Canad. Math. Bull. Vol. 21 (2), 1978

A REFLEXIVE BANACH SPACE THAT IS LUR AND NOT 2R

BY
MARK A. SMITH

Abstract. An example of the type described in the title is given.
A Banach space B is locally uniformly rotund (LUR) [2] if the conditions $\|x\|=\left\|x_{n}\right\|=1$ and $\lim _{n \rightarrow \infty}\left\|x+x_{n}\right\|=2$ imply $\lim _{n \rightarrow \infty}\left\|x-x_{n}\right\|=0$.

A Banach space B is fully 2 -rotund (2R) [1] if the conditions $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=1$ and $\lim _{m, n \rightarrow \infty}\left\|x_{m}+x_{n}\right\|=2$ imply the sequence $\left\{x_{n}\right\}$ is convergent.

The purpose of this note is to answer negatively the following question posed by V. D. Mil'man [3, p. 97]: Is every reflexive, locally uniformly rotund Banach space fully 2 -rotund?

For $x=\left(x^{i}\right)_{j=1}^{\infty}$ a member of ℓ^{2}, define

$$
\|x\|=\max \left\{\sup _{\substack{i, j \\ i \neq j}}\left(\left|x^{i}\right|+\left|x^{i}\right|\right),\|x\|_{2}\right\}
$$

where $\|\cdot\|_{2}$ denotes the usual ℓ^{2} norm, and for each positive integer k let $R_{k} x=\sum_{k}^{\infty} x^{j} e_{j}$ where $\left\{e_{j}\right\}$ denotes the usual unit vector basis for ℓ^{2}. Now, define

$$
\|x\|_{1}=\sum_{1}^{\infty} 2^{-k}\left\|R_{k} x\right\| .
$$

It is easy to verify that $\|\cdot\|$, and consequently $\|\cdot\|_{1}$, is a norm on ℓ^{2} that is equivalent to $\|\cdot\|_{2}$. Finally, for $x=\left(x^{i}\right)_{i=1}^{\infty}$ in ℓ^{2} define the equivalent norm:

$$
\|x\|_{M}=\left(\|x\|_{1}^{2}+J^{2}(x)\right)^{1 / 2}
$$

where $J^{2}(x)=\sum_{1}^{\infty} 2^{-j}\left|x^{j}\right|^{2}$.
It follows from the proofs of Theorem 1.7 and Theorem 1.10 of [3] that ($\ell^{2} ;\|\cdot\|_{M}$) is locally uniformly rotund.

To see that $\left(\ell^{2} ;\|\cdot\|_{M}\right)$ is not fully 2 -rotund, let $x_{n}=e_{n}$. Then $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{M}=1$ and $\lim _{m, n \rightarrow \infty}\left\|x_{m}+x_{n}\right\|_{M}=2$, but $\left\{x_{n}\right\}$ is not a convergent sequence.

References

1. K. Fan and I. Glicksberg, Fully convex normed linear speces, Proc. Nat. Acad. Sci. U.S.A. 41 . (1955), 947-953.
2. A. R. Lovaglia, Locally uniformly convex Banach spaces, Trans. Amer. Math. Soc. 78 (1955), 225-238.

Received by the editors September 15, 1977.
3. V. D. Mil'man, Geometric theory of Banach spaces II: Geometry of the unit sphere, Uspehi Mat. Nauk 26 (1971), 73-149; Russian Math. Surveys 26 (1971), 79-163.

Department of Mathematics and Statistics
Miami University
Oxford, Ohio 45056
U.S.A.

