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A DYNAMIC CONTAGION PROCESS
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Abstract

We introduce a new point process, the dynamic contagion process, by generalising the
Hawkes process and the Cox process with shot noise intensity. Our process includes both
self-excited and externally excited jumps, which could be used to model the dynamic
contagion impact from endogenous and exogenous factors of the underlying system. We
have systematically analysed the theoretical distributional properties of this new process,
based on the piecewise-deterministic Markov process theory developed in Davis (1984),
and the extension of the martingale methodology used in Dassios and Jang (2003). The
analytic expressions of the Laplace transform of the intensity process and the probability
generating function of the point process have been derived. An explicit example of
specified jumps with exponential distributions is also given. The object of this study is
to produce a general mathematical framework for modelling the dependence structure
of arriving events with dynamic contagion, which has the potential to be applicable to a
variety of problems in economics, finance, and insurance. We provide an application of
this process to credit risk, and a simulation algorithm for further industrial implementation
and statistical analysis.
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1. Introduction

The behavior of default contagion through business links is more obvious during the recent
financial crisis, especially after the collapse of Lehman Brothers in September 2008. More
recently, the Greek debt crisis in 2010 has the contagion impact spreading to EU members, such
as Portugal, Spain, and even the United Kingdom. A point process with its intensity dependent
on the point process itself could provide a more effective model to capture this contagion
phenomenon. However, only a few examples exist in the literature. These include the pioneering
work of Jarrow and Yu (2001), and the more recent work of Errais et al. (2009). Jarrow and
Yu (2001) pointed out that a model with the default intensity depending only linearly on a set
of macroeconomic variables is not sufficient to explain the phenomena of clustering defaults
around an economic recession; therefore, they introduced the concept of credit contagion,
whereby, upon default of a given name, the contagion jump shocks will impact immediately
to the counterpart’s default intensity. Furthermore, Errais et al. (2009) found that, by using
the self-excited Hawkes process, originally introduced in Hawkes (1971) (see also Hawkes and
Oakes (1974) and Oakes (1975)), the clustering of defaults observed from real financial data
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could be modelled more consistently. On the other hand, there are plenty of papers, including
Duffie and Gârleanu (2001) and Longstaff and Rajan (2008), suggesting that the default intensity
could be impacted exogenously by multiple common factors, such as idiosyncratic, sector
specific, or market-wide events.

In this paper we combine both ideas and introduce a new point process, the dynamic contagion
process, by generalising the Hawkes process (with exponential decay) and the Cox process with
shot noise intensity (with exponential decay) used in Dassios and Jang (2003), to include both
the self-excited and externally excited jumps. We use it to model the dynamic contagion
impact from both endogenous (self-excited) and exogenous (externally excited) factors of the
underlying system. This approach also extends the idea of default contagion in Jarrow and
Yu (2001), to include a richer set of parameters, capable of capturing some key aspects of the
behavior of arriving events, such as the frequency, magnitude of the impact, and the decay
with time.

To define and characterise the dynamic contagion process mathematically, we give a cluster
process representation, implement the piecewise-deterministic Markov process theory devel-
oped in Davis (1984) (see also Davis (1993)), and then extend the martingale methodology
introduced in Dassios and Jang (2003) (see also Dassios and Jang (2005)) to obtain the
distributional properties for this new process. This process is analysed by deriving the first
and second moments, and then more importantly the Laplace transform of the intensity process
and the probability generating function of the point process, respectively. Furthermore, an
explicit example of jumps with exponential distributions and an application in credit risk are
also given. The simulation algorithm is provided for further industrial implementation and
statistical analysis.

The paper is organised as follows. Section 2 gives the mathematical definition of the process.
In Section 3, the main section, we analyse and derive some key distributional properties. The
joint Laplace transform, probability generating function of the intensity process, and the point
process is derived in Section 3.1. The Laplace transform of the intensity process and the
probability generating function of the point process are obtained in Section 3.2 and Section 3.3,
respectively; the Hawkes process with exponential decay is included as an important special
case and a brief summary of its distributional properties is also given. In Section 3.4 we obtain
the first and second moments of the intensity process and the point process. We also provide
an explicit example of jumps with exponential distributions in Section 4, and an application to
credit risk and the algorithm for simulating the process in Section 5. In Section 6 we conclude
this paper and suggest some further potential applications.

2. Definition

The dynamic contagion process includes both the self-excited jumps, which are distributed
according to the branching structure of a Hawkes process with exponential fertility rate, and
the externally excited jumps, which are distributed according to a particular shot noise Cox
process.

Daley and Vere-Jones (2003, pp. 175–193) (see also Hawkes and Oakes (1974)) gave a
cluster process representation for a general Hawkes process; now we extend it to represent the
mathematical definition for our process in Definition 2.1 as a cluster point process, additionally
characterised by the stochastic intensity representation and infinitesimal generator.

Definition 2.1. The dynamic contagion process is a cluster point process D on R+: the number
of points in the time interval (0, t] is defined by Nt = ND(0,t]. The cluster centers of D are
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the particular points called immigrants, the other points are called offspring. They have the
following structure.

