4𝑄1𝑄1) 𝑓 (𝐾𝑄1𝑚 + ℎ − 4𝐾𝐾)

+𝑂 (𝑌1/2+𝑜 (1) ),

(4.6)

where the error term 𝑌1/2+𝑜 (1) accounts for the primes 𝑝 ≤
√
𝑌 . First, note 𝑏(𝐾𝑄1𝑛 − 4𝑄1𝑄1) =

𝑏(𝐾𝑛 − 4𝑄1). Let 𝑑 = (𝐾𝑄1, ℎ − 4𝐾𝐾), and suppose that ℎ ≠ 4. We have

𝑓 (𝐾𝑄1𝑚 + ℎ − 4𝐾𝐾) ≤ max{1, 𝑓 (𝑑)} 𝑓
(
𝐾𝑄1
𝑑

𝑚 + ℎ − 4𝐾𝐾

𝑑

)
.

Let 𝑅1(𝑋) = 𝑄1𝑋 − 4𝐾 , 𝑅2(𝑋) = 𝐾𝑋 − 4𝑄1, 𝑅3(𝑋) = 𝐾𝑄1
𝑑 𝑋 + ℎ−4𝐾𝐾

𝑑 and D denote the discriminant
of 𝑅 = 𝑅1𝑅2𝑅3. The polynomials 𝑅1, 𝑅2, 𝑅3 and multiplicative functions 𝐹1 = 𝐹√

𝑌 , 𝐹2 = 𝐹𝑇𝑗 · 𝑏
and 𝐹3 = 𝑓 satisfy the assumptions of Lemma 4.1. Also, for (𝑝, 𝐾𝑄1) = 1 we have 𝜚𝑅 (𝑝) = 3 and
𝜚𝑅 𝑗 (𝑝𝑘 ) = 1 for each 𝑗 = 1, 2, 3 and 𝑘 ≥ 1, which follows from Hensel’s lemma. Hence, the sum in
equation (4.6) is bounded by

�max{1, 𝑓 (𝑑)}Δ𝐶𝐷
𝑌

𝑄1

∏
𝑝≤𝑌

(
1 +

𝐹√
𝑌 (𝑝) + 𝐹𝑇𝑗 (𝑝)𝑏(𝑝) + 𝑓 (𝑝) − 3

𝑝

) ∏
𝑝 |𝐾𝑄1

(
1 + 1

𝑝

)𝐶
�max{1, 𝑓 (𝑑)}Δ𝐶𝐷

∏
𝑝 |𝐾𝑄1

(
1 + 1

𝑝

)𝐶
𝑌

𝑄1 (log𝑌 )3/2 (log𝑇𝑗 )1/2

∏
𝑝≤𝑌

(
1 + 𝑓 (𝑝) − 1

𝑝

)
.
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Write 𝑑 = 𝑝𝑎1
1 · · · 𝑝𝑎ℓℓ . For each 𝑗 = 1, . . . , ℓ, we have 𝑝

𝑎 𝑗
𝑗 |ℎ or 𝑝

𝑎 𝑗
𝑗 |ℎ − 4 (depending on whether

𝑝
𝑎 𝑗
𝑗 |𝐾 or 𝑝

𝑎 𝑗
𝑗 |𝑄1, respectively); so 𝑓 (𝑑) � 𝜏(|ℎ|)𝜏(|ℎ − 4|). Note the discriminant of R equals 𝐷 =

16𝐾
2𝑄2

1
𝑑4 ℎ2 (ℎ − 4)2 so that

max{1, 𝑓 (𝑑)}Δ𝐶𝐷 � 𝑔(ℎ)
∏
𝑝 |𝑄1𝐾

(
1 + 1

𝑝

)𝐶
.

Also, since 𝑌 = 𝑥/𝑞 ≥
√
𝑥,
∏
𝑝≤𝑌

(
1 + 𝑓 (𝑝)−1

𝑝

)
�

∏
𝑝≤𝑥

(
1 + 𝑓 (𝑝)−1

𝑝

)
. Hence, applying the estimates

above in equation (4.5), summing over q and using equation (4.3) gives the claimed bound for ℎ ≠ 4.
For ℎ = 4, we argue similarly. Only now in order to estimate equation (4.6) we use Lemma 4.1 with

𝑅1, 𝑅2 as before, 𝑅 = 𝑅1𝑅2 (so the discriminant is 𝐷 = 16) and 𝐹1 = 𝐹√
𝑌 , 𝐹2 = 𝑏 · 𝑓 . Also, noting that

here 𝑑 = 𝑄1 we conclude that equation (4.6) is bounded by

� 𝑓 (𝑄1)
∏
𝑝 |𝑄1𝐾

(
1 + 1

𝑝

)𝐶
𝑌

𝑄1 (log𝑌 )2

∏
𝑝≤𝑥

(
1 + 𝑏(𝑝) 𝑓 (𝑝)

𝑝

)
� 𝑓 (𝑄1)

∏
𝑝 |𝑄1𝐾

(
1 + 1

𝑝

)𝐶
𝑌

𝑄1 (log 𝑥)3/2

∏
𝑝≤𝑥

𝑝≡1 (mod 4)

(
1 + 𝑓 (𝑝) − 1

𝑝

)
.

Hence, the claim follows in the same way as before. �

Lemma 4.3. Let (log log 𝑥)4 ≤ 𝑈 ≤ 1
10 (log 𝑥)1/2. There exists 𝐶 > 0 such that for all 𝑛 ∈ N 𝑗 (𝑥),

𝑗 = 1, 2, outside a set of size

� 1
𝜀2 · #N 𝑗 (𝑥)

∏
𝑝 |𝑄1𝑄0

(
1 + 1

𝑝

)𝐶 (log log 𝑥)4

𝑈

the following hold: ∑
1≤ |𝑘 | ≤ 1

𝑈 (log 𝑥)1/2

𝑘≠4

𝑏(𝑄0𝑛 + 𝑘) = 0, (4.7)

∑
1≤ |𝑘 | ≤ 𝑛

2𝑥 (log 𝑥)𝐵
𝑘≠4

𝑟 (𝑄0𝑛 + 𝑘)
|𝑘 | ≤ 𝑈 (4.8)

and ∑
|𝑘 | ≥𝑈

𝑟 (𝑄0𝑛 + 𝑘)
𝑘2 ≤ 1

log log 𝑥
. (4.9)

Proof. We first establish equation (4.7). By Chebyshev’s inequality

#
{
𝑛 ∈ N 𝑗 (𝑥) :

∑
1≤ |𝑘 | ≤ 1

𝑈 (log 𝑥)1/2

𝑘≠4

𝑏(𝑄0𝑛 + 𝑘) ≥ 1
}
≤

∑
1≤ |𝑘 | ≤ 1

𝑈 (log 𝑥)1/2

𝑘≠4

∑
𝑛∈N 𝑗 (𝑥)

𝑏(𝑄0𝑛 + 𝑘). (4.10)
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Applying Lemma 4.2 to the inner sum and noting that

∏
𝑝≤𝑥

(
1 + 𝑏(𝑝) − 1

𝑝

)
� 1√

log 𝑥
,

we get that the LHS of equation (4.10) is bounded by

�
∏
𝑝 |𝑄1𝑄0

(
1 + 1

𝑝

)𝐶 #N 𝑗 (𝑥)
𝜀2
√

log 𝑥

∑
1≤ |𝑘 | ≤ 1

𝑈 (log 𝑥)1/2

𝑘≠4

𝑔(𝑘)

�
∏
𝑝 |𝑄1𝑄0

(
1 + 1

𝑝

)𝐶 #N 𝑗 (𝑥)
𝜀2

(log log 𝑥)2

𝑈
,

(4.11)

where the second step follows upon using Lemma 4.1.
To prove equation (4.8), we argue similarly and apply Lemmas 4.1 and 4.2 to get

#
{
𝑛 ∈ N 𝑗 (𝑥) :

∑
1≤ |𝑘 | ≤ 𝑛

2𝑥 (log 𝑥)𝐵
𝑘≠4

𝑟 (𝑄0𝑛 + 𝑘)
|𝑘 | > 𝑈

}
≤ 1

𝑈

∑
1≤ |𝑘 | ≤(log 𝑥)𝐵

𝑘≠4

1
|𝑘 |

∑
𝑛∈N 𝑗 (𝑥)

𝑟 (𝑄0𝑛 + 𝑘)

�
#N 𝑗 (𝑥)
𝜀2𝑈

∏
𝑝 |𝑄0𝑄1

(
1 + 1

𝑝

)𝐶 ∑
1≤ |𝑘 | ≤(log 𝑥)𝐵

𝑘≠4

𝑔(𝑘)
|𝑘 |

�
#N 𝑗 (𝑥)
𝜀2𝑈

∏
𝑝 |𝑄0𝑄1

(
1 + 1

𝑝

)𝐶
(log log 𝑥)3.

We will omit the proof of equation (4.9) since it follows similarly. �

For almost all 𝑛 ∈ N1(𝑥), it is possible to show that 𝑟 (𝑄0𝑛 + 4) � (log 𝑛)log 2/2±𝑜 (1) ; however, since
we do not actually need this estimate we will record the weaker estimate below, which suffices for our
purposes and is simpler to prove.

Lemma 4.4. Let 𝜈 > 0 be sufficiently small. There exists 𝐶 > 0 such that for all 𝑛 ∈ N1(𝑥) outside a
set of size

� 𝑟 (𝑄1)
𝜀2 #N1 (𝑥)

(log log 𝑥)𝐶
(log 𝑥)𝜈

the following holds

(log 𝑥)1/4−𝜈 ≤ 𝑟 (𝑄0𝑛 + 4) ≤ (log 𝑥)1/2+𝜈 . (4.12)
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Proof. We begin with proving the lower bound stated in equation (4.12). Let 𝜔1(𝑛) =
∑

𝑝 |𝑛
𝑝≡1 (mod 4)

1.

For n which is a sum of two squares 𝑟 (𝑛) ≥ 2𝜔1 (𝑛) . Using this with Chebyshev’s inequality and Lemma
4.2, the number of 𝑛 ∈ N1 (𝑥) which 𝑟 (𝑄0𝑛 + 4) < (log 𝑥)1/4−𝜈 is bounded by

(log 𝑥)1/4−𝜈
∑

𝑛∈N1 (𝑥)
2−𝜔1 (𝑄0𝑛+4) �(log 𝑥)1/4−𝜈 · (log log 𝑥)𝐶√

log 𝑥

∏
𝑝≤𝑥

𝑝≡1 (mod 4)

(
1 + 1

2𝑝

)
· 1
𝜀2 #N1 (𝑥)

� 1
𝜀2 #N1 (𝑥)

(log log 𝑥)𝐶
(log 𝑥)𝜈

using Lemma 4.2.
The proof of the upper bound is similar: The number of 𝑛 ∈ N1 (𝑥) for which 𝑟 (𝑄0𝑛+4) > (log 𝑥)1/2+𝜈

is, again by using Lemma 4.2, bounded by

1
(log 𝑥)1/2+𝜈

∑
𝑛∈N1 (𝑥)

𝑟 (𝑄0𝑛 + 4) � 𝑟 (𝑄1) (log log 𝑥)𝐶 · #N1 (𝑥)
𝜀2 · (log 𝑥)1/2+𝜈

∏
𝑝≤𝑥

𝑝≡1 (mod 4)

(
1 + 𝑟 (𝑝) − 1

𝑝

)
� 𝑟 (𝑄1) (log log 𝑥)𝐶

𝜀2 · (log 𝑥)𝜈
#N1 (𝑥). �

Proof of Proposition 4.1. By Theorem 3.1, for say 𝐴 = 3, we get for all but 𝑂 (𝑥/(log 𝑥)𝐴) new
eigenvalues 𝜆ℓ ≤ 2𝑥 that∑

|𝑚−ℓ | ≤ ℓ
2𝑥 (log 𝑥)𝐵

𝑟 (𝑚)
𝑚 − 𝜆ℓ

=

{
𝜋 log𝜆ℓ +𝑂 (1) in the weak coupling quantization,
1
𝛼 +𝑂 (1) in the strong coupling quantization.

