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Abstract. It is well known that every ¢nite subgroup of GLd �Q`� is conjugate to a subgroup of
GLd �Z`�. However, this does not remain true if we replace general linear groups by symplectic
groups. We say that G is a group of inertia type of G is a ¢nite group which has a normal
Sylow-p-subgroup with cyclic quotient. We show that if ` > d � 1, and G is a subgroup of
Sp2d �Q`� of inertia type, then G is conjugate in GL2d �Q`� to a subgroup of Sp2d �Z`�.We give
examples which show that the bound is sharp. We apply these results to construct, for every
odd prime ,̀ isogeny classes of Abelian varieties all of whose polarizations have degree divisible
by `2.We prove similar results for Euler characteristic of invertible sheaves on Abelian varieties
over ¢elds of positive characteristic.
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1. Introduction

In this paper we obtain isogeny classes of Abelian varieties all of whose polarizations
have degree divisible by a given prime (for all odd primes ` and for all dimensions
dX `ÿ 1). In particular, these Abelian varieties do not admit a principal
polarization. Everett Howe ([8]; see also [9]) obtained examples of isogeny classes
of Abelian varieties with no principal polarizations. We believe our results give
the ¢rst examples for which all the polarizations of the Abelian varieties in the
isogeny classes have degree divisible by a given prime. Howe's examples are of ordi-
nary Abelian varieties over ¢nite ¢elds, while ours are supersingular Abelian var-
ieties over in¢nite ¢elds (in every positive characteristic).

These results rely on a study of `-adic representations of ¢nite groups, especially
inertia groups (see Sections 4^6). In recent years, `-adic Galois representations
associated to Abelian varieties have played an important role in answering
number-theoretic questions. One motivation for the representation-theoretic results
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in this paper was to better understand the `-adic symplectic representations of inertia
groups which arise from Abelian varieties.

We will say that a group is ``of inertia type'' if it is a ¢nite group which has a
normal Sylow-p-subgroup with cyclic quotient, for some prime p ( 6� `). These groups
are exactly the inertia groups of ¢nite Galois extensions of discrete valuation ¢elds of
residue characteristic p (see Corollaire 4 and the remark which follows in Chapitre
IV, Section 2 of [16]).

In [22] we studied certain groups of inertia type that arose from work of
Grothendieck and Serre. These groups are the Galois groups of the smallest
extensions over which Abelian varieties over local ¢elds acquire semistable
reduction. We showed that these groups embed in a product of the Q`-points of
a symplectic group and the Z-points of a general linear group (see Theorem 5.2i
of [22]). In certain cases (for example, in the case of potentially good reduction),
the general linear group is trivial and the group embeds naturally into the Q`-points
of a symplectic group. In such cases the image of the embedding lands in the
Z`-points of the symplectic group, as long as ` does not divide the order of the ¢nite
inertia group or the degree of some polarization (see Theorem 5.2ii of [22]). In
Theorem 5.2iii of [22] we showed that the ¢nite inertia group is conjugate in the
general linear group to a subgroup of the Z`-points of the symplectic group, even
if one knows only that ` does not divide the order of the inertia group (see also
Theorem 5.3 of [22]). Assuming in addition that ` is odd, then reduction modulo
` gives an embedding of the ¢nite group in the F`-points of the symplectic group,
where F` is the ¢nite ¢eld with ` elements. These results provide restrictions on what
the ¢nite inertia groups can be.

This leads naturally to the question of when a ¢nite subgroup G of Sp2d�Q`� is
conjugate in the general linear group GL2d�Q`� to a subgroup of Sp2d�Z`� (or
can be embedded in Sp2d�F`�). (Of course, G lies in some maximal compact
subgroup of Sp2d�Q`�, but not necessarily in a hyperspecial one.) We treat this
question in Sections 4 and 6. Theorem 6.2 gives examples of subgroups of
Sp2d�Q`� of inertia type which are not conjugate in GL2d�Q`� to a subgroup of
Sp2d�Z`�. In these examples, `W d � 1. However, it follows from Theorem 4.3 that
if ` > d � 1, and G is a subgroup of Sp2d�Q`� of inertia type, then G is conjugate
in GL2d�Q`� to a subgroup of Sp2d�Z`�. The results in Section 6 show that our
bounds are sharp.

It is well-known that every ¢nite subgroup of GLd�Q`� is conjugate to a subgroup
of GLd �Z`� (see Part II, Chapter IV, Appendix 1 of [18]). The results in Section
6 show that this does not remain true in general if one replaces general linear groups
by symplectic groups. However, every ¢nite `0-subgroup of the symplectic group
Sp2d�Q`� is conjugate in GL2d �Q`� to a subgroup of Sp2d �Z`� (see Proposition 3.3
of [22]). It is known that every ¢nite subgroup of Sp2d�Q`� is conjugate in
Sp2d�F � to a subgroup of Sp2d�OF �, for some totally rami¢ed extension F of Q` with
valuation ring OF (this is a special case of a general result about reductive group
schemesö see Proposition 8 of [19]). We refer to [2] and [3] for a concrete description
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of classical groups over local ¢elds (see also Chapters 19 and 20 in [7]).
Despite the fact that G can fail to be conjugate in GL2d�Q`� to a subgroup of

Sp2d�Z`�, we prove (see Theorem 5.1) that it can nevertheless be embedded in
Sp2d�F`� in such a way that the characteristic polynomials are preserved (mod
`), as long as ` > 3. We show that these results hold for arbitrary self-dual `-adic
representations, not just symplectic ones. They also hold for arbitrary ¢nite groups,
even if they are not of inertia type. Theorem 6.5 shows that the bound is sharp.

In Section 7 we apply the results of the earlier sections to Abelian varieties, and
obtain isogeny classes of Abelian varieties all of whose polarizations have degree
divisible by a given prime number. We give the result in the more general context
of invertible sheaves.

As stated above, this paper arose from the consideration of questions in the theory
of Abelian varieties, and deals with questions about conjugacy of inertia subgroups
of Sp2d in GL2d over local ¢elds. However, this conjugacy problem may be treated
as a special case of the following general problem. Given a reductive group G over
a local ¢eld K , and given a reductive subgroup H of G, ¢nd conditions under which
a ¢nite inertia group G � H�K� is conjugate in G�K� to a subgroup of a hyperspecial
subgroup of H�K�. (In this paper we treat the case G � GL2d , H � Sp2d .) It seems
to us that this general question deserves to be studied.

2. De¢nitions and Notation

Suppose ` is a prime number, and K is a discrete valuation ¢eld of characteristic zero
and residue characteristic `. We will let v : K� ! Z denote the valuation map,
normalized so that v�K�� � Z. LetOK denote the valuation ring, and let e�K� denote
the (absolute) rami¢cation degree, i.e., e�K� � v�`�. Let zn denote a primitive nth root
of unity in an algebraic closure of K , and let m` denote the multiplicative subgroup
generated by z`. If K is a complete discrete valuation ¢eld, then K contains Q`.
If F is a ¢eld and Q` � F � K , let e�K=F � denote the (relative) rami¢cation degree
of K over F .

DEFINITION 2.1. A semisimple algebra is quasisplit if it is a direct sum of matrix
algebras over (commutative) ¢elds.

The terminology ``split semisimple'' is used instead of ``quasisplit'' in [4] (Vol. I,
Defn. 3.35).