(a) The immigrants are distributed according to a Cox process A with points {Dm}m=1,2,... ∈
(0, ∞) and shot noise stochastic intensity process

a + (λ0 − a)e−δt +
∑
i≥1

Yie
−δ(t−T

(1)
i ) 1{T (1)

i ≤ t},

where

• a ≥ 0 is the constant reversion level,

• λ0 > 0 is a constant and the initial value of the stochastic intensity process (defined
later by (2.1)),

• δ > 0 is the constant rate of exponential decay,

• {Yi}i=1,2,... is a sequence of independent, identically distributed positive (externally
excited) jumps with distribution function H(y), y > 0, at the corresponding
random times {T (1)

i }i=1,2,... following a homogeneous Poisson process Mt with
constant intensity ρ > 0,

• 1{·} is the indicator function.

(b) Each immigrant Dm generates a cluster Cm = CDm , which is the random set formed
by the points of generations 0, 1, 2, . . . with the following branching structure. The
immigrant Dm is said to be of generation 0. Given generations 0, 1, . . . , j in Cm, each
point T (2) ∈ Cm of generation j generates a Cox process on (T (2), ∞) of offspring of
generation j + 1 with the stochastic intensity Ze−δ(·−T (2)), where Z is a positive (self-
excited) jump at time T (2) with distribution function G(z), z > 0, independent of the
points of generation 0, 1, . . . , j .

(c) Given the immigrants, the centered clusters

Cm − Dm = {T (2) − Dm : T (2) ∈ Cm}, Dm ∈ A,

are independent, identically distributed, and independent of A.

(d) D consists of the union of all clusters, i.e.

D =
⋃

m=1,2,...

CDm.

Therefore, the dynamic contagion process can also be defined as a point process Nt ≡ {T (2)
k }k≥1

on R+, with the nonnegative Ft -stochastic intensity process λt following the piecewise-determ-
inistic dynamics with positive jumps, i.e.

λt = a + (λ0 −a)e−δt +
∑
i≥1

Yie
−δ(t−T

(1)
i ) 1{T (1)

i ≤ t}+
∑
k≥1

Zke−δ(t−T
(2)
k ) 1{T (2)

k ≤ t}, (2.1)

where

• {Ft }t≥0 is a history of the process Nt , with respect to which {λt }t≥0 is adapted,
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• {Zk}k=1,2,... is a sequence of independent, identically distributed positive (self-excited)
jumps with distribution function G(y), y > 0, at the corresponding random times
{T (2)

k }k=1,2,...,

• the sequences {Yi}i=1,2,..., {T (1)
i }i=1,2,..., and {Zk}k=1,2,... are assumed to be independent

of each other.

From the definition above and because of the exponential decay, we can see that λt is a
Markov process. In particular, it decreases with rate δ(λt − a), and incurs additive upward
(externally excited) jumps that have distribution function H with rate ρ, and additive upward
(self-excited) jumps that have distribution function G with rate λt . Moreover, when jumps of
the latter type occur, Nt increases by 1. Hence, (Nt , λt ) is also a Markov process.

With the aid of piecewise-deterministic Markov process theory and using the results in
Davis (1984), the infinitesimal generator of the dynamic contagion process (λt , Nt , t) acting
on a function f (λ, n, t) within its domain �(A) is given by

Af (λ, n, t) = ∂f

∂t
+ δ(a − λ)

∂f

∂λ
+ ρ

(∫ ∞

0
f (λ + y, n, t) dH(y) − f (λ, n, t)

)
+ λ

(∫ ∞

0
f (λ + z, n + 1, t) dG(z) − f (λ, n, t)

)
, (2.2)

where �(A) is the domain for the generator A such that f (λ, n, t) is differentiable with respect
to λ and t for all λ, n, and t , and∣∣∣∣ ∫ ∞

0
f (λ + y, n, t) dH(y) − f (λ, n, t)

∣∣∣∣ < ∞,∣∣∣∣ ∫ ∞

0
f (λ + z, n + 1, t) dG(z) − f (λ, n, t)

∣∣∣∣ < ∞.

Remark 2.1. We could alternatively define the dynamic contagion process as a special case
(without the diffusion terms) of the general affine point processes in Duffie et al. (2003), with
the infinitesimal generator specified by (2.2).

Remark 2.2. Note that the dynamic contagion process is a point process Nt such that

P{Nt+�t − Nt = 1 | Nt } = λt�t + o(�t), P{Nt+�t − Nt > 1 | Nt } = o(�t),

where �t is a sufficiently small time interval and λt is given by (2.1).

Remark 2.3. Note that the intensity processλt is always above the levela, i.e.λt ∈ E = [a, ∞)

for any time t .