We now consider integers ℓ = 𝑄0𝑛 with 𝑛 ∈ N 𝑗 (𝑥), 𝑗 = 1, 2 such that the above holds. Writing 𝑚 = ℓ+ 𝑘
and using Lemma 4.3 with 𝑈 = (log log 𝑥)5, we find, by equation (4.7), that 𝑟 (ℓ + 𝑘)/(ℓ + 𝑘 − 𝜆𝑙) = 0
for 𝑘 ≤ (log 𝑥)1/2/𝑈 unless 𝑘 = 0, 4. Further, for 𝑘 ≥ (log 𝑥)1/2/𝑈, we have |𝑟 (ℓ + 𝑘)/(ℓ + 𝑘 − 𝜆𝑙) | �
𝑟 (ℓ + 𝑘)/𝑘 , and it follows (cf. equation (4.8)) that for all but 𝑂 (#N 𝑗/(𝜀2 (log log 𝑥)1−𝑜 (1) )) of these
integers 𝑛 ∈ N 𝑗 (𝑥), 𝑗 = 1, 2, with ℓ = 𝑄0𝑛 that ℓ+ = ℓ + 4 and∑

|𝑚−ℓ | ≤ ℓ
𝑥 (log 𝑥)𝐵

𝑟 (𝑚)
𝑚 − 𝜆ℓ

=
𝑟 (ℓ)
ℓ − 𝜆ℓ

+ 𝑟 (ℓ+)
ℓ+ − 𝜆ℓ

+𝑂
(
(log log 𝑥)5

)
.

Combining the two estimates above completes the proof. �

5. Proofs of the main theorems

5.1. Quantization of observables

On the unit cotangent bundle S∗𝑀�T2 × 𝑆1, a smooth function 𝑓 ∈ 𝐶∞(𝑇2 × 𝑆1) has the Fourier
expansion

𝑓 (𝑥, 𝑒𝑖𝜙) =
∑

𝜁 ∈Z2 ,𝑘∈Z
�̂� (𝜁, 𝑘)𝑒𝑖 〈𝑥,𝜁 〉+𝑖𝑘 𝜙 .

Following Kurlberg and Ueberschär [27], we quantize our observables as follows. For 𝑔 ∈ 𝐿2 (T2), let

(Op( 𝑓 )𝑔) (𝑥) =
∑
𝜉 ∈Z2\0

∑
𝜁 ∈Z2 ,𝑘∈Z

�̂� (𝜁, 𝑘)𝑒𝑖𝑘 arg 𝜉 �̂�(𝜉)𝑒𝑖 〈𝜁+𝜉 ,𝑥 〉 +
∑

𝜁 ∈Z2 ,𝑘∈Z
�̂� (𝜁, 𝑘)�̂�(0)𝑒𝑖 〈𝜁 ,𝑥 〉 . (5.1)
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Hence, for pure momentum observables 𝑓 : 𝑆1 → R, one has

(Op( 𝑓 )𝑔) (𝑥) =
∑
𝜉 ∈Z2

𝑓

(
𝜉

|𝜉 |

)
�̂�(𝜉)𝑒𝑖 〈𝜉 ,𝑥 〉 , (5.2)

where for 𝜉 = 0, 𝑓 ( 𝜉|𝜉 | ) is defined to be 𝑓 (1). (Another option is defining it as the average
∫
𝑆1 𝑓 (𝜃) 𝑑𝜃2𝜋 ;

a technical point is that some choice must be made to extend f to a smooth observable on the cotangent
bundle; for example, see [50, Section 3]. However, this choice only affects the matrix coefficients in
equation (5.3) by 𝑂 (1/(‖𝐺𝜆‖2 · 𝜆2).)

Let 𝑔𝜆 be as given in equation (1.4). Then for f a pure momentum observable it follows from equations
(1.4) and (5.2) that

〈Op( 𝑓 )𝑔𝜆, 𝑔𝜆〉 =
1

16𝜋4 · 1
‖𝐺𝜆‖2

2

∑
𝑛≥0

1
(𝑛 − 𝜆)2

∑
𝑎2+𝑏2=𝑛

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
=

1∑
𝑛≥0

𝑟 (𝑛)
(𝑛−𝜆)2

∑
𝑛≥0

1
(𝑛 − 𝜆)2

∑
𝑎2+𝑏2=𝑛

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
.

(5.3)

5.2. Measures associated to sequences of almost primes in narrow sectors

Let N1,N2 be as in equation (4.1). Before proceeding to the main result of this section, we will specify
our choice of 𝑄0, 𝑄1. Consider the set of primes

S = {𝑝 : 𝑝 = 𝑎2 + 𝑏2, 0 ≤ 𝑏 ≤ 𝑎 and 0 < arctan(𝑏/𝑎) ≤ 𝑝−1/10}, (5.4)

and let 𝑞 𝑗 be the 𝑗 𝑡ℎ element of S . It follows from work of Ricci [35, Th’m 2, p. 21–22] that

#{𝑝 ≤ 𝑥 : 𝑝 ∈ S} � 𝑥9/10

log 𝑥
,

so 𝑞 𝑗 � ( 𝑗 log 𝑗)10/9. Let 𝑇 = �log log 𝑥�, 𝐻 = �100 log log log 𝑥� and

𝑄 ′
0 =

𝑇 +𝐻−1∏
𝑗=𝑇

𝑞 𝑗 , 𝑄 ′
1 =

𝑇 +2𝐻−1∏
𝑗=𝑇 +𝐻

𝑞 𝑗 . (5.5)

Also, let 𝑟0, 𝑟1 ∈ S with 1
4 log log 𝑥 ≤ 𝑟0, 𝑟1 ≤ 1

2 log log 𝑥 and 𝑎0, 𝑎1 ∈ Zwith 0 ≤ 𝑎0, 𝑎1 ≤ log log log 𝑥.
Let 𝑚0, 𝑚1 be integers, which are fixed (in terms of x), whose prime factors are all congruent to 1
(mod 4). Write (𝑚0, 𝑚1) = 𝑝𝑒1

1 · · · 𝑝𝑒𝑠𝑠 , and let 𝑔′ = 𝑝𝑒1
1 · · · 𝑝𝑒𝑠𝑠 , where 1

2 log log 𝑥 < 𝑝 𝑗 < log log 𝑥,
𝑝 𝑗 = 𝑐2

𝑗 + 𝑑2
𝑗 with 0 ≤ 𝑐 𝑗 ≤ 𝑑 𝑗 and arctan(𝑐 𝑗/𝑑 𝑗 ) = arctan(𝑏 𝑗/𝑎 𝑗 ) + 𝑂 (1/(log log 𝑥)1/10), where

𝑎2
𝑗 + 𝑏2

𝑗 = 𝑝 𝑗 with 0 ≤ 𝑏 𝑗 ≤ 𝑎 𝑗 , for each 𝑗 = 1, . . . , 𝑠. (Note that such primes exist by Ricci’s result on
angular equidistribution of Gaussian primes.) We now take

𝑄0 = 𝑄 ′
0𝑚0𝑟

𝑎0
0 , 𝑄1 = 𝑄 ′

1
𝑚1

(𝑚0, 𝑚1)
𝑟𝑎1

1 𝑔′. (5.6)

Note that (𝑄0, 𝑄1) = 1 and that 𝑄0, 𝑄1 � exp(200(log log log 𝑥)2) ≤ (log 𝑥)1/10 so that this choice of
𝑄0, 𝑄1 is consistent with our prior assumption. For 𝑗 = 1, 2, let

M 𝑗 (𝑥) = {𝑥 ≤ 𝑚 ≤ 2𝑥 : 𝑚 = 𝑄0𝑛 and 𝑛 ∈ N 𝑗 }. (5.7)
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It follows from equation (4.3) that

#M1 (𝑥) � 𝜀2 1
𝜑(𝑄1)

𝑥 log log 𝑥

𝑄0 (log 𝑥)3/2 (5.8)

and

#M2 (𝑥) � 𝜀2 1
𝜑(𝑄0𝑄1)

𝑥 log log 𝑥

(log 𝑥)2 . (5.9)

Recall that we have chosen

𝜀 = (log log 𝑥)−1/11.

Lemma 5.1. Let 𝑄0, 𝑄1 be as in equation (5.6) and 𝜂 > 0 be as in Proposition 2.1. Let 𝑚 ∈ M 𝑗 (𝑥),
𝑗 = 1, 2, where M 𝑗 (𝑥) is defined as in equation (5.7). Then for 𝑓 ∈ 𝐶1 (𝑆1) with | 𝑓 ′ | � 1

1
𝑟 (𝑚)

∑
𝑎2+𝑏2=𝑚

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
=

1
𝑟 (𝑚0)

∑
𝑎2+𝑏2=𝑚0

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (𝜀). (5.10)

Under the same hypotheses, we have for 𝑚 = 𝑄0𝑛 ∈ N2 (𝑥) that there exists an integer ℓ𝑛 which is a
sum of two squares with #{𝑝 |ℓ𝑛} ≤ 2/𝜂 such that

1
𝑟 (𝑚+)

∑
𝑎2+𝑏2=𝑚+

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
=

1
𝑟 (𝑚1ℓ𝑛)

∑
𝑎2+𝑏2=𝑚1ℓ𝑛

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (𝜀). (5.11)

Proof. First, note that, for a unit, u of Z[𝑖], that is, 𝑢 ∈ {±1,±𝑖}, for any 𝑛 ∈ N∑
𝑎2+𝑏2=𝑛

𝑓

(
𝑢(𝑎 + 𝑖𝑏)
|𝑎 + 𝑖𝑏 |

)
=

∑
𝑎2+𝑏2=𝑛

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
. (5.12)

For 𝑚 ∈ M 𝑗 (𝑥) with 𝑗 = 1 or 𝑗 = 2, write 𝑚 = 𝑄 ′
0𝑚0𝑟

𝑎0
0 𝑛, where 𝑛 ∈ N 𝑗 (𝑥). The factorizations

of the ideals (𝑚) = ((𝑎 + 𝑖𝑏) (𝑎 − 𝑖𝑏)) in Z[𝑖] are in one-to-one correspondence with factorizations
(𝑄 ′

0) = ((𝑐+𝑖𝑑) (𝑐−𝑖𝑑)), (𝑚0) = ((𝑒+𝑖 𝑓 ) (𝑒−𝑖 𝑓 )), (𝑟𝑎0
0 ) = ((𝑔+𝑖ℎ) (𝑔−𝑖ℎ)) and (𝑛) = ((𝑘+𝑖𝑙) (𝑘−𝑖𝑙))

since 𝑄 ′
0, 𝑚0, 𝑛 are pairwise coprime. Hence, it follows from this and equation (5.12) that

1
𝑟 (𝑚)

∑
𝑎2+𝑏2=𝑚

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
=

1
𝑟 (𝑄 ′

0)𝑟 (𝑚0)𝑟 (𝑟𝑎0
0 )𝑟 (𝑛)

∑
𝛼∈Z[𝑖 ]
𝛼𝛼=𝑄′

0

∑
𝛽∈Z[𝑖 ]
𝛽𝛽=𝑚0

∑
𝛾∈Z[𝑖 ]
𝛾𝛾=𝑟

𝑎0
0

∑
𝛿∈Z[𝑖 ]
𝛿𝛿=𝑛

𝑓

(
𝛼𝛽𝛾𝛿

|𝛼𝛽𝛾𝛿 |

)
. (5.13)

Let S be as in equation (5.4), and write the jth element of S as 𝑞 𝑗 = 𝑎2
𝑗 + 𝑏2

𝑗 , with 0 ≤ 𝑏 𝑗 ≤ 𝑎 𝑗 .
By construction, for 𝛼 ∈ Z[𝑖] with 𝛼𝛼 = 𝑄 ′

0 we can write 𝛼 = 𝑢
∏
𝑗∈𝐽 (𝑎 𝑗 + 𝜖 𝑗𝑖𝑏 𝑗 ) where 𝐽 =

{𝑇,𝑇 + 1, . . . , 𝑇 + 𝐻1 − 1}, 𝜖 𝑗 ∈ {±1} and u is a unit. It follows that

𝛼

|𝛼 | = 𝑢
∏
𝑗∈𝐽

𝑎 𝑗 + 𝜖 𝑗𝑖𝑏 𝑗

|𝑎 𝑗 + 𝑖𝑏 𝑗 |

= 𝑢

(
1 +𝑂

(∑
𝑗∈𝐽

| arctan(𝑏 𝑗/𝑎 𝑗 ) |
))

= 𝑢 +𝑂

(
1

(log log 𝑥)1/11

)
,
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where the unit u depends on 𝛼. Also, for 𝛾 ∈ Z[𝑖] with 𝛾𝛾 = 𝑟𝑎0
0 , we have 𝛾

|𝛾 | = 𝑢+𝑂 (1/(log log 𝑥)1/11),
and for 𝛿 ∈ Z[𝑖] with 𝛿𝛿 = 𝑛, we have 𝛿

|𝛿 | = 𝑢 +𝑂 (𝜀). Hence, by this and equation (5.12)