We ¢x once and for all a prime number p.

DEFINITION 2.2. We say G is a group of inertia type if G is a ¢nite group, and there
exists a normal p-subgroup H of G such that the quotient G=H is cyclic of order
prime to p.
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DEFINITION 2.3. We say G satis¢es �D`� if ` is a prime number, G is a ¢nite group,
and there is a normal subgroupN ofG of order prime to ` such that the quotientG=N
is a cyclic `-group.

DEFINITION 2.4. If K is a ¢eld, V is a K-vector space, G is a group, and V is a
G-module, then we say V is a self-dual K �G�-module if there exists a nondegenerate
G-invariant bilinear form f : V � V ! K . We say V is a symplectic (respectively,
orthogonal) K �G�-module if f is alternating (respectively, symmetric).

DEFINITION 2.5. Suppose R is a principal ideal domain, and T1 and T2 are free
R-modules. A bilinear form f : T1 � T2! R is perfect if the natural
homomorphisms T1! Hom�T2;R� and T2 ! Hom�T1;R� are bijective.

Remark 2.6. Suppose R is a principal ideal domain, T is a free R-module of rank
2n, and f : T � T ! R is an alternating bilinear form. If f is perfect, then
Aut�T ; f � � Sp2n�R�, where Sp2n�R� denotes the group of 2n� 2n symplectic
matrices over R.

DEFINITION 2.7. The generalized quaternion group Qm is the group of order 4m
with the presentation:

Qm � ha; b : a2m � 1; b2 � am; babÿ1 � aÿ1i
(see 1.24ii, Vol. I of [4]). Note that Q2 is the quaternion group of order 8.

DEFINITION 2.8. Let Cn denote the cyclic group of order n. If p is odd, let Np

denote the semi-direct product of C2�pÿ1� by mp, with the obvious action:
C2�pÿ1�!!Cpÿ1 � Aut�mp�. (Note that N3 � Q3.) Let N2 � Q2.

3. Lemmas

Our main technical tool in Section 4 is the following theorem of Serre.

THEOREM3.1 (Serre [15]). If G is a group of inertia type, ` is a prime, and ` 6� p, then
Q`�G� is quasisplit.

LEMMA 3.2. If G is a group of inertia type, then G satis¢es �D`� for every prime ` 6� p.
Proof. We use the notation of De¢nitions 2.2 and 2.3. Let C � G=H and let L be

the quotient of C by its prime-to-` part. Let N be the kernel of the composition
G!!C!!L. Then N is a normal `0-subgroup of G, G=N � L, and L is a cyclic
`-group. &

The next result follows immediately from the Schur^Zassenhaus Theorem.
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LEMMA 3.3. If G satis¢es �D`�, then there exists a cyclic `-subgroup L of G such that
G is the semidirect product of N by L.

The following result is an easy exercise.

LEMMA 3.4. If G is a group of inertia type, and C is a normal subgroup of G, then
G=C is a group of inertia type.

LEMMA 3.5. Suppose K is a complete discrete valuation ¢eld of characteristic zero
and ¢nite residue characteristic, m is the maximal ideal of the valuation ring OK,
and k � OK=m is the residue ¢eld. Suppose N is a ¢nite group whose order is not
divisible by char�k�. Suppose V is a simple K �N�-module, and T is an N-stable
OK-lattice in V. Then T=mT is simple as a k�N�-module.

Proof. See Sections 14.4 and 15.5 of [17].

PROPOSITION 3.6. Suppose ` is a prime number, N is a ¢nite group of order prime to
`, and K is a complete discrete valuation ¢eld of characteristic zero and residue
characteristic `. Suppose V is a simple K �N�-module, suppose f : V � V ! K is a
K-bilinear nondegenerate N-invariant pairing, suppose T is an N-stable OK-lattice
in V, and suppose f �T ;T � � OK. Let m denote the maximal ideal of OK. Then
the restriction f : T � T !OK is perfect, and the reduction
�f : T=mT � T=mT !OK=m is nondegenerate.
Proof. Since V is a simple K �N�-module, T=mT is a simple �OK=m��N�-module, by

Lemma 3.5. Let W denote the (left) kernel of �f . Since W is N-stable, and T=mT is a
simple N-module, we have W � 0. Therefore, �f is nondegenerate. By Nakayama's
Lemma, f : T � T !OK is perfect. &

LEMMA 3.7. Suppose ` is a prime number, d is a positive integer, K is a complete
discrete valuation ¢eld of characteristic zero and residue characteristic `,
e � e�K�, �K�z`� : K � � 2d, and ` � 2de� 1. Let T � OK �z`�. Then there exists a
perfect alternating m` � f�1g-invariant pairing f 0: T � T !OK :

Proof. Note that e�Q`�z`�� � `ÿ 1. Under our hypotheses, e�K�z`�� � 2de � `ÿ 1,
and K�z`�=K is totally and tamely rami¢ed. Let Z � z` ÿ zÿ1` . Then Z is a uniformizer
for K�z`�. Let y 7!�y be the (unique) element of order two in Gal�K�z`�=K�, let Z1 be a
uniformizer forK , and de¢ne f 0 by f 0�x; y� � Zÿ11 trK�z`�=K �xZ�y�: Since ` does not divide
2d � �K�z`� : K�, we have trK�z`�=K �T � � OK . Therefore for i � 1; . . . ; 2d we have

Z1OK � trK�z`�=K �Z1T � � trK�z`�=K �ZiT � � ZiT \ OK � Z1OK :

If x 2 T ÿ Z1T , then x � Ziu with 0W i < 2d and u 2 T�. Therefore, f 0�x;T � � OK .
It follows that f 0 is perfect. &

PROPOSITION 3.8. Suppose G is a ¢nite group, N is a normal subgroup of G, W is a
¢nite-dimensional vector space over a ¢eld K, K�N� is quasisplit, and r is a positive
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integer. We can view Aut�W � as naturally contained in Aut�Wr�. Suppose
r : G! Aut�Wr� is a representation such that r�N� � Aut�W � � Aut�Wr� and such
that W is simple as a K �N�-module. Let Ad: G! Aut�End�Wr�� denote the corre-
sponding adjoint representation de¢ned by Ad�g��u� � r�g�ur�g�ÿ1 for
u 2 End�Wr� and g 2 G. Let E � EndN�W � � End�W � � End�Wr� and let J denote
the image of the natural map K�N� ! End�W � � End�Wr�. Then:
(a) J � EndE�W �,
(b) E � EndJ�W �,
(c) E is a ¢eld,
(d) the center of J is E,
(e) J and E are stable under the action of Ad�g� for every g 2 G,
(f) for every h 2 N, the action of Ad�h� on E is trivial.

Proof. By the Jacobson density theorem we have (a) and (b). Since K �N� is
quasisplit and W is an isotypic K�N�-module, we have that E is a ¢eld and E is
the center of J. Suppose g 2 G. Since N is normal in G, therefore J is stable under
Ad�g�. Since E is the center of J, it follows that E is stable under Ad�g�. Since
E commutes with r�N�, the action of Ad�h� on E is trivial for h 2 N. &

COROLLARY 3.9. Suppose ` is a prime number, suppose N is a ¢nite group of order
prime to `, suppose K is a complete discrete valuation ¢eld of characteristic zero and
residue characteristic `, suppose W is a simple K �N�-module, and suppose K�N� is
quasisplit. Let E � EndN �W �. Then E is a ¢eld and E=K is an unrami¢ed extension.