Remark 2.4. An economic interpretation from the perspective of the cluster process represen-
tation for the dynamic contagion process as follows. For a certain company, there are two classes
of economic shocks: the primary shocks directly to this company and the common market-wide
shocks. The arrivals of these primary shocks to this company are modelled by generation 0 of
the dynamic contagion process, i.e. the point process A (as described in Definition 2.1(a)) with
the intensity process modelled based on the external economic evolution including a stream of
market-wide shocks: a shock at time T

(1)
i has the magnitude of impact Yi with distribution H

and decays exponentially with rate δ. In the aftermath of each primary shock to this company,
it could further trigger a series of subsidiary internal turbulences in this company following the
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Figure 1: Externally excited and self-excited jumps in the intensity process λt of the dynamic contagion
process Nt .

branching structure (as described in Definition 2.1(b)). Similarly, a turbulence at time T
(2)
k has

the magnitude of impact Zk with distribution G and decays exponentially with rate δ.

To give an intuitive picture of this process from the perspective of the stochastic intensity
representation, we present Figure 1 to illustrate how the externally excited jumps {Yi}i=1,2,...

(marked by downwards arrows) and self-excited jumps {Zk}k=1,2,... (marked by up-down
arrows) in the intensity process λt interact with its dynamic contagion point process Nt .

Now, in this more general framework of the dynamic contagion process, the classic Cox
process with shot noise intensity (with exponential decay), used in Dassios and Jang (2003)
for pricing catastrophe reinsurance and derivatives, can be recovered, by setting the reversion
level a = 0 and eliminating the self-excited jumps {Zk}k=1,2,...; the Hawkes process (with
exponential decay), used in Errais et al. (2009) for modelling the portfolio credit risk, can be
recovered, by setting the intensity ρ = 0 of the externally excited jumps {Yi}i=1,2,....

3. Dynamic contagion process

3.1. Joint Laplace transform, probability generating function of (λT , NT )

We derive the joint Laplace transform, probability generating function of (λT , NT ) for a
fixed time T in Theorem 3.1 below, which leads to the key results of this paper, and the Laplace
transform of λT and probability generating function of NT in Section 3.2 and Section 3.3,
respectively.

Theorem 3.1. For the constants 0 ≤ θ ≤ 1, v ≥ 0, and time 0 ≤ t ≤ T , the conditional joint
Laplace transform, probability generating function for the process λt (defined in Definition 2.1)
and the point process Nt is given by

E[θ(NT −Nt )e−vλT | Ft ] = e−(c(T )−c(t))e−B(t)λt , (3.1)
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where B(t) is determined by the nonlinear ordinary differential equation (ODE)

−B ′(t) + δB(t) + θĝ(B(t)) − 1 = 0, (3.2)

ĝ(u) :=
∫ ∞

0
e−uz dG(z),

with boundary condition B(T ) = v, and c(t) is determined by

c(t) = aδ

∫ t

0
B(s) ds + ρ

∫ t

0
[1 − ĥ(B(s))] ds, (3.3)

ĥ(u) :=
∫ ∞

0
e−uy dH(y).

Proof. Consider a function f (λ, n, t) with the exponential affine form

f (λ, n, t) = ec(t)An(t)e−B(t)λ,

and substitute this into Af = 0 in (2.2); we then have

A′(t)
A(t)

n + (−B ′(t) + δB(t) + A(t)ĝ(B(t)) − 1)λ + (c′(t) + ρĥ(B(t)) − ρ − aδB(t)) = 0.

Since this equation holds for any n and λ, it is equivalent to solving three separate equations:

A′(t)
A(t)

= 0, (3.4a)

−B ′(t) + δB(t) + A(t)ĝ(B(t)) − 1 = 0, (3.4b)

c′(t) + ρĥ(B(t)) − ρ − aδB(t) = 0. (3.4c)

We have A(t) = θ immediately from (3.4a), which when substituted into (3.4b), adding the
boundary conditionB(T ) = v, gives the ODE (3.2); then, by (3.4c), with the boundary condition
c(0) = 0, (3.3) follows. Since ec(t)θNt e−B(t)λt is an F -martingale by the property of the
infinitesimal generator, we have

E[ec(T )θNT e−B(T )λT | Ft ] = ec(t)θNt e−B(t)λt .

Then, by the boundary condition B(T ) = v, (3.1) follows.

3.2. Laplace transform of λT

Theorem 3.2. The conditional Laplace transform λT given λ0 at time t = 0, under the
condition δ > µ1G

, is given by

E[e−vλT | λ0] = exp

(
−

∫ v

G−1
v,1(T )

aδu + ρ[1 − ĥ(u)]
δu + ĝ(u) − 1

du

)
exp(−G−1

v,1(T )λ0),

where

µ1G
:=

∫ ∞

0
z dG(z), Gv,1(L) :=

∫ v

L

du

δu + ĝ(u) − 1
.

(It will be clear in the proof that Gv,1(L) is a one by one function of L and, hence, its inverse
function G−1

v,1(T ) exists.)
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Proof. By setting t = 0 and θ = 1 in Theorem 3.1, we have

E[e−vλT | F0] = e−c(T )e−B(0)λ0 , (3.5)

where B(0) is uniquely determined by the nonlinear ODE

−B ′(t) + δB(t) + ĝ(B(t)) − 1 = 0,

with boundary condition B(T ) = v. It can be solved, under the condition δ > µ1G
, by the

following steps.