∑
𝛼∈Z[𝑖 ]
𝛼𝛼=𝑄′

0

∑
𝛽∈Z[𝑖 ]
𝛽𝛽=𝑚0

∑
𝛾∈Z[𝑖 ]
𝛾𝛾=𝑟

𝑎0
0

∑
𝛿∈Z[𝑖 ]
𝛿𝛿=𝑛

𝑓

(
𝛼𝛽𝛾𝛿

|𝛼𝛽𝛾𝛿 |

)
=

∑
𝛼∈Z[𝑖 ]
𝛼𝛼=𝑄′

0

∑
𝛾∈Z[𝑖 ]
𝛾𝛾=𝑟

𝑎0
0

∑
𝛿∈Z[𝑖 ]
𝛿𝛿=𝑛

������
∑
𝛽∈Z[𝑖 ]
𝛽𝛽=𝑚0

𝑓

(
𝑢𝛼,𝛾, 𝛿 · 𝛽

|𝛽 |

)������
+𝑂 (𝜀𝑟 (𝑚))

= 𝑟 (𝑄0)𝑟 (𝑟𝑎0
0 )𝑟 (𝑛)

∑
𝑎2+𝑏2=𝑚0

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (𝜀𝑟 (𝑚)),

thereby proving equation (5.10).
The proof of equation (5.11) follows along the same lines upon noting that for 𝑚 = 𝑄0𝑛 ∈ M2 (𝑥) we

can write 𝑚+ = 𝑄 ′
1𝑟
𝑎1
1

𝑚1
(𝑚1 ,𝑚0) 𝑔

′ℓ𝑛, where ℓ𝑛 is a sum of two squares. Note that 𝑄 ′
1,

𝑚1
(𝑚1 ,𝑚0) , 𝑟

𝑎1
1 , 𝑔′, ℓ𝑛

are pairwise coprime by construction since all the prime divisors of ℓ𝑛 are ≥ 𝑦; the latter also implies that
#{𝑝 |ℓ𝑛} ≤ 2/𝜂. Also, note that since all primes dividing 𝑔′, 𝑄 ′

1, 𝑟1 have very small Gaussian angles (by
construction), the set of Gaussian angles associated with 𝑚+ is very close to the set of angles associated
with 𝑚1ℓ𝑛, after taking multiplicities into account. �

5.3. Proof of Theorem 1.1

Since Gaussian angles associated with inert primes are trivial, we can without loss of generality assume
all the prime factors of 𝑚0 are congruent to1 (mod 4). Let 𝑄0, 𝑄1 be as in equation (5.6) and M1(𝑥)
be as in equation (5.7), and recall for 𝑚 ∈ M1 (𝑥) that 𝑚 = 𝑄0𝑛, where 𝑛 ∈ N1(𝑥) and N1 is as
in equation (4.1). By equation (4.7) and Lemma 4.4 it follows that for all but at most 𝑜(#M1 (𝑥))
integers 𝑚 ∈ M1(𝑥) that 𝑚+ = 𝑚 + 4, (log 𝑥)1/4−𝜈 ≤ 𝑟 (𝑚+) ≤ (log 𝑥)1/2+𝜈 (for any fixed 𝜈 > 0)
and 4 ≤ 𝑟 (𝑚) � (log 𝑥)𝑜 (1) . Combining this with Proposition 4.1, we get that for all but 𝑜(#M1 (𝑥))
integers 𝑚 ∈ M1 (𝑥) that 𝜆𝑚 − 𝑚 = 𝑜(1) and moreover

𝜆𝑚 − 𝑚 �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑟 (𝑚)

log𝜆𝑚
in the weak coupling quantization,

𝑟 (𝑚)
𝑟 (𝑚+) in the strong coupling quantization.

(5.14)

Also, note that, for such m as above, we also have |𝜆𝑚 −𝑚+| ≥ 3. Hence, using the above estimate along
with equations (4.7) and (4.9) with 𝑈 = (log log 𝑥)5 we get for all but at most 𝑜(#M1 (𝑥)) integers
𝑚 ∈ M1 (𝑥) that (in both cases)∑

ℓ≥0

𝑟 (ℓ)
(ℓ − 𝜆𝑚)2 =

𝑟 (𝑚)
(𝑚 − 𝜆𝑚)2 + 𝑟 (𝑚+)

(𝑚+ − 𝜆𝑚)2 + 𝑜(1)

=
𝑟 (𝑚)

(𝑚 − 𝜆𝑚)2

(
1 +𝑂

(
𝑟 (𝑚+)(𝑚 − 𝜆𝑚)2

𝑟 (𝑚)

))
+ 𝑜(1)

=
𝑟 (𝑚)

(𝑚 − 𝜆𝑚)2 (1 + 𝑜(1)).

(5.15)

Similarly, for all but at most 𝑜(#M1 (𝑥)) integers 𝑚 ∈ M1 (𝑥)∑
ℓ≥0

1
(ℓ − 𝜆𝑚)2

∑
𝑎2+𝑏2=ℓ

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
=

1
(𝑚 − 𝜆𝑚)2

∑
𝑎2+𝑏2=𝑚

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (𝑟 (𝑚+)). (5.16)
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Therefore, combining equations (5.3), (5.14), (5.15) and (5.16), it follows for all but at most 𝑜(#M1 (𝑥))
integers 𝑚 ∈ M1 (𝑥) we have that

〈Op( 𝑓 )𝑔𝜆𝑚 , 𝑔𝜆𝑚〉 =(1 + 𝑜(1)) (𝑚 − 𝜆𝑚)2

𝑟 (𝑚) ·
(

1
(𝑚 − 𝜆𝑚)2

∑
𝑎2+𝑏2=𝑚

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (𝑟 (𝑚+))

)
=(1 + 𝑜(1)) 1

𝑟 (𝑚)
∑

𝑎2+𝑏2=𝑚

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+ 𝑜(1)

=(1 + 𝑜(1)) 1
𝑟 (𝑚0)

∑
𝑎2+𝑏2=𝑚0

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (𝜀),

where the last step follows by equation (5.10). The estimate for the density of this subsequence of
eigenvalues follows immediately from equation (5.8), noting that 𝑄0, 𝑄1 � (log 𝑥)𝑜 (1) .

5.4. Proof of Theorem 1.2

As before, without loss of generality, we can assume all the prime factors of 𝑚0, 𝑚1 are congruent to 1
(mod 4). For the sake of brevity, let L2 = log log 𝑥. Let 𝑄0, 𝑄1 be as in equation(5.6) and M2 (𝑥) be as
in equation (5.7), and recall for 𝑚 ∈ M2(𝑥) that 𝑚 = 𝑄0𝑛, where 𝑛 ∈ N2 (𝑥) where N2 is as in equation
(4.1). Note for each 𝑚 ∈ M2 (𝑥) that 𝑟 (𝑚) � L10

2 . Also, by construction 𝑟 (𝑚)/𝑟 (𝑚 + 4) � 𝑎0+1
𝑎1+1 , where

𝐻, 𝑎0, 𝑎1 are also as in equation (5.6), and note 𝑎0, 𝑎1 ≤ logL2. Applying Proposition 4.1, we get that
for all 𝑚 ∈ M2 (𝑥) outside an exceptional set of size 𝑜(#M2 (𝑥)) that 𝑚+ = 𝑚 + 4 and

𝜆𝑚 − 𝑚

𝑚+ − 𝜆𝑚
=

𝑟 (𝑚)
𝑟 (𝑚+)

(
1 +𝑂

(
L6

2
𝑟 (𝑚)

))
=

𝑟 (𝑚)
𝑟 (𝑚+)

(
1 +𝑂

(
L−4

2

))
. (5.17)

In particular, this implies that 𝜆𝑚 − 𝑚 � L−1
2 and 𝑚+ − 𝜆𝑚 � L−1

2 . As before, using equations (4.7)
and (4.9) with 𝑈 = L5

2, we get for all but at most 𝑜(#M2 (𝑥)) integers 𝑚 ∈ M2 (𝑥) that∑
ℓ≥0

𝑟 (ℓ)
(ℓ − 𝜆𝑚)2 =

𝑟 (𝑚)
(𝑚 − 𝜆𝑚)2 + 𝑟 (𝑚+)

(𝑚+ − 𝜆𝑚)2 +𝑂 (L−1
2 ) (5.18)

and ∑
ℓ≥0

1
(ℓ − 𝜆𝑚)2

∑
𝑎2+𝑏2=ℓ

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
=

1
(𝑚 − 𝜆𝑚)2

∑
𝑎2+𝑏2=𝑚

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+ 1
(𝑚+ − 𝜆𝑛)2

∑
𝑎2+𝑏2=𝑚+

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (L−1

2 ).
(5.19)

Let 𝐶𝑚 = 1
1+𝑟 (𝑚)/𝑟 (𝑚+) . Applying equations (5.17),(5.18) and (5.19) equation in (5.3), we get

〈Op( 𝑓 )𝑔𝜆𝑚 , 𝑔𝜆𝑚〉 = (1 +𝑂 (L−1
2 ))

(
𝑟 (𝑚)

(𝑚 − 𝜆𝑚)2 + 𝑟 (𝑚+)
(𝑚+ − 𝜆𝑚)2

)−1

×
(

1
(𝑚 − 𝜆𝑚)2

∑
𝑎2+𝑏2=𝑚

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+ 1
(𝑚+ − 𝜆𝑚)2

∑
𝑎2+𝑏2=𝑚+

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (L−1

2 )
)

=
𝐶𝑚
𝑟 (𝑚)

∑
𝑎2+𝑏2=𝑚

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+ 1 − 𝐶𝑚

𝑟 (𝑚+)
∑

𝑎2+𝑏2=𝑚+

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (L−1

2 ).

(5.20)
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Applying equation (5.10) to the first sum above, we get

𝐶𝑚
𝑟 (𝑚)

∑
𝑎2+𝑏2=𝑚

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
=

𝐶𝑚
𝑟 (𝑚0)

∑
𝑎2+𝑏2=𝑚0

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (𝜀). (5.21)

Similarly, applying equation (5.11) to the second sum on the RHS of equation (5.20) we get that

1 − 𝐶𝑚
𝑟 (𝑚+)

∑
𝑎2+𝑏2=𝑚+

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
=

1 − 𝐶𝑚
𝑟 (𝑚1ℓ𝑛)

∑
𝑎2+𝑏2=𝑚1ℓ𝑛

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (L−1/11

2 ), (5.22)

for some integer ℓ𝑛 with #{𝑝 : 𝑝 |ℓ𝑚} ≤ 2/𝜂 by equation (4.2). Using equations (5.21) and (5.22) in
equation (5.20) completes the proof upon recalling that 𝜀 = L−1/11

2 . The estimate for the density of this
subsequence of eigenvalues follows from equation (5.9).

5.5. Proof of Theorem 1.3

The proof of Theorem 1.3 relies on the following hypothesis concerning the distribution of primes.

Hypothesis 1. Let 𝑄1, 𝑄0 be as in equation (5.6) and 𝜀 ≥ (log log 𝑥)−1/2 be sufficiently small. Also, let
𝑦 = 𝑥𝜂 , where 𝜂 > 0 is sufficiently small. Then the number of solutions (𝑢, 𝑣) ∈ Z2 to

𝑄1𝑢 −𝑄0𝑣 = 4,

where 𝑣 = 𝑝1𝑝2 and 𝑢 = 𝑝3 are primes satisfying 1P𝜀 (𝑝1)1P′
𝜀
(𝑝2)1P𝜀 (𝑝3) = 1, 𝑝3 > 𝑦 such that 𝑣 ≤ 𝑥

is

� 𝜀3 𝑄0
𝜑(𝑄0𝑄1)

𝑥 log log 𝑥

(log 𝑥)2 ,

where P𝜀 ,P ′
𝜀 are as in equation (2.1).

Proof of Theorem 1.3. Recall the definition of N2 given in equation (4.1). Let us define

N3 = {𝑛 ∈ N2 : 𝑄0𝑛 + 4 = 𝑄1𝑝, 𝑏(𝑝) = 1, & |𝜃𝑝 | ≤ 𝜀}.

Following equation (5.7), we also define

M3 (𝑥) = {𝑚 ≤ 𝑥 : 𝑚 = 𝑄0𝑛 and 𝑛 ∈ N3}.