Proof. Note that if A is a normal subgroup of N, then K �N=A� is also quasisplit.
Therefore, replacing N by its image in Aut�W � we may assume that W is a faithful
K �N�-module. By Proposition 3.8, E is a ¢eld. By Theorem 24.7 of [5] (see also
Theorem 74.5ii, Vol. II of [4]), the ¢eld E is generated over K by the values of
the character of the representation of N on the E-vector space W . Thus,
E � K�zn�, where n � #N. Since n is not divisible by `, the extension E=K is
unrami¢ed.

LEMMA 3.10. Suppose ` is a prime number, K is a complete discrete valuation ¢eld of
characteristic zero and residue characteristic `, and e � e�K�. Suppose A 2 GLm�K�,
suppose A is not a scalar, and suppose A` is a scalar. Then mX �`ÿ 1�=e.

Proof. If A` is the scalar c 2 K�, let g�x� � x` ÿ c. Either g has a root in K , or g is
irreducible over K (see the end of p. 297 of [11]). If g is irreducible over K, then
mX ` since g�A� � 0. If g has a root g 2 K , then Agÿ1 is an element of GLm�K�
of exact order `. Therefore mX �K�z`� : K �X �`ÿ 1�=e. &

LEMMA 3.11. Suppose ` is an odd prime number, K is an unrami¢ed extension ofQ`,
M � K�z`�, d 2M� � K�z` � zÿ1` �, Z � z` ÿ zÿ1` , and trM=K �dOM� � OK . Then
trM=K �dZ`ÿ2OM� � `OK :
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Proof. Note that Z is a uniformizer for M and Z2 is a uniformizer for M�. Since
e�M� � `ÿ 1, the inverse different for the extensionM=K is Z2ÿ`OM (see Proposition
13 in Chapitre III, Section 6 of [16]). Therefore, d 2 Z2ÿ`OM \M� � Z3ÿ`OM� . Thus,

trM=K �dZ`ÿ2OM� � trM=K �ZOM� � `OK : H

The following ``rigidity'' result is in the spirit of similar results by Minkowski and
Serre (see for example Proposition 14, III.7.6 of [1]).

PROPOSITION 3.12. Suppose ` is a prime number, and K is a discrete valuation ¢eld
of characteristic zero and residue characteristic `. Let m denote the maximal ideal of
OK, and let e � e�K�. Suppose S is a free OK-module of ¢nite rank, and A is an
automorphism of S of ¢nite order. If either

(a) 2e < `ÿ 1 and �Aÿ 1�2 2 mEnd�S�, or
(b) e < `ÿ 1 and Aÿ 1 2 mEnd�S�,
then A � 1.

Proof. This follows directly from Theorem 6.2 of [21] for n � `, with k � 2e in case
(a), and with k � e in case (b). &

Note that the hypothesis 2e < `ÿ 1 is satis¢ed if e � 1 and `X 5.

LEMMA 3.13. Suppose L is a ¢eld of characteristic not equal to 2, and

f : L2 � L2! L is a nondegenerate symmetric pairing. Let g � 1 1
0 1

ÿ � 2 SL2�L�. Then
f is not g-invariant.

Proof. Let fu; vg denote the standard basis of L2 over L. Suppose f is g-invariant.
Then f �u; v� � f �gu; gv� � f �u; u� v�, i.e., f �u; u� � 0. Also, f �v; v� � f �gv; gv� �
f �u� v; u� v� � f �v; v� � 2f �u; v�, since f is symmetric. Since char�L� 6� 2, we have
f �u; v� � 0. Therefore f �u;w� � 0 for every w 2 L2, contradicting the nondegeneracy
of f . &

LEMMA 3.14. Suppose p is a prime number, and n is a positive integer relatively
prime to p�pÿ 1�. Suppose F is a perfect ¢eld containing Fp2 and a primitive n-th
root of unity. Then there exists a Galois extension L of the function ¢eld F �t�, totally
rami¢ed at t � 0, such that Gal�L=F �t�� � Np � mn. In particular, the completion
of L at t � 0 is a totally rami¢ed Galois extension of the ¢eld F��t�� of formal Laurent
series, with Galois group Np � mn.

Proof. First suppose p is odd. Let K be the function ¢eld (over F ) of the curve
y2 � xp ÿ x. The extension K=F �x� is a quadratic extension which is rami¢ed at
x � 1. One can view Np as a subgroup of Aut�K=F �, via the automorphisms

�x; y� 7! �ax� b; cy�
with a 2 F�p, b 2 Fp, c 2 F�p2 , and a � c2. Let t � 1=�xp ÿ x�pÿ1.
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If p � 2, let K be the function ¢eld (over F ) of the supersingular elliptic curve in
characteristic 2, E : y2 ÿ y � x3. Note (see [23]) that Aut�E��� SL2�F3�� �
N2 � Q2, with N2 corresponding to the subgroup of Aut�E� generated by

�x; y� 7! �x� a; y� a2x� a�
for a 2 F4 ÿ F2. Let t � 1=�x4 ÿ x�.

In both cases, Np acts trivially on F �t�, and

�K : F �t�� � 2�F �x� : F �t�� � 2 F �x� : F 1
t

� �� �
� #Np:

Therefore, Gal�K=F �t�� � Np. The extension K=F �t� is totally rami¢ed at t � 0. Let
L � K�t1=n�. Note that K and F �t1=n� are totally rami¢ed extensions of F �t� of rela-
tively prime degree. Therefore L is a totally rami¢ed extension of F , and

Gal�L=F �t�� � Gal�K=F �t�� �Gal�F �t1=n�=F �t�� � Np � mn: H

(See also Theorem 1 in Section 2 of [13], and [10].)

4. Embeddings over Z`

THEOREM 4.1. Suppose G is a group that satis¢es �D`�. Suppose K is a complete
discrete valuation ¢eld of characteristic zero and residue characteristic `, and
e � e�K�. Suppose V is a K-vector space of even dimension 2d, suppose
` > de� 1, suppose V is a faithful simple self-dual K�G�-module, and suppose
K �N� is quasisplit. Then either:

(a) V is simple as a K �N�-module, or
(b) ` � 2de� 1, V � K�z`�, and either G � m` or G � m` � f�1g, with the natural

action on V.

Proof. By Lemma 3.3, G has a cyclic `-subgroup L such that G is the semidirect
product of N by L. We have

�K�z`2� : K �X e�K�z`2 �=K�X `�`ÿ 1�=e > `d > 2d:

Since the characteristic polynomials of the elements of G acting onV have degree 2d,
and �K�z`2� : K � > 2d, therefore #L < `2. If #L � 1, then G � N and case (a) holds.
Therefore we may assume #L � `, and may identify L with m`.