1. Set B(t) = L(T − t) and τ = T − t . Then we have the initial value problem

dL(τ)

dτ
= 1 − δL(τ) − ĝ(L(τ)) =: f1(L), (3.6)

with initial condition L(0) = v; we define the right-hand side to be the function f1(L).

2. Under the condition δ > µ1G
, we have

∂f1(L)

∂L
=

∫ ∞

0
ye−Lz dG(z) − δ ≤

∫ ∞

0
z dG(z) − δ = µ1G

− δ < 0 for L ≥ 0;

then, f1(L) < 0 for L > 0.

3. Rewrite (3.6) as
dL

δL + ĝ(L) − 1
= −dτ.

By integrating both sides from time 0 to τ with initial condition L(0) = v > 0, we obtain∫ v

L

du

δu + ĝ(u) − 1
= τ,

where L ≥ 0. Let

Gv,1(L) :=
∫ v

L

du

δu + ĝ(u) − 1
.

Then
Gv,1(L) = τ.

Obviously, L → v when τ → 0. By the convergence test,

lim
u→0

1/u

1/(δu + ĝ(u) − 1)
= δ + lim

u→0

ĝ(u) − 1

u
= δ − µ1G

> 0,

and we know that
∫ v

0 (1/u) du = ∞. Then,∫ v

0

du

δu + ĝ(u) − 1
= ∞;

hence, L → 0 when τ → ∞. The integrand is positive in the domain u ∈ (0, v] and also
for L ≤ v. The function Gv,1(L) is strictly decreasing; therefore, Gv,1(L) : (0, v] →
[0, ∞) is a well-defined (monotone) function, and its inverse function G−1

v,1(τ ) : [0, ∞) →
(0, v] exists.
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4. The unique solution is found by

L(τ) = G−1
v,1(τ ) or B(t) = G−1

v,1(T − t).

5. B(0) is obtained:

B(0) = L(T ) = G−1
v,1(T ).

Then, c(T ) is determined by

c(T ) = aδ

∫ T

0
G−1

v,1(τ ) dτ + ρ

∫ T

0
[1 − ĥ(G−1

v,1(τ ))] dτ.

By the change of variable G−1
v,1(τ ) = u we have τ = Gv,1(u) and

∫ T

0
[1 − ĥ(G−1

v,1(τ ))] dτ =
∫ G−1

v,1(T )

G−1
v,1(0)

[1 − ĥ(u)]∂τ

∂u
du =

∫ v

G−1
v,1(T )

1 − ĥ(u)

δu + ĝ(u) − 1
du.

Similarly, ∫ T

0
G−1

v,1(τ ) dτ =
∫ v

G−1
v,1(T )

u

δu + ĝ(u) − 1
du.

Finally, substitute B(0) and c(T ) into (3.5), and Theorem 3.2 follows.

Theorem 3.3. If δ > µ1G
then the Laplace transform of the asymptotic distribution of λT is

given by

lim
T →∞ E[e−vλT | λ0] = exp

(
−

∫ v

0

aδu + ρ[1 − ĥ(u)]
δu + ĝ(u) − 1

du

)
, (3.7)

and this is also the Laplace transform of the stationary distribution of the process {λt }t≥0.

Proof. Let T → ∞ in Theorem 3.2. Then G−1
v,1(T ) → 0 and the Laplace transform of the

asymptotic distribution follows immediately as given by (3.7).
To further prove the stationarity, by Proposition 9.2 of Ethier and Kurtz (1986) (see also

Costa (1990)), we need to prove that, for any function f within its domain �(A), we have∫
E

Af (λ)	(λ) dλ = 0, (3.8)

where E = [a, ∞) is the domain for λ, Af (λ) is the infinitesimal generator of the dynamic
contagion process acting on f (λ), i.e.

Af (λ) = −δ(λ − a)
df (λ)

dλ
+ ρ

(∫ ∞

0
f (λ + y) dH(y) − f (λ)

)
+ λ

(∫ ∞

0
f (λ + z) dG(z) − f (λ)

)
,

and 	(λ) is the density function of λ with Laplace transform given by (3.7).
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We will now try to solve (3.8). For the first term of (3.8), we have∫
E

(
−δ(λ − a)

df (λ)

dλ

)
	(λ) dλ = −δ

∫ ∞

a

(λ − a)f ′(λ)	(λ) dλ

= −δ

∫ ∞

λ=a

f ′(λ)

∫ λ

u=a

[(u − a)	(u)]′ du dλ

= −δ

∫ ∞

u=a

∫ ∞

λ=u

f ′(λ)[(u − a)	(u)]′ dλ du

= δ

∫ ∞

a

f (u)[(u − a)	(u)]′ du

or ∫
E

(
−δ(λ − a)

df (λ)

dλ

)
	(λ) dλ = δ

∫ ∞

a

f (λ)[(λ − a)	(λ)]′ dλ,

since, for a density function 	, we obviously have

lim
y→a

	(y)(y − a) = 0.