By Hypothesis 1 and equation (5.9), it follows that

#M3 (𝑥) � 𝜀#M2 (𝑥), (5.23)

where we also have used an upper bound sieve to get that #M3 (𝑥) � 𝜀#M2 (𝑥). Observe that M3(𝑥) ⊂
M2 (𝑥) and the exceptional set in Proposition 4.1 is 𝑜(#M3 (𝑥)) since we take 𝜀 = (log log 𝑥)−1/4.
Hence, we get that equation (5.17) holds for 𝑚 ∈ M3 (𝑥) outside an exceptional set of size 𝑜(#M3 (𝑥)).
Similarly, we can conclude that equations (5.18) and (5.19) also hold for all 𝑚 ∈ M3 (𝑥) outside an
exceptional set of size 𝑜(#M3 (𝑥)). Therefore, arguing as in equations 5.20–5.22 we conclude that for
𝑚 ∈ M3 (𝑥) outside an exceptional set of size 𝑜(#M3 (𝑥)) we have that

〈Op( 𝑓 )𝑔𝜆𝑚 , 𝑔𝜆𝑚〉 =
𝐶𝑚

𝑟 (𝑚0)
∑

𝑎2+𝑏2=𝑚0

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+ 1 − 𝐶𝑚

𝑟 (𝑚1ℓ𝑛)
∑

𝑎2+𝑏2=𝑚1ℓ𝑛

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (L−1/11

2 ),

(5.24)
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where 𝑚0, 𝑚1 are arbitrary, fixed integers whose prime factors are all congruent to 1 (mod 4) and
𝐶𝑚 = 1/(1 + 𝑟 (𝑚)/𝑟 (𝑚 + 4)). By our hypothesis, we have that ℓ𝑛 = 𝑝 with |𝜃𝑝 | ≤ 𝜀 and (𝑚1, 𝑝) = 1.
Hence, repeating the argument used to prove equation (5.10) it follows that

1
𝑟 (𝑚1ℓ𝑛)

∑
𝑎2+𝑏2=𝑚1ℓ𝑛

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
=

1
𝑟 (𝑚1)

∑
𝑎2+𝑏2=𝑚1

𝑓

(
𝑎 + 𝑖𝑏

|𝑎 + 𝑖𝑏 |

)
+𝑂 (𝜀). (5.25)

Given 0 < 𝑐 < 1 with 𝑐 = 𝑑/𝑒 ∈ Q, we will now specify our choice of 𝑎0, 𝑎1 (from equation (5.5)).
Recall we allow 𝑎0, 𝑎1 to grow slowly with x and 𝑄 ′

0, 𝑄
′
1 have the same number of prime factors. Also,

by construction 𝑟 ( 𝑚1
(𝑚0 ,𝑚1) 𝑔

′) = 𝑟 (𝑚1). Let L = �(log log log 𝑥)1/2�. We take

𝑎0 = 2(𝑒 − 𝑑)𝑟 (𝑚1)L and 𝑎1 = 𝑑𝑟 (𝑚0)L.

Hence,

𝐶𝑚 =
1

1 + 8𝑟 (𝑚0) (𝑎0+1)
16𝑟 (𝑚1) (𝑎1+1)

=
𝑑

𝑒
+ 𝑜(1). (5.26)

We are now ready to complete the proof. Given any attainable measures 𝜇∞0 , 𝜇∞1 and 0 ≤ 𝑐 ≤ 1,
we can take {𝑚0, 𝑗 } 𝑗 {𝑚1, 𝑗 } such that 𝜇0, 𝑗 weakly converges to 𝜇∞0 and 𝜇1, 𝑗 weakly converges to 𝜇∞1 ,
as 𝑗 → ∞. We also take {𝑎0, 𝑗 } 𝑗 , {𝑎1, 𝑗 } 𝑗 so that 𝑑 𝑗/𝑒 𝑗 → 𝑐 as 𝑗 → ∞. Therefore, by equations (5.24),
(5.25) and (5.26) we conclude that there exists {𝜆ℓ}ℓ ⊂ Λnew such that

〈Op( 𝑓 )𝑔𝜆ℓ , 𝑔𝜆ℓ 〉
ℓ→∞−−−−→ 𝑐

∫
𝑆1

𝑓 𝑑𝜇∞0 + (1 − 𝑐)
∫
𝑆1

𝑓 𝑑𝜇∞1 . �

A. Arithmetic over Q(𝑖)

Consider the number field Q(𝑖) with the corresponding ring of integers Z[𝑖]. For 𝔟 a nonzero integral
ideal of Z[𝑖], the residue classes 𝛼 (mod 𝔟), where (𝛼) and 𝔟 are relatively prime ideals, form the
multiplicative group (Z[𝑖]/𝔟)∗. We now summarize some well-known facts, which may be found in
[34] or [19]. A Dirichlet character (mod 𝔟) is a group homomorphism

𝜒 : (Z[𝑖]/𝔟)∗ → 𝑆1.

We extend 𝜒 to all of Z[𝑖] by setting 𝜒(𝔞) = 0 for 𝔞 and 𝔟 which are not relatively prime. Let I denote
multiplicative group of nonzero fractional ideals and 𝐼𝔟 = {𝔞 ∈ 𝐼 : 𝔞 and 𝔟 are relatively prime}. A
Hecke Großencharakter (mod 𝔟) is a homomorphism 𝜓 : 𝐼𝔟 → C \ {0} for which there exists a pair of
homomorphisms

𝜒 : (Z[𝑖]/𝔟)∗ → 𝑆1, 𝜒∞ : C∗ → 𝑆1

such that for an ideal (𝛼) with 𝛼 ∈ Z[𝑖]

𝜓((𝛼)) = 𝜒(𝛼)𝜒∞(𝛼).

Conversely, given any 𝜒 (mod 𝔟) and 𝜒∞ there exists a Großencharakter 𝜓 (mod 𝔟) such that 𝜓 = 𝜒 · 𝜒∞
provided that 𝜒(𝑢)𝜒∞(𝑢) = 1 for each unit 𝑢 ∈ Z[𝑖].

In particular, for 4|𝑘 and 𝔞 = (𝛼) a nonnegative integer

𝜓(𝔞) =
(
𝛼

|𝛼 |

) 𝑘
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is a Hecke Großenchakter (mod 1) and these Hecke Großencharakteren can be used to detect primes in
sectors. Additionally, given a positive rational integer q with (4, 𝑞) = 1 the homomorphism

𝜒 ◦ 𝑁 : 𝐼𝑞 → 𝑆1

given by (𝜒 ◦ 𝑁) (𝔞) = 𝜒(𝑁 (𝔞)) is a Dirichlet character (mod 𝑞), where 𝜒 is a Dirichlet character
(mod 𝑞) for Z, that is 𝜒 : (Z/(𝑞))∗ → 𝑆1, where 𝑁𝔞 is the norm of 𝔞. Hence, for 4|𝑘

𝜓(𝔞) = (𝜒 ◦ 𝑁) (𝛼)
(
𝛼

|𝛼 |

) 𝑘
is a Hecke Großencharakter with modulus q and frequency k, where 𝔞 = (𝛼). (A priori 𝛼 is only defined
up to multiplication by i, but for these characters the choice does not matter.) The L-function attached
to the Großencharakter 𝜓 given by

𝐿(𝑠, 𝜓) =
∑
𝔞

𝜓(𝔞)
𝑁 (𝔞)𝑠

has a functional equation and admits an analytic continuation to C \ {1}.
Moreover, if 𝜓 is not a real character, 𝐿(𝑠, 𝜓) has a standard zero-free region. That is, we have

𝐿(𝜎 + 𝑖𝑡, 𝜓) ≠ 0 for 𝜎 > 1 − 𝑐

log(𝑞(|𝑡 | + 1) (|𝑘 | + 1))

(see [19, Section 5.10]). In particular, if 𝑘 ≠ 0,∑
𝑁 (𝜋) ≤𝑥

𝜒(𝑁 (𝜋))
(
𝜋

|𝜋 |

) 𝑘
� ((|𝑘 | + 1)𝑞) · 𝑥 exp

(
−𝑐

√
log 𝑥

)
,

where the summation is over prime ideal 𝔭 = (𝜋) with norm ≤ 𝑥.
Furthermore, for 𝑘 = 0 the same estimate holds for any complex 𝜒 (mod 𝑞). However, for 𝑘 = 0

and 𝜒 (mod 𝑞) a real character, there may be a possible Siegel zero, and in this case we have Siegel’s
estimate (see Section 5.9 of [19])

𝐿(𝜎 + 𝑖𝑡, 𝜒) ≠ 0 for 𝜎 ≥ 1 − 𝑐(𝜖)
𝑞 𝜖

for any 𝜖 > 0. Consequently, we have the Siegel–Walfisz type prime number theorem for (𝑎, 𝑞) = 1 and
(𝑞, 2) = 1 ∑

𝑁 (𝜋) ≤𝑥
𝑁 (𝜋)≡𝑎 (mod 𝑞)

0≤arg 𝜋≤𝜀

1 =
1

𝜑(𝑞)
∑

𝑁 (𝜋) ≤𝑥
(𝑁 (𝜋) ,𝑞)=1
0≤arg 𝜋≤𝜀

1 +𝑂

(
𝑥

(log 𝑥)𝐴

)
(A.1)

for any 𝐴 ≥ 1. (After multiplication by 𝑖𝑙 for some l, we can ensure that 𝜃 = arg 𝑖𝑙𝜋 ∈ [0, 𝜋/2); we will
let arg 𝜋 denote this angle.)

Recall that a prime 𝑝 ≡ 3 (mod 4) is inert in Z[𝑖]; additionally, a prime 𝑝 ≡ 1 (mod 4) splits in Z[𝑖]
so that 𝑝 = 𝜋𝜋 = 𝑎2 + 𝑏2, where 𝜋 is a prime in Z[𝑖]. Writing

B(𝑥; 𝑞, 𝑎, 𝜀) =
∑
𝑛≤𝑥

𝑛≡𝑎 (mod 𝑞)

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) − 1

𝜑(𝑞)
∑
𝑛≤𝑥

(𝑛,𝑞)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛),
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formula (A.1) gives, for (𝑎, 𝑞) = 1 and (𝑞, 2) = 1, that

|B(𝑥; 𝑞, 𝑎, 𝜀) | � 𝑥

(log 𝑥)𝐴
, (A.2)

for 𝑞 ≤ (log 𝑥)𝐴. In addition, it is worth noting that equation (A.1) also implies∑
𝑛≤𝑥

𝑛≡𝑎 (mod 𝑞)

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) ∼ 4𝜀2

𝜑(𝑞)
𝑥 log log 𝑥

log 𝑥
. (A.3)

We are now ready to state the following result which is an analog of the Bombieri–Vinogradov
theorem.

Theorem A.1. There exists 𝐵0 sufficiently large so that∑
𝑞≤𝑄

(𝑞,2)=1

max
(𝑎,𝑞)=1

|B(𝑥; 𝑞, 𝑎, 𝜀) | � 𝑥

(log 𝑥)10

for 𝑄 ≤ 𝑥1/2/(log 𝑥)𝐵0 .

Let S ⊂ N. A sequence of complex numbers {𝛽𝑛} with |𝛽𝑛 | ≤ 𝜏(𝑛) satisfies the Siegel–Walfisz
property for S provided that for every 𝑞 ∈ S and 𝐴 ≥ 0 and 𝑁 ≥ 2 we have∑

𝑛≤𝑁
𝑛≡𝑎 (mod 𝑞)

𝛽𝑛 =
1

𝜑(𝑞)
∑
𝑛≤𝑁

(𝑛,𝑞)=1

𝛽𝑛 +𝑂

(
𝑁

(log 𝑁)𝐴

)

for every 𝑎 ∈ Z with (𝑎, 𝑞) = 1.

A.1. An application of the large sieve

We next recall a consequence of the large sieve, which follows applying a minor modification of Theorem
9.17 of [15].

Lemma A.1. Let 𝐴 ≥ 1 and 𝑄 = 𝑥1/2 (log 𝑥)−𝐵, where 𝐵 = 𝐵(𝐴) is sufficiently large. Suppose {𝛽𝑛}
satisfies the Siegel–Walfisz property for all q with (𝑞, 2) = 1. Then for any sequence {𝛼𝑛} of complex
numbers such that |𝛼𝑛 | ≤ 𝜏(𝑛)

∑
𝑞≤𝑄

(𝑞,2)=1

max
(𝑎,𝑞)=1

����� ∑
𝑚𝑛≤𝑥

𝑚,𝑛≤ 𝑥
(log 𝑥)𝐵

𝑚𝑛≡𝑎 (mod 𝑞)

𝛽𝑚𝛼𝑛 −
1

𝜑(𝑞)
∑
𝑚𝑛≤𝑥

𝑚,𝑛≤ 𝑥
(log 𝑥)𝐵

(𝑚𝑛,𝑞)=1

𝛽𝑚𝛼𝑛

����� � 𝑥

(log 𝑥)𝐴
.