An isotypic K �N�-module is, by de¢nition, a direct sum of isomorphic simple
K �N�-modules. Let V � �s

i�1Vi be the canonical decomposition of the K �N�-module
V into a direct sum of isotypic components (see 2.6 of [17]). The action of G on
V induces an action of G on the set of Vi's. Since V is a simple K �G�-module,
the action of G on fVig is transitive. Since N is normal in G, this action factors
through G=N. Since G=N has prime order `, either s � 1 and V is isotypic, or
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s � ` and V � �g2L�gV1�. In the latter case, 2d is divisible by `, contradicting the
hypothesis that ` > de� 1. Therefore V is isotypic, i.e., for some r 2 Z� we have
V �Wr, where W is a simple K �N�-module. The above proof followed the method
of proof of Proposition 24 in Section 8.1 of [17]; see also Clifford's Theorem [4],
Vol. 1, 11.1.

Since V is a faithful K �G�-module, it is a faithful K �N�-module. Therefore, W is a
faithful K �N�-module. If r � 1, then (a) holds. Thus, assume r > 1.

Suppose dimK �W � � 1. Since W is a faithful K �N�-module, we have N � K�.
Since V is a self-dual K �N�-module, we conclude that N � f�1g. Therefore, G is
isomorphic to m` or to m` � f�1g. Since V is a simple faithful K �G�-module, we have
V � K�z`�. Therefore �K�z`� : K � � dimK �V � � 2d, and `ÿ 1 divides 2de. Since
`ÿ 1 > de, therefore `ÿ 1 � 2de and (b) holds.

Therefore, we may assume that dimK �W �X 2 and rX 2. We will show that this
leads to a contradiction.

Let E � EndN �W �. We will show that E � K . By Corollary 3.9, E is a ¢eld and
E=K is an unrami¢ed extension. Let J denote the image of K �N� ! End�W �. By
Proposition 3.8, J � EndE�W �, G acts on J and E by conjugation, and the induced
action of N on E is trivial. If L acts nontrivially on E, then it acts faithfully, so
�E : K � is divisible by `. Since dimK �W � is divisible by �E : K �, r` divides
dimK �V � � 2d. This contradicts the fact that r`X 2` > 2�de� 1� > 2d. Therefore,
G commutes with E. Let g be a generator of L. Then g is an E-linear automorphism
of V of exact order `, so dimE�V �X �E�z`� : E�. Since E=K is unrami¢ed,

dimE�V �X �E�z`� : E�X e�K�z`�=K�X �`ÿ 1�=e > d:

If E 6� K , then dimE�V �W d, a contradiction. Therefore, E � K .
Since J � End�W �, therefore G acts on End�W � by ``conjugation''. Since G acts

trivially on E, by the Skolem^Noether Theorem there exists
A 2 Aut�W � � Aut�V � such that AuAÿ1 � gugÿ1 for every u 2 End�W �. Since
g` � 1, therefore A` commutes with all elements of End�W �. Thus A` is a scalar.

Suppose A is a scalar. Then we may replace A by the identity. Since
L � G � Aut�V �, we can view g as an element of Aut�V �. Since
N � End�W � � End�V �, we have that g is an element of
AutN �V � � AutN �Wr� � GLr�K� of exact order `. Therefore, rX �K�z`� : K � > d.
Thus, 2d � rdimK �W � > 2d, a contradiction.

Therefore A is not a scalar. By Lemma 3.10, we have dimK �W �X �`ÿ 1�=e > d.
Therefore 2d � rdimK �W � > 2d, a contradiction. &

THEOREM 4.2. Suppose G satis¢es �D`�, suppose K is a complete discrete valuation
¢eld of characteristic zero and residue characteristic `, suppose e � e�K�, suppose
V is a 2d-dimensional K-vector space and is a faithful simple symplectic K�G�-module,
and suppose ` > de� 1. Suppose K �N� is quasisplit. Then there exist a G-stable
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OK-lattice T in V and a perfect alternating G-invariant bilinear form

f 0 : T � T !OK :

Proof. By Theorem 4.1, we are in case (a) or (b). In case (b), apply Lemma 3.7. In
case (a), let f be the associated alternating pairing on V , and let T be a G-stable
OK -lattice in V . By multiplying f by a suitable power of a uniformizer, we can
assume that f �T ;T � � OK . Now apply Proposition 3.6. &

THEOREM 4.3. Suppose G is a group of inertia type, suppose ` is a prime number,
and suppose ` 6� p. Suppose K is a complete discrete valuation ¢eld of characteristic
zero and residue characteristic `, suppose e � e�K�, suppose V is a 2d-dimensional
K-vector space and is a symplectic K �G�-module, and suppose ` > de� 1. Then there
exist a G-stableOK-lattice T in V and a perfect alternating G-invariant bilinear form
f 0 : T � T !OK :

Proof. We can reduce to the case where V is a simple symplectic K �G�-module as
follows. Let f be the associated alternating pairing on V . Write V as a direct
sum of simple K �G�-modules V � V1 � � � � � Vk: If for some i the restriction fi
of f to Vi is not identically zero, then fi is nondegenerate. Let V 0i be the orthogonal
complement of Vi in V with respect to f . Clearly, the restriction of f to V 0i is also
nondegenerate. Apply induction to the symplecticK �G�-modulesVi andV 0i , to obtain
the desired result. We may therefore assume that f �Vi;Vi� � 0 for every i. Since f is
nondegenerate, there exists a Vj such that f �V1;Vj� 6� 0. Since V1 and Vj are simple
K �G�-modules, f : V1 � Vj ! K is nondegenerate. Thus the restriction ~f of f to
W � V1 � Vj is nondegenerate. Let V 00 denote the orthogonal complement of W
in V with respect to f . Again by induction, we obtain a G-stable lattice T 00 in
V 00 and a G-invariant perfect OK -valued alternating pairing f 00 on T 00. Let T1 be
a G-stable OK -lattice in V1, let

Tj � fx 2 Vj : f �T1; x� � OK g;

let T � T1 � Tj � T 00, and let f 0 � ~f � f 00.
By Lemma 3.4, replacing G by its image in Aut�V �, we may reduce to the case

where V is a faithful simple symplectic K �G�-module. Suppose ` is a prime and
` 6� p. By Lemma 3.2,G satis¢es �D`�, and we have a corresponding normal subgroup
N. By Theorem 3.1, Q`�N� is quasisplit. Therefore, K�N� is quasisplit. The theorem
now follows from Theorem 4.2.

Remark 4.4. If d � 1, then dimK �V � � 2 and Aut�V ; f � � SL�V �. In this case the
conclusion of Theorems 4.2 and 4.3 holds without the requirement that
` > de� 1. Indeed, one can let T be any G-stable OK -lattice in V , and let
f 0 : T � T !OK be any alternating perfect pairing.
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5. Embeddings over F`

The following result holds for arbitrary ¢nite groups (not just those of inertia
type) and for arbitrary nondegenerate self-dual pairings (not just alternating
ones).

THEOREM 5.1. Suppose ` is a prime number, and K is a discrete valuation ¢eld of
characteristic zero and residue characteristic `. Let m denote the maximal ideal,
let k � OK=m, let e � e�K�, and suppose 2e < `ÿ 1. Suppose V is a K-vector space
of ¢nite dimension n, suppose f : V � V ! K is a nondegenerate alternating
(respectively, symmetric) K-bilinear form, suppose G is a ¢nite group, and suppose
r : G ,!AutK �V ; f � is a faithful representation of G on V that preserves the form
f . Then there exist a nondegenerate alternating (respectively, symmetric) k-valued
k-bilinear form f 0 on k

n, and a faithful representation �r : G ,!Autk�kn; f 0�; such that
for every g 2 G, the characteristic polynomial of �r�g� is the reduction modulom of the
characteristic polynomial of r�g�.