For the second term of (3.8), by the change of variable λ+y = s (y ≤ s) in the double integral,∫
E

(
ρ

∫ ∞

0
f (λ + y) dH(y)

)
	(λ) dλ = ρ

∫ ∞

λ=a

	(λ)

∫ ∞

y=0
f (λ + y) dH(y) dλ

= ρ

∫ ∞

s=a

f (z)

∫ s

y=0
	(s − y) dH(y) ds

or ∫
E

(
ρ

∫ ∞

0
f (λ + y) dH(y)

)
	(λ) dλ = ρ

∫ ∞

λ=a

f (λ)

∫ λ

y=0
	(λ − y) dH(y) dλ.

For the third term of (3.8), by the change of variable λ + z = s (z ≤ s) in the double integral,∫
E

[
λ

(∫ ∞

0
f (λ + z) dG(z)

)]
	(λ) dλ =

∫ ∞

λ=a

λ	(λ)

∫ ∞

z=0
f (λ + z) dG(z) dλ

=
∫ ∞

s=a

f (s)

∫ s

z=0
(s − z)	(s − z) dG(z) ds

or ∫
E

[
λ

(∫ ∞

0
f (λ + z) dG(z)

)]
	(λ) dλ =

∫ ∞

λ=a

f (λ)

∫ λ

z=0
(λ − z)	(λ − z) dG(z) dλ.

Therefore,∫
E

Af (λ)	(λ) dλ =
∫ ∞

a

f (λ)

[
δ

d

dλ
((λ − a)	(λ)) + ρ

(∫ λ

0
	(λ − y) dH(y) − 	(λ)

)
+

(∫ λ

0
(λ − z)	(λ − z) dG(z) − λ	(λ)

)]
dλ.
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Set ∫
E

Af (λ)	(λ) dλ = 0

for any function f (λ) ∈ �(A). Then

δ
d

dλ
((λ − a)	(λ)) + ρ

(∫ λ

0
	(λ − y) dH(y) − 	(λ)

)
+

(∫ λ

0
(λ − z)	(λ − z) dG(z) − λ	(λ)

)
= 0.

By the Laplace transform,

	̂(v) =: L{	(λ)} =
∫

E

	(λ)e−vλ dλ.

Thus, we have

L

{
d

dλ
((λ − a)	(λ))

}
= vL{(λ − a)	(λ)} = v

(
−d	̂(v)

dv
− a	̂(v)

)
,

L

{∫ λ

0
	(λ − y) dH(y)

}
= L

{∫ λ

0
	(λ − y)h(y) dy

}
= 	̂(v)ĥ(v),

L

{∫ λ

0
(λ − z)	(λ − z) dG(z)

}
= L

{∫ λ

0
(λ − z)	(λ − z)g(z) dz

}
= L

{
λ	(λ)

}
ĝ(v)

= −d	̂(v)

dv
ĝ(v).

Then

δv

(
−d	̂(v)

dv
− a	̂(v)

)
+ ρ(ĥ(v) − 1)	̂(v) + (1 − ĝ(v))

d	̂(v)

dv
= 0,

or

(1 − δv − ĝ(v))
d	̂(v)

dv
+ (−aδv + ρ(ĥ(v) − 1))	̂(v) = 0,

which is an ODE with the solution

	̂(v) = 	̂(0) exp

(
−

∫ v

0

aδu + ρ[1 − ĥ(u)]
δu + ĝ(u) − 1

du

)
.

Note that, given the initial condition

	̂(0) =
∫

E

	(λ) dλ = 1,

we have the unique solution

	̂(v) = exp

(
−

∫ v

0

aδu + ρ[1 − ĥ(u)]
δu + ĝ(u) − 1

du

)
,

which is exactly given by (3.7).
Since 	 is the unique solution to (3.8), we have the stationarity for the intensity process

{λt }t≥0.
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Alternative approaches for proving the stationarity for the special case of the Hawkes process
and other related processes can be found in Hawkes and Oakes (1974), Brémaud and Massoulié
(1996), and Massoulié (1998).

The self-excited Hawkes process was introduced theoretically in Hawkes (1971) and applied
to risk theory in Chavez-Demoulin et al. (2005), and only recently applied to credit risk for
modelling the default contagion in Errais et al. (2009). It can be considered as an important
special case under this more general framework of the dynamic contagion process; all of the
counterpart results can be obtained by eliminating the impact from the externally excited jumps,
i.e. setting its intensity ρ = 0 in the corresponding results. Here we give the Laplace transform
of the stationary distribution of the intensity process λt for the Hawkes process with exponential
decay in Corollary 3.1 below. The probability generating function of the Hawkes point process
Nt will be given in Corollary 3.2 of Section 3.3.

Corollary 3.1. If δ > µ1G
then the Laplace transform of the asymptotic distribution of λT for

the Hawkes process with exponential decay is given by

lim
T →∞ E[e−vλT | λ0] = exp

(
−aδ

∫ v

0

u

δu + ĝ(u) − 1
du

)
,

and this is also the Laplace transform of the stationary distribution of the process {λt }t≥0.

Proof. By setting the intensity of the externally excited jumps ρ = 0 in Theorem 3.3, the
result follows immediately.