Proof of Theorem A.1. By equation (A.2), the sequence 𝛽𝑛 = 1P𝜀 (𝑛) satisfies the Siegel–Walfisz con-
dition for all q with (𝑞, 2) = 1. Take 𝛼𝑛 = 1P′

𝜀
(𝑛), and note that (cf. equation (2.1))∑

𝑛≤𝑥
𝑛≡𝑎 (mod 𝑞)

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) =

∑
𝑚𝑛≤𝑥

𝑚,𝑛≤ 𝑥

(log 𝑥)𝐵0
𝑚𝑛≡𝑎 (mod 𝑞)

1P𝜀 (𝑚)1P′
𝜀
(𝑛)
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and ∑
𝑛≤𝑥

(𝑛,𝑞)=1

(1P𝜀 ∗ 1P′
𝜀
) (𝑛) =

∑
𝑚𝑛≤𝑥

𝑚,𝑛≤ 𝑥

(log 𝑥)𝐵0
(𝑚𝑛,𝑞)=1

1P𝜀 (𝑚)1P′
𝜀
(𝑛).

Hence, applying Lemma A.1 completes the proof. �

A.2. Gaussian integers in sectors with norms in progressions

The goal of this section is to show that a result of Smith [44] (also cf. [47]) holds for Gaussian integers
in sectors. We recall that, for 𝛼 ∈ Z[𝑖], 𝑁 (𝛼) = |𝛼 |2 denotes the norm of 𝛼. For 𝑎, 𝑞 > 0, define

𝜂𝑎 (𝑞) := |{𝛼1, 𝛼2 (mod 𝑞) : 𝛼2
1 + 𝛼2

2 ≡ 𝑎 (mod 𝑞)}|.

Proposition A.1. Let 𝑎, 𝑞 > 0 be integers, and put 𝑔 = (𝑎, 𝑞). Given an angle 𝜃 and 𝜖 ∈ (0, 2𝜋), let
𝑆 = 𝑆𝜖 , 𝜃 denote the set of lattice points 𝛼 ∈ Z[𝑖] contained in the sector defined by4 | arg(𝛼) − 𝜃 | < 𝜖/2.
Then, uniformly for 𝜖 > 0,

|{𝛼 ∈ 𝑆 : 𝑁 (𝛼) ≡ 𝑎 (mod 𝑞), 𝑁 (𝛼) ≤ 𝑥}|

=
𝜖𝑥𝜂𝑎 (𝑞)

𝑞2 +𝑂

(
𝑥1−𝛿/3

𝑞

)
provided that 𝑞3𝑔 < 𝑥2(1−2𝛿) for 𝛿 > 0.

We begin by showing that solutions to 𝛼2
1 + 𝛼2

2 ≡ 𝑎 (mod 𝑞) is well distributed in fairly small boxes.
Given q, let 𝑓 : (Z/𝑞Z)2 → C denote the characteristic function of the set {(𝛼1, 𝛼2) ∈ (Z/𝑞Z)2 :
𝛼2

1 + 𝛼2
2 ≡ 𝑎 (mod 𝑞)}. With the modulo q Fourier transform given by

�̂� (𝜉1, 𝜉2) :=
∑

𝛼1 ,𝛼2 (mod 𝑞)
𝑓 (𝛼1, 𝛼2)𝑒−2𝜋𝑖 ( 𝜉1𝛼1+𝜉2𝛼2)/𝑞 , (A.4)

we recall the following estimate by Tolev [47]:

| �̂� (𝜉1, 𝜉2) | � 𝑞1/2𝜏(𝑞)2(𝑞, 𝜉1, 𝜉2)1/2(𝑞, 𝑎, 𝜉2
1 + 𝜉2

2)
1/2 ≤ 𝑞1/2𝜏(𝑞)2(𝑞, 𝜉1, 𝜉2)1/2(𝑞, 𝑎)1/2. (A.5)

By the Chinese remainder theorem, 𝜂𝑎 (𝑞) is multiplicative in q, and we note that �̂� (0, 0) = 𝜂𝑎 (𝑞).
Let 𝐵 ⊂ [0, 𝑞)× [0, 𝑞) be a ‘box’ with side lengths T, and let 𝑔 = 𝑔𝐵 denote the characteristic function

of 𝐵 ∩ (Z/𝑞Z)2. By standard estimates (from summing a geometric series), we have, for 𝜉1, 𝜉2 ≠ 0,

�̂�(𝜉1, 𝜉2) � 𝑞2/|𝜉1𝜉2 |, (A.6)

for 𝜉1 ≠ 0,

�̂�(𝜉1, 0) � 𝑇𝑞/|𝜉1 |, (A.7)

(and similarly for 𝜉2 ≠ 0) and trivially

�̂�(0, 0) = 𝑇2.

4By arg(𝛼) , we denote the complex argument chosen in such a way that it is single valued in an 𝜖 /2-neighborhood of 𝜃 .

https://doi.org/10.1017/fms.2023.33 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.33


Forum of Mathematics, Sigma 37

Lemma A.2. Let 𝑔 = (𝑎, 𝑞). Then

|{(𝛼1, 𝛼2) ∈ 𝐵 : 𝛼2
1 + 𝛼2

2 ≡ 𝑎 (mod 𝑞)}| = 𝑇2 · 𝜂𝑎 (𝑞)
𝑞2 +𝑂 (𝑞1/2𝜏(𝑞)3 log(𝑞)2𝑔1/2).

Proof. By Fourier analysis on (Z/𝑞Z)2 (i.e., Plancherel’s theorem for finite abelian groups), we have

|{(𝛼1, 𝛼2) ∈ 𝐵 : 𝛼2
1 + 𝛼2

2 ≡ 𝑎 (mod 𝑞)}| =
∑

𝛼1 ,𝛼2 (mod 𝑞)
𝑓 (𝛼1, 𝛼2)𝑔(𝛼1, 𝛼2)

=
1
𝑞2

∑
𝜉1 , 𝜉2 (mod 𝑞)

�̂� (𝜉1, 𝜉2)�̂�(𝜉1, 𝜉2).

The main term is given by 𝜉1 = 𝜉2 = 0 and equals

�̂� (0, 0)�̂�(0, 0)
𝑞2 = 𝑇2 𝜂𝑎 (𝑞)

𝑞2 .

Using equations (A.5) and (A.7), the contribution from (say) 𝜉1 = 0 and 𝜉2 ≠ 0 is

� 1
𝑞2

𝑞−1∑
𝜉2=1

𝑇𝑞

𝜉2
𝑞1/2𝜏(𝑞)2(𝑞, 𝜉2)1/2𝑔1/2 � 𝑇𝑞3/2𝜏(𝑞)2𝑔1/2

𝑞2

∑
𝑑 |𝑞

∑
0<𝜉2<𝑞/𝑑

𝑑1/2

𝑑𝜉2
(A.8)

� 𝑇𝜏(𝑞)3 log(𝑞)𝑔1/2

𝑞1/2 = 𝑂 (𝑞1/2𝜏(𝑞)3 log(𝑞)𝑔1/2).

The contribution from terms 𝜉2 = 0 and 𝜉1 ≠ 0 is bounded similarly.
As for the terms 𝜉1, 𝜉2 ≠ 0, we have by equation (A.5)

1
𝑞2

∑
𝜉1 , 𝜉2≠0

�̂� (𝜉1, 𝜉2)�̂�(𝜉1, 𝜉2) �
𝑞1/2𝜏(𝑞)2

𝑞2

∑
𝜉1 , 𝜉2≠0

𝑞2

𝜉1𝜉2
(𝑞, 𝜉1, 𝜉2)1/2𝑔1/2

= 𝑞1/2𝜏(𝑞)2
∑
𝑑 |𝑞

∑
0<𝜉1 , 𝜉2≤𝑞/𝑑

𝑑1/2𝑔1/2

𝑑2𝜉1𝜉2
� 𝑞1/2𝜏(𝑞)2 log(𝑞)2𝑔1/2.

�

Concluding the proof of Proposition A.1. Take 𝑇 = 𝑥 (1−𝛿)/2. The case 𝑇 > 𝑞 is straightforward using a
simple tiling argument, and we only give details for 𝑇 ≤ 𝑞.

By a simple geometry of numbers argument, we may ‘tile’ the sector S, intersected with a ball of
radius 𝑥1/2, with 𝜖𝑥/𝑇2 + 𝑂 (𝑥1/2/𝑇) boxes B (with side lengths T) entirely contained in the sector and
with 𝑂 (𝑥1/2/𝑇) boxes intersecting the boundary. By Lemma A.2, each box B contains

𝑇2 · 𝜂𝑎 (𝑞)
𝑞2 +𝑂 (𝑞1/2𝜏(𝑞)2 log(𝑞)2𝑔1/2)

points satisfying 𝛼2
1 + 𝛼2

2 ≡ 𝑎 (mod 𝑞).
As 𝜂𝑎 (𝑞) < 𝑞1+𝑜 (1) (cf. [5, Lemma 2.8]), we find that the number of lattice points in the sector is

(𝜖𝑥/𝑇2 +𝑂 (𝑥1/2/𝑇)) (𝑇2 · 𝜂𝑎 (𝑞)
𝑞2 +𝑂 (𝑞1/2𝜏(𝑞)3 log(𝑞)2𝑔1/2))

=
𝜖𝜂𝑎 (𝑞)𝑥

𝑞2 +𝑂

(
𝑥1−𝛿/2

𝑞1−𝑜 (1) + 𝜖𝑔1/2𝑞1/2+𝑜 (1)𝑥 𝛿
)
.

For 𝑞3𝑔 < 𝑥2(1−2𝛿) , the error term is � 𝑥1−𝛿/3

𝑞 .
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A.3. Proof of Lemma 2.4

We may assume (𝑄, 𝑞) = 1; otherwise, the result is trivial. Let 𝛿 > 0 be sufficiently small but fixed, and
set

𝑟𝜀 (𝑛) =
∑

𝑎2+𝑏2=𝑛
| arg(𝑎+𝑖𝑏) |≤𝜀

1.

Also, for 𝑛 ∈ N and 𝑧 > 0 let 𝑃𝑛 (𝑧) =
∏

2<𝑝<𝑧 𝑝. Let Λ1 = {𝜆𝑑}, Λ′ = {𝜆′
𝑒} be upper bound sieves of

level 𝐷 = 𝑥 𝛿 with (𝑑, 2𝑞) = 1 and (𝑒, 2𝑄) = 1. Then for 𝑧 = 𝑥 𝛿/2, we have∑
𝑝=𝑎2+𝑏2≤𝑥

| arg(𝑎+𝑖𝑏) |≤𝜀
𝑞𝑝+4=𝑄𝑝1where 𝑝1 is prime

1 ≤
∑

𝑚≤𝑞𝑥+4

∑
𝑛≤𝑥

𝑞𝑛+4=𝑄𝑚
(𝑚,𝑃𝑞 (𝑧))=1
(𝑛,𝑃𝑄 (𝑧))=1

𝑟𝜀 (𝑛) +𝑂 (𝑥 𝛿/2)

≤
∑

𝑚≤𝑞𝑥+4

∑
𝑛≤𝑥

𝑞𝑛+4=𝑄𝑚

𝑟𝜀 (𝑛) (𝜆′ ∗ 1) (𝑛)(𝜆 ∗ 1) (𝑚) +𝑂 (𝑥 𝛿/2).

Switching order of summation, we have that the sum on the LHS above is

=
∑
𝑑,𝑒<𝐷
(𝑑,𝑒)=1

(𝑑,2𝑞)=1, (𝑒,2𝑄)=1

𝜆𝑑𝜆
′
𝑒

∑
𝑛≤𝑥
𝑒 |𝑛

𝑟𝜀 (𝑛)
∑

𝑚≤𝑞𝑥+4
𝑑 |𝑚

𝑞𝑛+4=𝑄𝑚

1

=
∑
𝑑,𝑒<𝐷
(𝑑,𝑒)=1

(𝑑,2𝑞)=1, (𝑒,2𝑄)=1

𝜆𝑑𝜆
′
𝑒

∑
𝑛≤𝑥

𝑛≡𝛾 (mod 𝑄𝑒𝑑)

𝑟𝜀 (𝑛)
(A.9)

since the inner sum in the first equation above consists of precisely one term provided that 𝑞𝑛 + 4 ≡ 0
(mod 𝑄𝑑) and is empty otherwise. Also, here 𝛾 = −4𝑒𝑒𝑞, where 𝑞𝑞 ≡ 1 (mod 𝑄𝑑) and 𝑒𝑒 ≡ 1
(mod 𝑄𝑑). In particular, (𝛾, 𝑄𝑒𝑑) = 𝑒.