Proof. If S is a G-stable OK -lattice in V , let S� � fx 2 V : f �x;S� � OKg: Fix a
G-stable OK -lattice S in V . Let Z denote a uniformizer for OK . Multiplying f by
an integral power of Z if necessary, we may assume that f �S;S� � OK . Then
S � S�. Let S0 � S and let

Si�1 � Si � �Zÿ1Si \ ZS�i � for iX 0:

Then Si is a G-stable OK -lattice in V , f �Si;Si� � OK , and Si � Si�1 � S�i�1 � S�i .
Note that Si�1 � Si if and only if ZS�i � Si. We have

S � S0 � S1 � S2 � . . . � S�:

Since S�=S is ¢nite, we have Sj � Sj�1 for some j. Let T � Sj. Then T is a G-stable
OK -lattice in V such that f �T ;T � � OK and mT� � ZT� � T .

Let �f : T=mT � T=mT ! k be the reduction of f modulo m. Then
ker��f � � mT�=mT � T�=T . Clearly, �f is nondegenerate on �T=mT �= ker��f � �
T=mT�. On T� � T�, the form Zf is OK -valued. Let ~f denote the reduction modulo
m of the restriction of Zf to T� � T�. Since �T��� � T , we have ker�~f � �
T=mT�. Therefore, ~f is nondegenerate on �T�=mT��= �T=mT�� � T�=T � ker��f �.
We thus obtain a homomorphism

c : G! Autk��T=mT �= ker��f �; �f � �Autk�ker� �f �; ~f � �
Aut k�T=mT�; �f � �Autk�T�=T ; ~f �,!Autk�T�=mT�; �f � ~f � � Autk�kn; f 0�

for an appropriate pairing f 0. All the elements s 2 ker�c� act as the identity on
T=mT� and on T�=T , and thus �sÿ 1�2T� � mT�. Proposition 3.12a implies c
is injective. Let �r � c. &

Remark 5.2. If one is concerned only with preserving the characteristic
polynomials, and does not insist that �r be an embedding, then in the symplectic
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case the above result can instead be achieved with the aid of Proposition 8 of [19],
rather than Proposition 3.12a above.

Remark 5.3. In the symplectic case, one can obtain the result by using the descrip-
tion of maximal bounded subgroups (maximal compact subgroups in the case of
locally compact K) from the theory of buildings. The maximal bounded subgroups
G of Sp2d �K� are the stabilizers of lattices L which are orthogonal direct sums
�L1; f1� � �L2; Zf2� where Z is a uniformizer, and f1 and f2 are perfect alternating
forms on the lattices L1 and L2, respectively. We may assume G � G. The action
of G on L=ZL induces the desired map

�r : G ,!Sp�L1=ZL1� � Sp�L2=ZL2�
(if g 2 ker� �r�, then �gÿ 1�2 � 0�mod Z�; if g has ¢nite order, then g � 1 under our
hypotheses).

THEOREM 5.4. Suppose ` is a prime number, and L is a discrete valuation ¢eld of
characteristic zero and residue characteristic `. Suppose K is a quadratic extension
of L, let m denote the maximal ideal, and let k � OK=m. Let e � e�K�, and suppose
2e < `ÿ 1. Suppose V is a K-vector space of ¢nite dimension n, suppose
f : V � V ! K is a nondegenerate pairing which is Hermitian (respectively,
skew-Hermitian) with respect to the extension K=L, suppose G is a ¢nite group,
and suppose r : G ,!AutK �V ; f � is a faithful representation. Suppose K=L is
unrami¢ed and thus k is a quadratic extension of the residue ¢eld kL of L. Then there
exist a nondegenerate k-valued pairing f 0 on kn which is Hermitian (respectively,
skew-Hermitian) with respect to the extension k=kL, and a faithful representation
�r : G ,!Autk�kn; f 0�, such that for every g 2 G, the characteristic polynomial of
�r�g� is the reduction modulo m of the characteristic polynomial of r�g�.
Proof. Let Z denote a uniformizer for L. Then Z is also a uniformizer forK , and the

proof is a repetition of the proof of Theorem 5.1. The reductions �f and ~f are now
Hermitian (respectively, skew-Hermitian). &

Remark 5.5. In the setting of Theorem 5.4, suppose now thatK=L is rami¢ed. Then
kL � k, and one can writeK � L� ����

D
p �whereD is a uniformizer for L and Z � ����

D
p

is a
uniformizer forK . Let S be aG-stableOK -lattice inV . Then Zrf �S;S� � OK for some
integer r. If r is even then Zrf is hermitian (respectively, skew-Hermitian) and its
reduction is symmetric (respectively, alternating). Further, Zr�1f is skew-Hermitian
(respectively, Hermitian) and its reduction is alternating (respectively, symmetric).
If r is odd, then Zrf is skew-Hermitian (respectively, Hermitian) and its reduction
is alternating (respectively, symmetric). Further, Zr�1f is hermitian (respectively,
skew-hermitian) and its reduction is symmetric (respectively, alternating). In all
cases one can proceed as in Theorem 5.1 and obtain an embedding of G into a prod-
uct of an orthogonal group Os�k� and a symplectic group Spnÿs�k�, which ``respects''
the characteristic polynomials.
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6. Sharpness

The next proposition shows that one cannot replace ``symplectic'' by ``orthogonal''
in the statements of Theorems 4.2 and 4.3. Here, e � 1 and `ÿ 1 � 2d � 2de > de.

PROPOSITION 6.1. Suppose ` is an odd prime. Let G � m`, letM � Q`�z`�, and let V
be M viewed as a Q`-vector space. Then V carries a natural structure of a faithful
simple orthogonalQ`�G�-module, but there is no G-stable lattice T in V with a perfect
symmetric G-invariant pairing f 0 : T � T ! Z`.

Proof. De¢ne f : V � V ! Q` to f �x; y� � trM=Q`
�x�y�; where y 7! �y is the

automorphism ofM overQ` which sends z` to its inverse. Then f is a nondegenerate
symmetric G-invariant pairing. Let S � Z`�z`� and let M� � Q`�z` � zÿ1` �. We have
EndG�V � �M. Suppose T is a G-stable Z`-lattice in V and f 0 : T � T ! Z` is a
G-invariant perfect symmetric bilinear form. Every nondegenerate G-invariant sym-
metric bilinear form on V is of the form fd�x; y� � f �dx; y� for some d 2 �M���.
Therefore f 0 � fd for some d 2M�. Let Z � z` ÿ zÿ1` . Then Z is a uniformizer for
M and Z2 is a uniformizer for M�. Since T is a G-stable Z`-lattice in V , therefore
T is a Z`�z`�-lattice. Since V is a one-dimensional Q`�z`�-vector space, it follows
that T � ZrS for some r 2 Z. Replacing d by d�Z�Z�r, we can reduce to the case where
fd is a perfect Z`-valued pairing on S. Since fd�S;S� � Z`, therefore
trM=Q`

�dS� � Z`. By Lemma 3.11, fd�Z`ÿ2S;S� � `Z`. The perfectness of
fd : S � S! Z` is now contradicted by the fact that Z`ÿ2S contains elements of
S ÿ `S. &

The following results show that the bound ` > de� 1 in Section 4 is sharp.