The limit of the log-Laplace transform for Hawkes processes with a general fertility rate can
be found in Bordenave and Torrisi (2007) and Stabile and Torrisi (2010).

3.3. Probability generating function of NT

Theorem 3.4. The conditional probability generating function of NT given λ0 and N0 = 0 at
time t = 0, under the condition δ > µ1G

, is given by

E[θNT | λ0] = exp

(
−

∫ G−1
0,θ (T )

0

aδu + ρ[1 − ĥ(u)]
1 − δu − θĝ(u)

du

)
exp(−G−1

0,θ (T )λ0),

where

G0,θ (L) :=
∫ L

0

du

1 − δu − θĝ(u)
, 0 ≤ θ < 1. (3.9)

Proof. By setting t = 0 and v = 0, and assuming that N0 = 0 in Theorem 3.1, we have

E[θNT | F0] = e−c(T )e−B(0)λ0 ,

where B(0) is uniquely determined by the nonlinear ODE

−B ′(t) + δB(t) + θĝ(B(t)) − 1 = 0,

with boundary condition B(T ) = 0. It can be solved, under the condition δ > µ1G
, by the

following steps.

1. Set B(t) = L(T − t) and τ = T − t . Then

dL(τ)

dτ
= 1 − δL(τ) − θĝ(L(τ)) =: f2(L), 0 ≤ θ < 1, (3.10)

with initial condition L(0) = 0; we define the right-hand side to be the function f2(L).
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2. There is only one positive singular point, denoted by v∗ > 0, obtained by solving the
equation f2(L) = 0. This is because, for the case in which 0 < θ < 1, the equation
f2(L) = 0 is equivalent to

ĝ(u) = 1

θ
(1 − δu), 0 < θ < 1.

Note that ĝ(·) is a convex function. Then it is clear that there is only one positive
solution to this equation. For the case in which θ = 0, there is only one singular point,
v∗ = 1/δ > 0. For both cases,

v∗ = 1

δ
(1 − θĝ(v∗)) ≥ 1 − θ

δ
> 0. (3.11)

Then we have f2(L) > 0 for 0 ≤ L < v∗ and f2(L) < 0 for L > v∗.

3. Rewrite (3.10) as
dL

1 − δL − θĝ(L)
= dτ.

Integrating yields ∫ L

0

du

1 − δu − θĝ(u)
= τ,

where 0 ≤ L < v∗. Let

G0,θ (L) :=
∫ L

0

du

1 − δu − θĝ(u)
.

Then
G0,θ (L) = τ

as L → 0 when τ → 0, and L → v∗ when τ → ∞. The integrand is positive
in the domain u ∈ [0, v∗) and L ≥ 0, and G0,θ (L) is a strictly increasing function;
therefore, G0,θ (L) : [0, v∗) → [0, ∞) is a well-defined function, and its inverse function
G−1

0,θ (τ ) : [0, ∞) → [0, v∗) exists.

4. The unique solution is found by

L(τ) = G−1
0,θ (τ ) or B(t) = G−1

0,θ (T − t).

5. B(0) is obtained:
B(0) = L(T ) = G−1

0,θ (T ).

Then, c(T ) is determined by

c(T ) = aδ

∫ T

0
G−1

0,θ (τ ) dτ + ρ

∫ T

0
[1 − ĥ(G−1

0,θ (τ ))] dτ,

where, by a change of variable,∫ T

0
G−1

0,θ (τ ) dτ =
∫ G−1

0,θ (T )

0

u

1 − δu − θĝ(u)
du,∫ T

0
[1 − ĥ(G−1

0,θ (τ ))] dτ =
∫ G−1

0,θ (T )

0

1 − ĥ(u)

1 − δu − θĝ(u)
du.

Finally, substitute B(0) and c(T ) into (3.5), and the result follows.
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Corollary 3.2. The conditional probability generating function of NT for the Hawkes process
with exponential decay, under the condition δ > µ1G

given λ0 and N0 = 0, is given by

E[θNT | λ0] = exp

(
−aδ

∫ G−1
0,θ (T )

0

u

1 − δu − θĝ(u)
du

)
exp[−G−1

0,θ (T )λ0],

where

G0,θ (L) :=
∫ L

0

du

1 − δu − θĝ(u)
, 0 ≤ θ < 1.

Proof. By setting the intensity of the externally excited jumps ρ = 0 in Theorem 3.4, the
result follows immediately.

The probability P{NT = 0 | λ0} can be derived by simply letting θ = 0 in the probability
generating function of NT in Theorem 3.4.

Corollary 3.3. The conditional probability of no jump given λ0 and N0 = 0, under the
condition δ > µ1G

, is given by

P{NT = 0 | λ0} = exp

[
−

∫ uT

0

aδu + ρ[1 − ĥ(u)]
1 − δu

du

]
e−uT λ0 , (3.12)

where

uT := 1

δ
(1 − e−δT ).