Let us note some properties of the function 𝜂𝑎 (𝑞). Recall, 𝜂𝑎 (·) is multiplicative. Moreover, for
𝑝 > 2 and ℓ ≥ 1

𝜂𝑎 (𝑝ℓ) = 𝑝ℓ
∑

0≤ 𝑗≤ℓ

𝜒4(𝑝) 𝑗
𝑝 𝑗

𝑐𝑝 𝑗 (𝑎) (A.10)

and for any 𝑎, 𝑞 ≥ 1

𝜂𝑞 (𝑞) �
𝑞2

𝜑(𝑞) 𝜏((𝑎, 𝑞)) (A.11)

(see [5, Eqn. (2.20) and Lemma 2.8]), where

𝑐𝑞 (𝑎) =
∑

𝑏 (mod 𝑞)
(𝑏,𝑞)=1

𝑒

(
𝑎𝑏

𝑞

)
=

𝜑(𝑞)
𝜑(𝑞/(𝑞, 𝑎)) 𝜇(𝑞/(𝑞, 𝑎)) (A.12)

is the Ramanujan sum and 𝜒4 is the nonprincipal Dirichlet character (mod 4). In particular, note that if
(𝑎, 𝑞) = 𝑔 then 𝜂𝑎 (𝑞) = 𝜂𝑔 (𝑞) for odd q.
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By Proposition A.1, equations (A.10) and (A.11) and recalling that (𝑄𝑒𝑑, 𝛾) = 𝑒, we get the RHS of
equation (A.9) equals

2𝜀𝑥
∑
𝑑,𝑒<𝐷
(𝑑,𝑒)=1

(𝑑,2𝑞)=1, (𝑒,2𝑄)=1

𝜆𝑑𝜆
′
𝑒

(𝑄𝑒𝑑)2 𝜂𝛾 (𝑄𝑒𝑑) +𝑂

(
𝑥1−𝛿/4

𝑄

)

=
2𝜀𝑥𝜂1 (𝑄)

𝑄2

∑
𝑑,𝑒<𝐷
(𝑑,𝑒)=1

(𝑑,2𝑞)=1, (𝑒,2𝑄)=1

𝜆𝑑𝜆
′
𝑒

(𝑒𝑑)2
𝜂1(𝑄𝑑)𝜂𝑒 (𝑒)

𝜂1(𝑄) +𝑂

(
𝑥1−𝛿/4

𝑄

)

provided that 𝑄3𝐷7 < 𝑥2(1−2𝛿) which we rewrite as 𝑄 < 𝑥2/3−11𝛿/3. Using Theorem 2.3 in the form of
equation (2.9), and noting that 𝜂1 (𝑄𝑑)/𝜂1(𝑄) is a multiplicative function, we get that the above sum is

� 𝜀𝑥𝜂1 (𝑄)
𝑄2

∏
𝑝<𝐷

(𝑝,2𝑞)=1

(
1 − 𝜂1 (𝑄𝑝)

𝑝2𝜂1 (𝑄)

) ∏
𝑝<𝐷

(𝑝,2𝑄)=1

(
1 −

𝜂𝑝 (𝑝)
𝑝2

)
. (A.13)

To evaluate the Euler products we use equation (A.10) to get 𝜂𝑝 (𝑝) = 𝑝(1+𝜒4 (𝑝)− 1
𝑝 ), 𝜂1 (𝑄𝑝)/𝜂1(𝑄) =

𝑝 +𝑂 (1) and 𝜂1(𝑄) = 𝑄
∏
𝑝 |𝑄

(
1 − 𝜒4 (𝑝)

𝑝

)
. Hence, by these estimates we get that equation (A.13) is

� 𝜀𝑥𝜂1 (𝑄)
𝑄2

∏
𝑝 |𝑄

(
1 + 𝜒4 (𝑝) + 1

𝑝

)∏
𝑝 |𝑞

(
1 + 1

𝑝

)
· 1
(log 𝐷)2

� 𝑞

𝜑(𝑞) ·
𝜀𝑥

𝑄𝛿2(log 𝑥)2

∏
𝑝 |𝑄

(
1 + 1

𝑝

)
� 𝑞

𝜑(𝑞) ·
𝜀𝑥

𝜑(𝑄)𝛿2(log 𝑥)2

for 𝑄 < 𝑥2/3−11𝛿/3 which completes the proof since 𝛿 > 0 is arbitrary.

B. Nonattainable quantum limits

Given an integer n such that 𝑟 (𝑛) > 0, define a probability measure 𝜇𝑛 on the unit circle by

𝜇𝑛 :=
1

𝑟 (𝑛)
∑

𝜆∈Z[𝑖 ]: |𝜆 |2=𝑛
𝛿𝜆/ |𝜆 | ,

that is, 𝜇𝑛 is obtained by projecting the set of Z2-lattice points on a circle of radius 𝑛1/2 to the unit circle
and 𝛿 here denotes the Dirac delta function. A measure 𝜇 is said to be attainable if 𝜇 is a weak* limit of
some subsequence of measures 𝜇𝑛𝑖 . A partial classification of the set of attainable measures was given
in [29] in terms of their Fourier coefficients. Namely, for 𝑘 ∈ Z, let 𝜇(𝑘) :=

∫
𝑧𝑘 𝑑𝜇(𝑧) denote the k-th

Fourier coefficient of 𝜇. By [29, Theorem 1.3], the inequalities

2𝜇(4)2 − 1 ≤ 𝜇(8) ≤ max(𝜇(4)4, (2|𝜇(4) | − 1)2)

hold if 𝜇 is attainable. In particular, for 𝛾 > 0 small and 𝜇(4) = 1−𝛾, we must have 𝜇(8) = 1−4𝛾+𝑂 (𝛾2).
Now, by Theorem 1.2, there exists quantum limits that are convex combinations 𝑐𝜈1 + (1 − 𝑐)𝜈2 for

𝑐 > 0 arbitrarily small and where 𝜈1 is the uniform measure (with (𝜈2 (4), 𝜈2(8)) = (0, 0)), and 𝜈2 is a
Cilleruelo type measure, that is, localized on the four points ±1,±𝑖, and with (𝜈2 (4), 𝜈2(8)) = (1, 1).
Clearly, such convex combinations cannot be attainable for c small.
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C. Convexity assuming a k-prime tuple analog

C.1. Preliminaries

We begin by noting that it is enough to show that any probability measure on the unit circle can be
approximated by a convex combination of Dirac measures with uniform weights and similarly for Sym8-
invariant measures. Namely, by the Krein–Milman theorem (cf. [36, §3.21]), any measure on the unit
circle is in the closed convex hull of its extreme points. Now, the extreme points are exactly the Dirac
deltas: If one tries to decompose the measure 𝛿0 = 𝑐𝛼 + (1 − 𝑐)𝛽 (with 𝛼, 𝛽 probability measures and
𝑐 ∈ [0, 1]) it’s clear that 𝛼(0) = 𝛽(0) = 1 (both of them have mass ≤ 1 at 0, and if < 1, then 𝛿0 would
have too little mass at 0.) On the other hand, if some measure 𝜇 puts positive mass on two disjoint
subsets 𝐴, 𝐵 whose union is 𝑆1, then as long as we have 𝜇(𝑋) = 𝜇(𝑋 ∩ 𝐴) + 𝜇(𝑋 ∩ 𝐵) we arrive,
after renormalizing, at a convex combination of 𝜇 in terms of two probability measures. Thus, for Borel
probability measures on 𝑆1, the extremal points are exactly the Dirac measures.

We also find that any measure can be approximated by 𝑘−1 ∑
𝑖≤𝑘 𝛿𝜃𝑖 for any subsequence of integers

k tending to infinity since a finite convex combination of delta measures can be approximated by a
uniformly weighted sum of delta measures. Further, we can also approximate via delta measures whose
angles are restricted to come from Gaussian primes by using Hecke’s theorem.

Let 𝑘 > 0 be an even integer. Given collection of angles 𝜃1, . . . , 𝜃𝑘 define a probability measure
𝜇 = 1

𝑘

∑
𝑖≤𝑘 𝜈𝜃𝑖 on the unit circle, where 𝜈𝜃 denotes the Sym8-invariant probability measure 𝜈𝜃 =

1
8
∑4
𝑙=1 𝛿±𝜃+𝑙 𝜋/2. As explained above, it is enough to show that any such 𝜇 is a quantum limit.

Assuming a plausible analogue of the prime k-tuple, or the Bateman–Horn, conjectures, we show
that there exists an infinite subsequence of new eigenvalues 𝜆 so that

〈Op( 𝑓 )𝑔𝜆, 𝑔𝜆〉 = 𝜇( 𝑓 ) + 𝑜(1), (C.1)

as 𝜆 → ∞ along said subsequence, in the strong coupling limit.
To state our ‘Bateman–Horn type hypothesis’ precisely, we define an ‘admissibility parameter’

𝑄0 =
∏
𝑝≤𝑘 𝑘 and moduli 𝑄𝑖 , 𝑖 = 1, . . . , 𝑘 which are square-free and pairwise coprime. Let

𝑄 :=
𝑘∏
𝑖=1

𝑄𝑖 .

We also require admissible shifts ℎ𝑖 , 𝑖 = 1, . . . , 𝑘 with

ℎ𝑖 = 1 + 𝑙𝑖𝑄0,

where 𝑙𝑖 are distinct integers such that each prime divisor of Q is larger than max𝑖, 𝑗 |𝑙 𝑗 − 𝑙𝑖 |, and ℎ0
(mod 𝑄) is an integer satisfying ℎ0 ≡ 0 (mod 𝑄0) and ℎ0 ≡ ℎ𝑖 (mod 𝑄𝑖), 𝑖 = 1, . . . , 𝑘 (these conditions
will ensure admissibility; also such an ℎ0 with |ℎ0 | ≤ 𝑄 exists by the Chinese remainder theorem by
pairwise coprimality of the 𝑄𝑖). The point of admissibility is to ensure that there are no local obstructions
to certain k-tuples being simultaneously prime (e.g., there are only finitely many prime pairs of the form
(𝑛, 𝑛 + 1) and finitely many prime triples of the form (𝑛, 𝑛 + 2, 𝑛 + 4); cf. equation (C.3) for the exact
formulation in our setting.) Finally, let

P𝜀 = {𝑝 prime : 𝑝 = 𝑎2 + 𝑏2, 𝑎, 𝑏 > 0, and 0 < arctan(𝑏/𝑎) ≤ 𝜀}.

We formulate the following conjecture.
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Conjecture 1. Let 𝜀 > 0. Suppose 𝑄 ≤ 𝑥𝑜 (1) , |ℎ1 |, . . . , |ℎ𝑘 | �𝑘 1 and
∏
𝑝 |𝑄 (1 + 1/𝑝) � 1. In the

notation above, we have

|{𝑛 ≤ 𝑥 :
𝑄𝑛 − ℎ0 + ℎ1

𝑄1
, . . . ,

𝑄𝑛 − ℎ0 + ℎ𝑘
𝑄𝑘

∈ P𝜖 }| �𝜖 ,𝑘
𝑥

(log 𝑥)𝑘
.

To justify this conjecture, we will show in Section C.3 that the polynomial

𝐿(𝑥) =
𝑘∏
𝑖=1

𝐿𝑖 (𝑥), 𝐿𝑖 (𝑥) = 𝐴𝑖𝑥 + 𝐵𝑖 , 𝐴𝑖 = 𝑄/𝑄𝑖 , 𝐵𝑖 = (ℎ𝑖 − ℎ0)/𝑄𝑖 (C.2)

has no fixed prime divisor (note by construction that 𝐵𝑖 ∈ Z since ℎ𝑖 ≡ ℎ0 (mod 𝑄𝑖)) so that there are
no local obstructions to k-tuples of integers of the form(

𝑄𝑛 − ℎ0 + ℎ1
𝑄1

, . . . ,
𝑄𝑛 − ℎ0 + ℎ𝑘

𝑄𝑘

)
(C.3)

being simultaneously prime.