THEOREM 6.2. Suppose ` is an odd prime, N is a ¢nite group of order not divisible by
`, K is a complete discrete valuation ¢eld of characteristic zero and residue charac-
teristic ` which is an unrami¢ed extension ofQ`, and W is a non-zero K-vector space
which is also an absolutely simple faithful symplectic K �N�-module. Let
G � N � m`, and let V �W 
K K�z`�. Then V carries a natural structure of a faithful
symplectic K �G�-module, but there is no G-stable OK-lattice T in V with a perfect
alternating G-invariant pairing f 0 : T � T !OK.

Proof. Let T1 be an N-stable Z`-lattice in W . Multiplying the given alternating
N-invariant pairing f1 on W by a suitable power of `, we may assume that
f1�T1;T1� � OK . Since #N is not divisible by `, it follows from Proposition 3.6 that
f1 : T1 � T1!OK is perfect.

Let M � K�z`�, and let W2 be M viewed as a K-vector space. De¢ne

f2 : W2 �W2! K by f2�a; b� � trM=K �a �b�;
where b 7! �b is the automorphism ofM over K which sends z` to its inverse. Then f2
is a nondegenerate m`-invariant symmetric pairing. Let f � f1 
 f2. Then f is a
nondegenerate G-invariant alternating pairing, with respect to which V is a faithful
symplectic K �G�-module. We have EndN�W � � K . Since Endm` �W2� �M, we have
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EndG�V � �M. It therefore follows from the de¢nition of f that every nondegenerate
G-invariant alternating bilinear form on V is of the form fd�x; y� � f �dx; y� for some
d 2 �M���, where M� � K�z` � zÿ1` �. Let S � T1 
OK OM � V , and let k denote the
residue ¢eld of K . By Lemma 3.5, S=�1ÿ z`�S (� T1=`T1) is a simple k�N�-module,
and therefore is a simple k�G�-module. Let Z � z` ÿ zÿ1` . Every G-stable OK -lattice
in the K-vector space V is an OM-lattice. By Exercise 15.3 of [17], it follows that
every G-stable lattice in V is of the form ZrS with r 2 Z. Thus if T is a G-stable
lattice in V and f 0 : T � T ! Z` is a G-invariant perfect alternating pairing, then
there exist r 2 Z and d 2M� such that T � ZrS and f 0 � fd. Replacing d by
d�Z�Z�r, we can reduce to the case where fd is a perfect OK -valued pairing on S. Since
fd�S;S� � OK , therefore trM=K �dS� � OK . By Lemma 3.11, fd�Z`ÿ2S;S� � `OK .
The perfectness of fd : S � S!OK is contradicted by the fact that Z`ÿ2S contains
elements of S ÿ `S. &

Applying Theorem 6.2 to the family of examples in the next result, we obtain
examples which show that for all primes p and for all odd primes ` 6� p, the bound
` > de� 1 in Theorem 4.3 is sharp. In these examples we have that e � 1 and
`ÿ 1 � d � de, and the group G � N � m` is a group of inertia type.

PROPOSITION 6.3. Let q � p if p is odd, and let q � 4 if p � 2. Assume that the
quadruple �`;K;W ;N� is as in one of the following two cases.

(a) Let ` be an odd prime di¡erent from p, let K � Q`�zq�, let W � K2, and let N be the
subgroup of SL�W � generated by

zq 0
0 zÿ1q

� �
and

0 ÿ1
1 0

� �
:

(b) Let ` be an odd prime di¡erent from p such that ` � ÿ1�mod q�. Let K � Q`, and
let W be the two-dimensional Q`-vector space Q`�zq�. Let s be the nontrivial
automorphism of the quadratic extension Q`�zq�=Q`. Pick a 2 Q`�zq� such that
NormQ`�zq�=Q`

�a� � ÿ1 (this can be done since Q`�zq�=Q` is unrami¢ed). Let N
be the subgroup of SL�W �generated by zq (with the natural action) and the element
t of order 4 de¢ned by t�x� � as�x� for x 2W.

Then `, K, N, andW satisfy the hypotheses of Theorem 6.2, and G � N � m` is a group
of inertia type.

Proof. The group N is the generalized quaternion group Qp of order 4p. Since N is
non-Abelian and W is a two-dimensional faithful K �N�-module, it follows that W is
an absolutely simpleK �N�-module. If p is odd, then mp is a normal subgroup ofN and
G, and G=mp is cyclic of order 4`. If p � 2, thenN is a normal Sylow-2-subgroup of G,
and G=N is cyclic of order `. In each case, G is of inertia type. &

Note that Q`�zq� � Q` if and only if ` � 1�mod q�. Therefore when p � 2 or 3, the
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preceding result yields examples which establish the sharpness of the bound
` > de� 1 in Theorem 4.3 with K � Q` and d � `ÿ 1, for all odd primes ` 6� p.

When `, K ,N, andW are as in Proposition 6.3, and b is a positive integer, then the
following result gives examples where e � 1 and de � d � `ÿ 1� b, thereby provid-
ing examples which do not satisfy the conclusion of Theorem 4.3, for all odd primes
`W de� 1 different from p.

COROLLARY 6.4. Suppose `, N, K,W, V, and G are as in Theorem 6.2, and b 2 Z�.
Let W0 be the K-vector space K2b with trivial G-action, and let U be the K�G�-module
V �W0. Then U carries a natural structure of a faithful symplectic K�G�-module,
but there is no G-stable OK-lattice T in U with a perfect alternating G-invariant
pairing f 0: T � T !OK.

Proof. The natural symplectic structure on U arises from the sum of the natural
alternating pairing on V and the standard alternating pairing on W0. Let
t � �#N�ÿ1Ph2N h 2 Z`�N�. Then t2 � t, tU �W0, and �1ÿ t�U � V . Suppose
T is a G-stable OK -lattice in U and f 0 : T � T !OK is a perfect alternating
G-invariant pairing. Let T1 � �1ÿ t�T and let T2 � tT . Then T � T1 � T2, and
T1 (respectively, T2) is a G-stable OK -lattice in V (respectively, W0). Since f 0 is
G-invariant and the G-action on W0 is trivial, we have
f 0�x; y� � f 0�gx; gy� � f 0�gx; y� for every x 2 T1, y 2 T2, and g 2 G. Therefore,
f 0��1ÿ g�T1;T2� � 0 for every g 2 G. Since V is a simple K �G�-module, therefore
the �1ÿ g�T1's generate T1. Thus, f 0�T1;T2� � 0. Since f 0 is perfect, it follows that
the restriction of f 0 to T1 � T1 is perfect, contradicting Theorem 6.2. &

Theorems 6.5 and 6.6 below enable us to obtain examples with e � �`ÿ 1�=2. In
particular, Theorem 6.5 gives examples which show that the bound ` > 2e� 1 in
Theorem 5.1 is sharp. The proof of Theorem 6.6 uses Theorem 6.5.