Proof. Since

P{NT = 0 | λ0} = E[θNT | λ0]
∣∣
θ=0

and

G0,0(L) := G0,θ (L)
∣∣
θ=0 =

∫ L

0

1

1 − δu
du = −1

δ
ln(1 − δL),

then the inverse function

uT = G−1
0,0(T ) = 1

δ
(1 − e−δT ).

By letting θ = 0 in Theorem 3.4, (3.12) follows.

Remark 3.1. Note that, since there is no jump in the point process Nt from time t = 0 to
t = T , the conditional probability P{NT = 0 | λ0} is not dependent on the distribution of
the self-excited jumps, and the result is similar to the nonself-excited case in Dassios and
Jang (2003).

Theoretically, the probability P{NT = n | λ0} for any natural number n ∈ N can be evaluated
as

P{NT = n | λ0} = ∂n

∂θn
E[θNT | λ0]

∣∣∣∣
θ=0

.

In Corollary 3.4 below we derive the result for P{NT = 1 | λ0}.
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Corollary 3.4. The conditional probability of exactly one jump given λ0 and N0 = 0, under
the condition δ > µ1G

, is given by

P{NT = 1 | λ0} = P{NT = 0 | λ0}
×

{
[a(1 − e−δT ) + ρ[1 − ĥ(uT )] + λ0e−δT ]

∫ uT

0

ĝ(u)

(1 − δu)2 du

−
∫ uT

0

ĝ(u)

(1 − δu)2 (aδu + ρ[1 − ĥ(u)]) du

}
,

where

uT = 1

δ
(1 − e−δT ).

Proof. To simplify the notation, we define

ϕ(u, θ) := aδu + ρ[1 − ĥ(u)]
1 − δu − θĝ(u)

.

Then

P{NT = 1 | λ0} = ∂

∂θ
exp

[
−

∫ G−1
0,θ (T )

0
ϕ(u, θ) du − G−1

0,θ (T )λ0

]∣∣∣∣
θ=0

= P{NT = 0 | λ0}(−1)

×
[∫ G−1

0,θ (T )

0

∂ϕ(u, θ)

∂θ
du + (ϕ(G−1

0,θ (T ), θ) + λ0)
∂

∂θ
G−1

0,θ (T )

]∣∣∣∣
θ=0

= P{NT = 0 | λ0}(−1)

×
[∫ uT

0

∂ϕ(u, θ)

∂θ

∣∣∣∣
θ=0

du + (ϕ(uT , 0) + λ0)
∂

∂θ
G−1

0,θ (T )

∣∣∣∣
θ=0

]
,

where

∂ϕ(u, θ)

∂θ

∣∣∣∣
θ=0

= ĝ(u)(aδu + ρ[1 − ĥ(u)])
(1 − δu − θĝ(u))2

∣∣∣∣
θ=0

= ĝ(u)(aδu + ρ[1 − ĥ(u)])
(1 − δu)2 ,

ϕ(uT , 0) = eδT (a(1 − e−δT ) + ρ(1 − ĥ(uT ))),

and ∂G−1
0,θ (T )/∂θ |θ=0 can be derived as below. Since L(T ; θ) = G−1

0,θ (T ), we have the nonlinear
ODE of L(τ ; θ):

L(τ ; θ)′ = 1 − δL(τ ; θ) − θĝ(L(τ ; θ)), 0 ≤ θ < 1,

with the initial condition L(0; θ) = 0. Differentiate both sides with respect to θ to obtain

L(1)(τ ; θ)′ = −δL(1)(τ ; θ) − [ĝ(L(τ ; θ)) + θĝ(1)(L(τ ; θ))], 0 ≤ θ < 1,

where

L(1)(τ ; θ) = ∂

∂θ
L(τ ; θ), ĝ(1)(L(τ ; θ)) = ∂

∂θ
ĝ(L(τ ; θ)).

By setting θ = 0, we have the ODE for L(1)(τ ; 0):

L(1)(τ ; 0)′ = −δL(1)(τ ; 0) − ĝ(L(τ ; 0)),
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with the initial condition L(1)(0; 0) = 0. Given L(τ ; 0) = (1 − e−δτ )/δ, L(1)(τ ; 0) can be
uniquely solved, i.e.

∂

∂θ
G−1

0,θ (T )

∣∣∣∣
θ=0

= L(1)(τ ; 0) = −e−δT

∫ T

0
ĝ

(
1 − e−δs

δ

)
eδs ds < 0;

equivalently, by the change of variable u = (1 − e−δs)/δ,∫ T

0
ĝ

(
1 − e−δs

δ

)
eδs ds =

∫ uT

0

ĝ(u)

(1 − δu)2 du.

Similarly to the point process Nt , the probability generating function of the size of a cluster
generated by a point of any generation can also be derived as follows.