C.2. Proof of equation (C.1), assuming Conjecture 1

C.2.1. The construction and a high-level overview of the argument
Let k be a given even integer. Similar to Section 5.2., given a large value of x choose moduli 𝑄1, . . . , 𝑄𝑘
as follows: Put 𝑇 = �log log 𝑥�, 𝐻 = �100 log log log 𝑥�, and let

𝑄𝑖 = 𝑞′
𝑖 ·

𝑇 +𝑖𝐻−1∏
𝑗=𝑇 +1+(𝑖−1)𝐻

𝑞 𝑗 ,

where 𝑞 𝑗 denotes the j-th element of {𝑞 ∈ S : 𝑞 ≡ 1 (mod 𝑄0)} (cf. equation (5.4); note that
𝑞 𝑗 �𝑘 ( 𝑗 log 𝑗)10/9 holds), and 𝑞′

𝑖 � 𝑇 is a Gaussian prime with associated angle 𝜃𝑖 + 𝑜(1) as x grows.
In particular, note that 𝑄𝑖 ≡ 1 (mod 𝑄0) and that

𝜇𝑄𝑖 → 𝜈𝜃𝑖 (C.4)

as x grows, where 𝜇𝑄𝑖 is the probability measure with delta masses placed at the angles of lattice points
lying on the circle of radius

√
𝑄𝑖 . Let H = {ℎ1, . . . , ℎ𝑘 }, where

ℎ𝑖 = 1 + 𝑙𝑖𝑄0, 𝑖 = 1, . . . , 𝑘

and the integers 𝑙𝑖 are distinct and chosen so that

ℎ1, . . . , ℎ𝑘/2 ∈ [−𝑊3 −𝑊,−𝑊3], ℎ𝑘/2+1, . . . , ℎ𝑘 ∈ [𝑊3,𝑊3 +𝑊], (C.5)

where 𝑊 = 𝑊0𝑘𝑄0, and 𝑊0 ≥ 10 is a (large) parameter. Observe that max𝑖, 𝑗 |𝑙𝑖 − 𝑙 𝑗 | ≤ 3𝑊3/𝑄0, so any
prime divisor of Q does not divide max𝑖, 𝑗 |𝑙𝑖 − 𝑙 𝑗 | for x sufficiently large. We note that we may apply
Conjecture 1 with this choice of ℎ1, . . . , ℎ𝑘 , 𝑄1, . . . , 𝑄𝑘 . Let

N3 := {𝑛 ∈ N : 𝐿𝑖 (𝑛) ∈ P𝜀 for 1 ≤ 𝑖 ≤ 𝑘}.

Let us now give an overview of the argument to establish equation (C.1). The basic idea is that
for most such values of 𝑛 ∈ N3, if we put 𝑚 = 𝑄𝑛 − ℎ0 there exists a corresponding new eigenvalue
𝜆 ∈ (𝑚 + ℎ𝑘/2, 𝑚 + ℎ𝑘/2+1) which satisfies 𝜆 = 𝑚 + 𝑂 (𝑊) (which we will prove later). In other words,
the new eigenvalue 𝜆 ‘sits in the middle’ of two clusters of k old eigenvalues, where 𝑘/2 of them lie in
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[𝑚 −𝑊3 −𝑊,𝑚 −𝑊3], and the remaining 𝑘/2 of them lie in [𝑚 +𝑊3, 𝑚 +𝑊3 +𝑊]. Moreover, we will
see later that, for most such n in a positive density subset of N3 ∩ [𝑥/2, 𝑥], essentially all of the 𝐿2-mass
is carried by terms arising from the two clusters, in the sense that for f a pure momentum observable,

〈Op( 𝑓 )𝐺𝜆, 𝐺𝜆〉 =
1
𝑘

𝑘∑
𝑖=1

∑
𝜉 ∈Z[𝑖 ]: |𝜉 |2=𝑚+ℎ𝑖

𝑓 (𝜉/|𝜉 |)
(𝑚 + ℎ𝑖 − 𝜆)2 + 𝑜(| |𝐺𝜆 | |2),

=
2𝐻

𝑘𝑊6

(
𝑘∑
𝑖=1

(𝜈𝜃𝑖 ( 𝑓 ) + 𝑜(1)) · (1 +𝑂 (1/𝑊2))
)
+ 𝑜(| |𝐺𝜆 | |2),

where we have used equation (C.4) in the last step. As this construction also gives | |𝐺𝜆 | |22 = 2𝐻
𝑊 6 (1+𝑜(1)),

we find that

〈Op( 𝑓 )𝑔𝜆, 𝑔𝜆〉 =
1
𝑘

𝑘∑
𝑖=1

(𝜈𝜃𝑖 ( 𝑓 ) + 𝑜(1)) · (1 +𝑂 (1/𝑊2)) = (𝜇( 𝑓 ) + 𝑜(1)) · (1 +𝑂 (1/𝑊2)),

which completes the argument by taking a sequence of 𝑊0’s tending to infinity.

C.2.2. Restricting to typical 𝑛 ∈ N3
We also require the following analog of Lemma 4.3, which follows from the techniques used in Section
4 of the paper. A formal proof of this result is given in Section C.4.

Lemma C.1. Let 𝑈 = (log log 𝑥)5. There exists 𝐶 > 0 such that for all 𝑛 ∈ N3 ∩ [𝑥/2, 𝑥], outside a set
of size

�𝑘,𝑊
𝑥

(log 𝑥)𝑘
(log log log log 𝑥)2𝐶 · log log 𝑥

𝑈
,

the following hold: ∑
|ℎ | ≤(log 𝑥)1/2/𝑈,ℎ∉H

𝑏(𝑄𝑛 − ℎ0 + ℎ) = 0, (C.6)

∑
|ℎ | ≤(log 𝑥)𝐵 ,ℎ∉H

𝑟 (𝑄𝑛 − ℎ0 + ℎ)
|ℎ| ≤ 𝑈 (C.7)

and ∑
|ℎ | ≥𝑈,ℎ∉H

𝑟 (𝑄𝑛 − ℎ0 + ℎ)
ℎ2 � 1

log log 𝑥
. (C.8)

Note that Lemma C.1 and Conjecture 1 imply that equations (C.6), (C.7) and (C.8) hold for a full
density subset of 𝑛 ∈ N3 ∩ [𝑥/2, 𝑥].

C.2.3. Proof of equation (C.1)
By equations (C.6) and (C.7) and Theorem 3.1, we have for 𝑚 = 𝑄𝑛 − ℎ0 and all 𝑛 ∈ N3 ∩ [𝑥/2, 𝑥] that
lie outside a subset of size 𝑜(𝑥/(log 𝑥)𝑘 ), that the new eigenvalue 𝜆∗ = 𝜆𝑚+ℎ𝑘/2+1 satisfies the spectral
equation ∑

𝑖≤𝑘

𝑟 (𝑚 + ℎ𝑖)
𝑚 + ℎ𝑖 − 𝜆∗

= 𝑂 ((log log 𝑥)5). (C.9)
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Thus, by Conjecture 1 the above holds for a density one subset of 𝑛 ∈ N3 ∩ [𝑥/2, 𝑥]. Letting

𝐹𝑚 (𝜆) :=
∑
𝑖≤𝑘

1
𝑚 + ℎ𝑖 − 𝜆

,

we find, as 𝑟 (𝑚 + ℎ𝑖) = 2𝐻 for 𝑖 = 1, . . . , 𝑘 , with 𝐻 = [100 log log log 𝑥] and recalling equation (C.9),
that

𝐹𝑚 (𝜆∗) = 𝑜(1).

Recalling equation (C.5), we then note that

𝐹𝑚 (𝑚) =
∑
𝑖≤𝑘

1/ℎ𝑖 =
𝑘/2

−(𝑊3 +𝑂 (𝑊))
+ 𝑘/2

𝑊3 +𝑂 (𝑊)
= 𝑂 (𝑘/𝑊5).

Further, for 𝜆 ∈ [𝑚ℎ𝑘/2 , 𝑚ℎ𝑘/2+1 ], we have

𝐹 ′
𝑚 (𝜆) ≥ (𝑘/2) 1

(𝑊3 +𝑂 (𝑊))2 � 𝑘/𝑊6.

Thus, combining the previous three assertions and using the mean value theorem gives

𝜆∗ = 𝑚 +𝑂 (𝑊). (C.10)

This tells us that 𝜆∗ lies essentially at the center of the two clusters of old eigenvalues (which lie of
distance 2𝑊3 +𝑂 (𝑊) apart).

Hence, using equations (C.6) and (C.8) we find that

| |𝐺𝜆 | |22 =
𝑘2𝐻

(𝑊3 +𝑂 (𝑊))2 +𝑂 (1/log log 𝑥)

and further, recalling 𝑚 + ℎ𝑖 = 𝑄𝑛 − ℎ0 + ℎ𝑖 , 𝑛 ∈ N3, and using equations (C.5), (C.4) and (C.10), we
have that ∑

𝑖≤𝑘

∑
𝜉 ∈Z[𝑖 ]: |𝜉 |2=𝑚+ℎ𝑖

𝑓 (𝜉/|𝜉 |)
(𝑚 + ℎ𝑖 − 𝜆∗)2 =

∑
𝑖≤𝑘

2𝐻 (𝜈𝜃𝑖 ( 𝑓 ) + 𝑜(1))
(𝑊3 +𝑂 (𝑊))2

and consequently

〈Op( 𝑓 )𝑔𝜆∗ , 𝑔𝜆∗ 〉 =
2𝐻 (𝜇( 𝑓 ) + 𝑜(1)) (1 +𝑂 (1/𝑊2))

2𝐻
= (𝜇( 𝑓 ) + 𝑜(1)) · (1 +𝑂 (1/𝑊2)).

C.3. Admissibility

We need to show that the polynomial 𝐿(𝑥) as above has no fixed prime divisor. That is, for each prime
p there exists an integer n with 𝐿(𝑛) � 0 (mod 𝑝).

We first consider small primes 𝑝 ≤ 𝑘 . Since 𝑄𝑖𝐵𝑖 = ℎ𝑖 − ℎ0 ≡ 1 (mod 𝑄0), we find that (𝐵𝑖 , 𝑄0) = 1
and thus 𝐿(0) � 0 (mod 𝑝) for 𝑝 ≤ 𝑘 .

We next treat large primes 𝑝 > 𝑘 . If p does not divide
∏
𝑖≤𝑘 𝐴𝑖 , 𝐿(𝑥) (mod 𝑝) is a polynomial of

degree k and hence can have at most k roots in Z/𝑝Z, and thus there exists an integer n so that 𝐿(𝑛) � 0
(mod 𝑝).

If 𝑝 |
∏
𝑖≤𝑘 𝐴𝑖 , we must rule out 𝐿(𝑥) ≡ 0 (mod 𝑝) for all 𝑥 ∈ Z/𝑝Z (i.e., that the reduction of L

modulo p is the constant trivial polynomial). Since 𝑄𝑖 are coprime and 𝑝 > 𝑘 , p can divide at most one
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element in {𝑄𝑖}𝑘𝑖=1; say 𝑝 |𝑄𝑖 . As 𝐴𝑖 = 𝑄/𝑄𝑖 is coprime to p, we find that 𝐿𝑖 (𝑥) mod p is nonconstant and
hence has exactly one root. For 𝑗 ≠ 𝑖, we next show 𝐿 𝑗 (𝑥) mod p has no roots by showing that 𝑝 � 𝐵 𝑗 .
Assume that 𝑝 |𝐵 𝑗 . Now, 𝐵 𝑗 = (ℎ 𝑗 − ℎ0)/𝑄 𝑗 ≡ (ℎ 𝑗 − ℎ𝑖)/𝑄 𝑗 (mod 𝑄𝑖), and since ℎ 𝑗 − ℎ𝑖 = 𝑄0(𝑙 𝑗 − 𝑙𝑖)
we must have 𝑝 |𝑙 𝑗 − 𝑙𝑖; however, since 𝑝 |

∏
𝑖≤𝑘 𝐴𝑖 , we have 𝑝 |𝑄, so this contradicts our assumption that

all prime divisors of Q are larger than max𝑖, 𝑗 |𝑙𝑖 − 𝑙 𝑗 |.
In conclusion, the polynomial 𝐿(𝑥) has no fixed prime divisor, and the linear forms 𝐿1(𝑥), . . . , 𝐿𝑘 (𝑥)

are indeed admissible.

C.4. Proof of Lemma C.1

We begin with the following simple consequence of the prime number theorem.

Lemma C.2. Given an integer 𝐷 ≥ 2, we have∏
𝑝 |𝐷

(1 + 1/𝑝) � log log 𝐷.

Proof. First, note that the product will be maximized if 𝐷 =
∏
𝑝<𝑡 𝑝 � 𝑒𝑡 , with t chosen so that

𝜋(𝑡) = 𝜔(𝐷) ≤ log 𝐷. In this case,
∏
𝑝 |𝐷 (1 + 1/𝑝) � exp(

∑
𝑝<𝑡 1/𝑝) = exp(log log 𝑡) = log 𝑡, and the

result follows. �

Given an integer h with |ℎ| ≤ 𝑥1/4 and ℎ ∉ {ℎ1, . . . , ℎ𝑘 }, define

𝐿0 (𝑥) = 𝐿0,ℎ (𝑥) := 𝑄𝑥 − ℎ0 + ℎ.

We next determine the prime divisors of 𝐷 (ℎ), the discriminant of

𝐿(𝑥) :=
𝑘∏
𝑖=0

𝐿𝑖 (𝑥).

With 𝐴 =
∏𝑘
𝑖=1 𝐴𝑖 and 𝑟𝑖 = −𝐵𝑖/𝐴𝑖 = (ℎ0−ℎ𝑖)/𝑄 for 𝑖 = 1, . . . , 𝑘 and 𝑟0 = (ℎ0−ℎ)/𝑄, the discriminant

𝐷 (ℎ) of L equals

±𝐴2𝑘
∏

0≤𝑖< 𝑗≤𝑘
(𝑟𝑖 − 𝑟 𝑗 )2.