THEOREM 6.5. Suppose ` is an odd prime number, F is a complete discrete valuation
¢eld of characteristic zero and residue characteristic ` which is an unrami¢ed exten-
sion of Q`, and N is a ¢nite group of order not divisible by `. Let
K � F �z` � zÿ1` �, let m denote the maximal ideal of OK, and let k � OK=m. Suppose
W is a nonzero K-vector space which is also an absolutely simple faithful symplectic
K �N�-module, and write dimK �W � � 2t. Let V be the K-vector space W 
K K�z`�,
and let G � N � m`. Then there are a natural nondegenerate alternating K-bilinear
form f : V � V ! K and a natural faithful irreducible representation
r : G ,!AutK �V ; f �. If L is a ¢eld which contains k, and f0 : L4t � L4t! L is a
nondegenerate L-bilinear alternating form, then there does not exist a faithful rep-
resentation �r : G ,!AutL�L4t; f0� having the property that for every g 2 G,
tr� �r�g�� � tr�r�g�� �mod m�.

Proof. Let M � F �z`�, let x 7! �x denote the nontrivial automorphism of M over
K , and letV2 beM viewed as a two-dimensionalK-vector space. By our assumptions,
we have an absolutely irreducible, faithful representation r1 : N ,!AutK �W ; f1�
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where f1 is a nondegenerate alternatingK-valued pairing onW . The natural action of
m` on V2 respects the nondegenerate symmetric bilinear form f 2 : V2 � V2! K
de¢ned by f 2�x; y� � trM=K �x�y�. We thus obtain a faithful representation
r2 : m` ,!AutK �V2; f2�. Let r be the representation

r : G � N � m` ,!AutK �W ; f1� �AutK �V2; f2� ,!AutK �V ; f �
de¢ned by r�a; b� � r1�a� 
 r2�b�, where f � f1 
 f2.

Suppose L is a ¢eld which contains k, V0 is a 4t-dimensional L-vector space, f0 is a
nondegenerate L-valued alternating pairing on V0, and �r : G ,!AutL�V0; f0� is a
faithful representation. Since #N is not divisible by `, V0 is a semisimple
L�N�-module. Let T be an N-stable OK -lattice T inW . By Proposition 3.6, for some
nonzero multiple f 0 of f1 we have r1�N� � Aut�T ; f 0�, and the reduction �f 0 is
nondegenerate. The composition of r1 with the reduction map gives a faithful rep-
resentation �r1 : N ,!Aut�W0; �f 0�, where the corresponding k�N�-module W0 is
absolutely simple and symplectic. By Schur's Lemma, every N-invariant bilinear
form on W0 is alternating. If tr�� �r1 � �r1��h�� � tr� �r�h�� for every h 2 N, then the
multiplicities of the simple components of the L�N�-modules V0 and W0 �W0

are congruent modulo ` (see Theorem 17.3 of [4]). Then V0 and W 2
0 are isomorphic

L�N�-modules, since W0 is simple and ` > 2. Since EndN �W0� � F , we have
EndN �V0� �M2�F �. Fix a generator c of m`. Then c is an element of EndN �V0�
of multiplicative order `. We can therefore identify V0 with W0 �W0 in such a
way that c�x; y� � �x� y; y� for every �x; y� 2W0 �W0 � V0. For x; y 2W0 we have

f 0��x; 0�; �0; y�� � f 0�c�x; 0�; c�0; y�� � f 0��x; 0�; �y; y��
� f 0��x; 0�; �0; y�� � f 0��x; 0�; �y; 0��:

Therefore,

f 0��x; 0�; �y; 0�� � 0 for all x; y 2W0: �1�
Further,

f 0��0; x�; �0; y�� � f 0�c�0; x�; c�0; y�� � f 0��x; x�; �y; y��
� f 0��0; x�; �0; y�� � f 0��x; 0�; �y; 0�� � f 0��x; 0�; �0; y���
� f 0��0; x�; �y; 0��:

Therefore,

f 0��x; 0�; �0; y�� � f 0��0; x�; �y; 0�� � 0:

Since f 0 is alternating,

f 0��x; 0�; �0; y�� � ÿf 0��0; x�; �y; 0�� � f 0��y; 0�; �0; x��: �2�
De¢ne h : W0 �W0! L by h�x; y� � f 0��x; 0�; �0; y��. By (2), h is symmetric. Since f 0
is N-invariant, so is h. The nondegeneracy of h follows from (1) and the
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nondegeneracy of f0. Since h is anN-invariant pairing onW0, it is alternating. Since h
is both alternating and symmetric we have h � 0, giving a contradiction. &

The next result shows that the bound ` > de� 1 in Theorem 4.3 is sharp with
respect to e (subject to the restrictions imposed by Remark 4.4). Here we have
e � �`ÿ 1�=2, d � 2, and `ÿ 1 � de. A special case of Theorems 6.5 and 6.6 is
(in the notation of Proposition 6.3) when ` is odd, F � Q`�zq� (resp., Q`),
W � Q`�zq�2 (resp., Q`�zq�), and N is the generalized quaternion group Qp. The
group G is then of inertia type.

THEOREM 6.6. Suppose ` is an odd prime number, F is a complete discrete valuation
¢eld of characteristic zero and residue characteristic ` which is an unrami¢ed exten-
sion of Q`, and N is a ¢nite group of order not divisible by `. Let
K � F �z` � zÿ1` �, and suppose W is a nonzero K-vector space which is also an absol-
utely simple faithful symplectic K�N�-module. Let V be the K-vector space
W 
K K�z`�, and let G � N � m`. Then V carries a natural structure of a faithful
symplectic K �G�-module, and there is no G-stable lattice T in V with a G-invariant
perfect alternating pairing f 0 : T � T !OK.

Proof. Let m denote the maximal ideal of OK , let k � OK=m, let e � e�K�, and
write dimK �W � � 2t. By Theorem 6.5, V carries a natural structure of a faithful
symplectic K �G�-module. Suppose there existed a G-stable lattice T in V and a
G-invariant perfect alternating pairing f 0 : T � T !OK , and consider the resulting
representation r : G ,!AutK �T ; f 0�. The composition of r with reduction modulo
m gives a representation �r : G! Autk�k4t; �f 0�, where �f 0 is the reduction of f 0. If
A 2 ker� �r�, then Aÿ 1 2 mEnd�T �. By Proposition 3.12b we have A � 1, since
e � �`ÿ 1�=2 < `ÿ 1. Therefore �r is injective, contradicting Theorem 6.5. &

7. Polarizations and Isogeny Classes of Abelian Varieties

In Theorem 7.1 we use the results of Section 6 to construct isogeny classes of Abelian
varieties which admit no principal polarization. In particular, for every odd prime `,
and every integer dX `ÿ 1, we construct isogeny classes of d-dimensional
supersingular Abelian varieties B such that the degree of every polarization on
B is divisible by `.

Suppose F is a ¢eld, let Fs denote a separable closure of F , and let GF denote the
Galois group Gal�Fs=F �. Suppose A is an Abelian variety over F , and ` is a prime
number not equal to the characteristic of F . Let �A � A�F F s, let At denote the dual
of A, and let End0�A� � End�A� 
Z Q. Let T`�A� denote the `-adic Tate module
lim ÿ A`m , where A`m is the kernel of multiplication by `m in A�Fs�, and let
V`�A� � T`�A� 
Z` Q`. Let Z`�1� denote the projective limit of the groups of `m-th
roots of unity in �Fp.