For 0 < 𝑖 < 𝑗 ≤ 𝑘 , 𝑟𝑖 − 𝑟 𝑗 = (ℎ𝑖 − ℎ 𝑗 )/𝑄 = 𝑄0(𝑙𝑖 − 𝑙 𝑗 )/𝑄, whereas 𝑟0 − 𝑟 𝑗 = (ℎ 𝑗 − ℎ)/𝑄. In particular,
as 𝑄 |𝐴, we find that 𝑝 |𝐷 (ℎ) implies that

𝑝 |𝑄0𝑄 ·
∏

1≤𝑖< 𝑗≤𝑘
(𝑙𝑖 − 𝑙 𝑗 ) ·

𝑘∏
𝑖=1

(ℎ𝑖 − ℎ).

Lemma C.3. For each fixed 𝐶 > 0, we have∏
𝑝 |𝐷 (ℎ)

(1 + 1/𝑝)𝐶 �𝑘,𝑊

∏
𝑝 |

∏𝑘
𝑖=1 (ℎ−ℎ𝑖 )

(1 + 1/𝑝)𝐶 .

Proof. As we have seen, if 𝑝 |𝐷 (ℎ), then 𝑝 |𝑄0𝑄·
∏

1≤𝑖< 𝑗≤𝑘 (𝑙𝑖−𝑙 𝑗 )·
∏𝑘
𝑖=1(ℎ𝑖−ℎ). Since

∏
𝑝 |𝑄 (1+1/𝑝) �

1 and
∏
𝑝 |𝑄0 (1 + 1/𝑝) �𝑘 1, together with

∏
1≤𝑖< 𝑗≤𝑘 (𝑙𝑖 − 𝑙 𝑗 ) �𝑘,𝑊 1, we find that∏

𝑝 |𝐷 (ℎ)
(1 + 1/𝑝)𝐶 �𝑘,𝑊

∏
𝑝 |

∏𝑘
𝑖=1 (ℎ𝑖−ℎ)

(1 + 1/𝑝)𝐶 .

�

https://doi.org/10.1017/fms.2023.33 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.33


Forum of Mathematics, Sigma 45

We also record a useful estimate involving prime divisors of

𝐷2 := ±
∏

0≤𝑖< 𝑗≤𝑘
(ℎ𝑖 − ℎ 𝑗 )2,

the discriminant of the polynomial
∏𝑘
𝑖=0(𝑥 − ℎ𝑖).

Lemma C.4. For each fixed 𝐶 > 0, we have∏
𝑝 |𝐷2

(1 + 1/𝑝)𝐶 �𝑘,𝑊 (log log log log 𝑥)2𝐶 .

Proof. For 𝑖, 𝑗 > 0, we have ℎ𝑖 − ℎ 𝑗 = 𝑄0 (𝑙𝑖 − 𝑙 𝑗 ) �𝑘,𝑊 1, and thus
∏

1≤𝑖< 𝑗≤𝑘 (ℎ𝑖 − ℎ 𝑗 )2 �𝑘,𝑊 1.
Further, as |ℎ0 | ≤ 𝑄 and ℎ1, . . . , ℎ𝑘 �𝑘,𝑊 1, we have

𝑘∏
𝑖=1

(ℎ𝑖 − ℎ0)2 �𝑘,𝑊 𝑄2𝑘 .

Since 𝑄 =
∏𝑘
𝑖=1 𝑄𝑖 and each 𝑄𝑖 � 𝑇𝐻 , with 𝐻 � log log log 𝑥 and 𝑇 � log log 𝑥 we find that

log 𝐷2 �𝑘,𝑊 (log log log 𝑥)2.

The result now follows from Lemma C.2. �

C.4.1. Applying Henriot’s result
Recall that 𝐿0 (𝑥) = 𝑄𝑥 − ℎ0 + ℎ. Let 𝑓1 be the characteristic function supported on the set of small
angle primes 𝑝 ∈ P𝜀 ∩ [𝑥/2, 𝑥]; putting 𝑓1(1) = 1 we may extend 𝑓1 to a multiplicative function. In
what follows, 𝐶 = 𝐶 (𝑘) > 0 is the constant in Lemma 4.1; note that we allow C to depend on k. Let g
denote the multiplicative function

𝑔(𝑛) :=
∏
𝑝 |𝑛

(1 + 1/𝑝).

Lemma C.5. With 𝑓 (𝑛) = 𝑏(𝑛), or 𝑓 (𝑛) = 𝑟 (𝑛)/4, we have∑
𝑥/2≤𝑛≤𝑥

𝑓 (𝐿0 (𝑛))
∏

1≤𝑖≤𝑘
𝑓1 (𝐿𝑖 (𝑛)) � 𝑓 ((ℎ − ℎ0, 𝑄))𝑔(𝐷 (ℎ))𝐶+𝑘+1 𝑥

(log 𝑥)𝑘+1

∏
𝑝≤𝑥

(1 + 𝑓 (𝑝)/𝑝),

where 𝐷 (ℎ) is the discriminant of the polynomial

𝐿(𝑥) =
𝑘∏
𝑖=0

𝐿𝑖 (𝑥).

Further, for 𝐻 > (log 𝑥)1/4, we have∑
|ℎ | ≤𝐻,ℎ∉H

𝑓 ((ℎ − ℎ0, 𝑄))𝑔(𝐷 (ℎ))𝐶+𝑘+1 �𝑘,𝑊 𝐻 (log log log log 𝑥)2𝐶 .

Proof. We first assume that (ℎ − ℎ0, 𝑄) = 1. Now, for 𝑝 � 𝑄, the linear forms 𝐿𝑖 are nondegenerate
modulo p for 0 ≤ 𝑖 ≤ 𝑘 , and we have 𝜌𝐿𝑖 (𝑝) = 1 for 0 ≤ 𝑖 ≤ 𝑘 . Further, we have 𝜌𝐿 (𝑝) = 𝑘 +1 provided
p does not divide 𝑄0𝑄

∏
1≤𝑖< 𝑗≤𝑘 (𝑙𝑖 − 𝑙 𝑗 ) ·

∏𝑘
𝑖=1(ℎ𝑖 − ℎ).

If 𝑝 |𝑄𝑖 for some 𝑖 ∈ [1, 𝑘], since 𝑝 � 𝐴𝑖 , we have 𝜌𝐿𝑖 (𝑝) = 1. For 𝑗 ≠ 𝑖 and 1 ≤ 𝑗 ≤ 𝑘 , as 𝑝 |𝐴 𝑗 and
𝑝 � 𝐵 𝑗 , we have 𝜌𝐿 𝑗 (𝑝) = 0. Further, as we assume that (ℎ − ℎ0, 𝑄) = 1, we also have 𝜌𝐿0 (𝑝) = 0.
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Since 𝜌𝐿 (𝑝) = 𝑘 + 1 for 𝑝 � 𝐷 (ℎ), we find that∏
𝑝≤𝑥

(1 − 𝜌𝐿 (𝑝)/𝑝) �𝑘
𝑔(𝐷 (ℎ))𝑘+1

(log 𝑥)𝑘+1

since ∏
𝑝≤𝑥

(1 − (𝑘 + 1)/𝑝) � 1/(log 𝑥)𝑘+1

and the contribution from primes 𝑝 |𝐷 (ℎ) is of size 𝑔(𝐷 (ℎ))𝑘+1.
Finally, noting that

∑
𝑛≤𝑥

𝑓1 (𝑛)
𝑛 = 1 +𝑂 (

∑
𝑝∈[𝑥/2,𝑥 ] 1/𝑝) = 1 +𝑂 (1/log 𝑥) and∑

𝑛≤𝑥
𝑓 (𝑛)/𝑛 �

∏
𝑝≤𝑥

(1 + 𝑓 (𝑝)/𝑝)

the result follows for (ℎ − ℎ0, 𝑄) = 1.
The case (ℎ − ℎ0, 𝑄) > 1 is then easily deduced as follows. First, note that 𝑓 (𝑚𝑛) = 𝑓 (𝑚) 𝑓 (𝑛)

if 𝑚𝑛|𝑄 since 𝑝 ≡ 1 (mod 4) for any prime divisor 𝑝 |𝑄, as in our construction we assumed that
each prime divisor of 𝑄𝑖 is ≡ 1 (mod 4), together with Q being square-free, as well as the estimate
𝑓 (𝑝𝑘 ) ≤ 𝑓 (𝑝) · 𝑓 (𝑝𝑘−1). Letting 𝐿0(𝑥) = (𝑄/(ℎ − ℎ0, 𝑄)) · 𝑥 + (ℎ − ℎ0)/(ℎ − ℎ0, 𝑄), we have
𝑓 (𝐿0 (𝑛)) ≤ 𝑓 ((ℎ − ℎ0, 𝑄)) 𝑓 (𝐿0(𝑛)) and we may apply the previous argument to the polynomials
𝐿0, 𝐿1, . . . , 𝐿𝑘 (note that the two linear polynomials 𝐿0 and 𝐿0 have the same roots).

To bound the h-sum, define 𝑓𝑄 (𝑛) =
∏
𝑝 | (𝑄,𝑛) 𝑓 (𝑝), and note, again using Lemma 4.1, that

∑
|ℎ |<𝐻

𝑓 ((ℎ − ℎ0, 𝑄))𝑔(𝐷 (ℎ))𝐶+𝑘+1 �𝑘,𝑊

∑
|ℎ |<𝐻

𝑓𝑄 (ℎ − ℎ0)
𝑘∏
𝑖=1

𝑔(ℎ − ℎ𝑖)𝐶+𝑘+1

� 𝐻 · 𝑔(𝐷2)𝐶

(log 𝐻)𝑘+1

∏
𝑝<𝐻

(1 + 𝑓𝑄 (𝑝)/𝑝) (
∏
𝑝<𝐻

(1 + 𝑔(𝑝)𝐶+𝑘+1/𝑝))𝑘

�𝑘 𝑔(𝐷2)𝐶𝐻 �𝑘,𝑊 𝐻 (log log log log 𝑥)2𝐶 . �

C.4.2. Completing the proof of Lemma C.1
We are now ready to prove Lemma C.1.

Proof of Lemma C.1. With 𝑔(𝑛) :=
∏
𝑝 |𝑛 (1 + 1/𝑝), note that Δ𝐷 (ℎ) = 𝑔(𝐷 (ℎ))𝐶 . Using Lemma C.5,

we find that∑
𝑛∈N3 (𝑥)

𝑓 (𝑄𝑛 − ℎ0 + ℎ) � 𝑓 ((ℎ − ℎ0, 𝑄))𝑔(𝐷 (ℎ))𝐶+𝑘+1 𝑥

(log 𝑥)𝑘+1

∏
𝑝≤𝑥

(1 + 𝑓 (𝑝)/𝑝)

and, for 𝐻 ≥ (log 𝑥)1/4,∑
|ℎ |<𝐻

𝑓 ((ℎ − ℎ0, 𝑄))𝑔(𝐷 (ℎ))𝐶+𝑘+1 � 𝐻 (log log log log 𝑥)2𝐶 .

Taking 𝑓 = 𝑏 and 𝐻 =
√

log 𝑥/𝑈, together with Chebyshev’s inequality, gives the desired bound for the
first sum.

Taking 𝑓 = 𝑟/4 and using that apart from n in a small subset of N3, 𝑏(𝑄𝑛 − ℎ0 + ℎ) = 0
for |ℎ| ≤ (log 𝑥)1/2/𝑈 and ℎ ∉H (from the condition in the first sum), the second bound follows
from Lemma C.5 if we use a dyadic decomposition of the h-sum, say for intervals of the form
[2𝑖 (log 𝑥)1/2/𝑈, 2𝑖+𝑖 (log 𝑥)1/2/𝑈], and then using Chebyshev’s inequality.
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For the third sum, again we use that 𝑏(𝑄𝑛 − ℎ0 + ℎ) = 0 for |ℎ| ≤ (log 𝑥)1/2/𝑈 and ℎ ∉ H which
gives, for n outside a small exceptional set, that∑

|ℎ | ≥𝑈,ℎ∉H

𝑟 (𝑄𝑛 − ℎ0 + ℎ)
ℎ2 =

∑
|ℎ | ≥(log 𝑥)1/2/𝑈,ℎ∉H

𝑟 (𝑄𝑛 − ℎ0 + ℎ)
ℎ2 .

Summing over n outside this small subset, the result follows from Lemma C.5 by taking 𝑓 = 𝑟/4, together
with Chebyshev’s inequality. (The sum over h is easily treated by splitting into dyadic intervals.) �
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