To every invertible sheaf L on �A corresponds a certain natural homomorphism of
Abelian varieties fL : �A! �At, as de¢ned in Section 13 of [14]. Let w�L� denote the
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Euler characteristic of L. Then deg�fL� � w�L�2 (see Section 16 of [14]), and fL is an
isogeny if and only if w�L� 6� 0. If L is ample, then w�L� 6� 0 and the isogeny fL is
called a polarization on �A. If the isogeny fL is de¢ned over F (i.e., is obtained
by extension of scalars from a morphism A! At), then fL is called an
F -polarization on A. Now, assume that L is an invertible sheaf on �A such that
fL is de¢ned over F . Then L induces an alternating GF -invariant bilinear form

EL : T`�A� � T`�A� ! Z`�1� � Z`

as in Section 20 of [14]. The form EL is nondegenerate if and only if fL is an isogeny,
i.e., w�L� 6� 0. It is perfect if and only if fL is an isogeny of degree prime to `. Thus, EL
is perfect if and only if w�L� is not divisible by `.

Recall the ¢nite group Np of order 2p�pÿ 1� from De¢nition 2.8. Note that by
Lemma 3.14, if �`; p�pÿ 1�� � 1 then there exists a Galois extensionL of �Fp�t�, totally
rami¢ed at t � 0, such that Gal�L= �Fp�t�� � Np � m`.

THEOREM 7.1. Suppose p and ` are prime numbers, and ` does not divide p�pÿ 1�.
Let r � �pÿ 1�=2 if p is odd, and let r � 1 if p � 2. Suppose b is a non-negative integer,
and E is a supersingular elliptic curve over �Fp. Let F � �Fp�t�, let F0 � �Fp��t��, and let L
be a Galois extension of F, totally rami¢ed at t � 0, such that Gal�L=F � � Np � m`.
Then there is an injective homomorphism

c : Gal�L=F � ,!Aut�Er�`ÿ1��

such that if A is the twist of Er�`ÿ1� by c, and B is an Abelian variety over F0 which is
F0-isogenous to A� Eb, then w�L� is divisible by ` for every invertible sheaf L on
�B with the property that fL is de¢ned over F0. In particular, every F0-polarization

on B has degree divisible by `2.
Proof. We begin by constructing an injective homomorphism Np ,!Aut�Er�, with

respect to which V`�Er� is an absolutely simple faithful symplectic Q`�Np�-module.
If p is odd, let C be the hyperelliptic curve y2 � xp ÿ x, and let J�C� denote its

Jacobian variety. Then J�C� � Er (see p. 172 of [6]). The subgroup of Aut�C� gen-
erated by z : �x; y� 7! �x� 1; y� and

u : �x; y� 7! �a2x; ay�; for some a 2 Fp2 with a pÿ1 � ÿ1;
is isomorphic to Np. Thus, Np � Aut�C� � Aut�J�C�� � Aut�Er�. Since zp � 1 and
z 6� 1, the Q-subalgebra Q�z� of End0�J�C�� is isomorphic to either Q�zp� or
Q�Q�zp�. Since dim�J�C�� � �pÿ 1�=2, every commutative semisimple
Q-subalgebra of End0�J�C�� has dimension at most pÿ 1 � �Q�zp� : Q�. Thus,
Q�z� � Q�zp�. Also, upÿ1 � ÿ1 2 Aut�J�C�� � Aut�Er�, and u acts (by conjugation)
on Q�z� as a generator of the Galois group Gal�Q�z�=Q�. Therefore, the centralizer
of u in Q�z� 
Q Q` is Q`. We have

Q�z� 
Q Q` � End0�J�C�� 
Q Q` ,!EndQ`
�V`�J�C��� �Mpÿ1�Q`�:
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By dimension arguments, Q�z� 
Q Q` is a maximal commutative subalgebra in
EndQ`

�V`�J�C���. Since Np is generated by z and u, the centralizer of Np in
End�V`�J�C��� consists of scalars, i.e., the natural representation of Np on
V`�J�C�� (� V`�Er�) is absolutely irreducible. The theta divisor on J�C� gives rise
to an Np-invariant principal polarization on Er. We can therefore view V`�Er� as
an absolutely simple faithful symplectic Q`�Np�-module.

If p � 2, then N2 � Aut�E� � SL�V`�E�� (see [23], Section 2). Since N2 is a
non-Abelian ¢nite group and V`�E� is two-dimensional, therefore V`�E� is an absol-
utely simple faithful symplectic Q`�N2�-module.

LetG � Np � m`. Fixing an isomorphism of additive groupsZ�z`� � Z`ÿ1 gives rise
to an embedding m` ,!GL`ÿ1�Z�. We thus have

Gal�L=F � � G � Np � m` � Aut�Er� � GL`ÿ1�Z� � Aut�Er�`ÿ1��;
with Aut�Er� embedded diagonally in Aut��Er�`ÿ1�, and with the inclusion
Z � End�Er� inducing the embedding GL`ÿ1�Z� � Aut��Er�`ÿ1�. Denote the compo-
sition by

c : Gal�L=F � ,!Aut�Er�`ÿ1��:

Let A be the twist of Er�`ÿ1� by the cocycle c. Let L0 be the completion of L at t � 0.
Suppose B is an Abelian variety over F0, and b : B! A� Eb is an F0-isogeny. By
functoriality, b induces an isomorphism

V`�B� � V`�A� Eb� � V`�A� � V`�E�b

ofQ`�GF0 �-modules. Since E is de¢ned over the algebraically closed ¢eld �Fp, therefore
the `-power torsion on E is de¢ned over �Fp, and thus over F0. Therefore, V`�Er� is a
trivial Q`�GF0 �-module. It follows that the `-adic representation GF0 !
Aut�T`�A�� factors through Gal�L0=F0� � G. From the de¢nitions of c and A, it
follows that

V`�A� � V`�Er� 
Q`
Q`�z`�

asQ`�G�-modules (here we view V`�Er� as an Np-module and Q`�z`� as a m`-module).
Suppose L is an invertible sheaf on �B such that fL is de¢ned over F0 and w�L� is not
divisible by `. Then EL is a perfect alternating G-invariant pairing on the lattice
T`�B� in

V`�B� � V`�Er� 
Q`
Q`�z`�

ÿ �� V`�E�b:
This contradicts Theorem 6.2 (when b � 0) and Corollary 6.4, withN � Np,K � Q`,
W � V`�Er�, and U � V`�B�. &

Remark 7.2. One may easily check that L0 is the smallest extension of F0 over
which B acquires good reduction [20].
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COROLLARY 7.3. Suppose p and ` are prime numbers, d is an integer, and ` does not
divide p�pÿ 1�. Let r � �pÿ 1�=2 if p is odd, and let r � 1 if p � 2. Suppose
dX r�`ÿ 1�. Then there exists a d-dimensional supersingular Abelian variety de¢ned
over �Fp�t� such that if B is in its �Fp��t��-isogeny class, then w�L� is divisible by `
for every invertible sheaf L on �B with the property that fL is de¢ned over �Fp��t��.
In particular, every �Fp��t��-polarization on B has degree divisible by `2.

Remark 7.4. Over every algebraically closed ¢eld of characteristic p, every super-
singular Abelian variety admits a polarization whose degree is a power of p (see
pp. 70^71 of [12]). Over ¢nite ¢elds, E. Howe showed that the isogeny class of every
simple odd-dimensional Abelian variety contains a principally polarized Abelian
variety (see Theorem 1.2 of [9]).
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