Theorem 3.5. For the size of a cluster generated by a point of any generation, Ñt , under the
condition δ > µ1G

, we have

E[θÑT | λ̃0] = exp[−G−1
0,θ (T )̃λ0], (3.13)

E[θÑ∞ | λ̃0] = e−v∗λ̃0 ,

where G0,θ (·) and v∗ are given by (3.9) and (3.11), respectively, and λ̃0 is the value of one of
the associated externally excited or self-excited jumps. In particular, for a cluster generated
by a point of generation 0, we have

E[θÑ∞] = ĥ(v∗);
for a cluster generated by a point of subsequent generations, we have

E[θÑ∞] = 1 − δv∗

θ
. (3.14)

Proof. For the size of a cluster generated by a point of any generation, the infinitesimal
generator of the process (̃λt , Ñt , t) acting on a function f (̃λ, ñ, t) within its domain �(A) is
given by

Af (̃λ, ñ, t) = ∂f

∂t
− δ̃λ

∂f

∂λ̃
+ λ̃

(∫ ∞

0
f (̃λ + z, ñ + 1, t) dG(z) − f (̃λ, ñ, t)

)
.

As this is just a special case of Theorem 3.1 and Theorem 3.4, we can derive (3.13) immediately.
By the proof of Theorem 3.4, we know that

lim
T →∞ G−1

0,θ (T ) = v∗.

Then
E[θÑ∞ | λ̃0] = lim

T →∞ E[θÑT | λ̃0] = lim
T →∞ exp[−G−1

0,θ (T )̃λ0] = e−v∗λ̃0 .

In particular, for a cluster generated by a point of generation 0, we have

E[θÑ∞] = E[E[θÑ∞ | λ̃0]] = E[e−v∗λ̃0 ] = E[e−v∗Y1 ] = ĥ(v∗);
for a cluster generated by a point of subsequent generations, we have

E[θÑ∞] = E[e−v∗Z1 ] = ĝ(v∗) = 1 − δv∗

θ
.
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Remark 3.2. The size of a cluster generated by a point of any generation is actually a pure
Hawkes process with reversion level a = 0, a special case of the dynamic contagion process.
As time t → ∞, the distribution of λt converges to the distribution of a degenerate random
variable at 0.

Remark 3.3. Alternatively, (3.14) can be derived from the perspective of the cluster process
definition given in Definition 2.1, and we observe that each subcluster has the same distribution,
E(θ) = E[θÑ∞], as its ancestor (for a cluster generated by a point of subsequent generation
1, 2, . . .), and, hence, E(θ) satisfies the functional equation

E(θ) = ĝ

(
1 − θE(θ)

δ

)
,

which also leads to (3.14).

We also provide an explicit example of Theorem 3.5 in Theorem 4.3 below by assuming that
the jumps have exponential distributions.

3.4. Moments of λt and Nt

Any moment of λt and Nt can be obtained by differentiating the Laplace transform of λt

and the probability generating function of Nt with respect to v and θ , and then setting v and θ

equal to 0, respectively. Alternatively, we can obtain the first and second moments of λt and
Nt directly by solving ODEs, a method which is slightly easier to generalise to derive higher
moments beyond the condition δ > µ1G

; therefore, we will proceed with this method here.

Theorem 3.6. The conditional expectation of the process λt given λ0 at time t = 0 is given by

E[λt | λ0] = µ1H
ρ + aδ

δ − µ1G

+
(

λ0 − µ1H
ρ + aδ

δ − µ1G

)
e−(δ−µ1G

)t for δ 	= µ1G
, (3.15)

E[λt | λ0] = λ0 + (µ1H
ρ + aδ)t for δ = µ1G

, (3.16)

where

µ1H
:=

∫ ∞

0
y dH(y).

Proof. By the martingale property of the infinitesimal generator given in (2.2), we have an
F -martingale

f (λt , Nt , t) − f (λ0, N0, 0) −
∫ t

0
A(λs, Ns, s) ds

for f ∈ �(A). Now, by setting f (λ, n, t) = λ we have

Aλ = −(δ − µ1G
)λ + µ1H

ρ + aδ.

Then λt − λ0 − ∫ t

0 Aλs ds is an F -martingale, and we have

E

[
λt −

∫ t

0
Aλs ds

∣∣∣∣ λ0

]
= λ0.

Hence,

E[λt | λ0] = λ0 + E

[∫ t

0
Aλs ds

∣∣∣∣ λ0

]
= λ0 − (δ − µ1G

)

∫ t

0
E[λs | λ0] ds + (µ1H

ρ + aδ)t.
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By differentiating with respect to t , we obtain the nonlinear inhomogeneous ODE

du(t)

dt
= −(δ − µ1G

)u(t) + µ1H
ρ + aδ,

where u(t) = E[λt | λ0], with the initial condition u(0) = λ0. This ODE has a solution given
by (3.15) and (3.16).

Lemma 3.1. The second moment of the process λt given λ0 at time t = 0 is given by

E[λ2
t | λ0] = λ2

0e−2(δ−µ1G
)t

+ 2(µ1H
ρ + aδ) + µ2G

δ − µ1G

(
λ0 − µ1H

ρ + aδ

δ − µ1G

)
(e−(δ−µ1G

)t − e−2(δ−µ1G
)t )

+
(

(2(µ1H
ρ + aδ) + µ2G

)(µ1H
ρ + aδ)

2(δ − µ1G
)2 + µ2H

ρ

2(δ − µ1G
)

)
× (1 − e−2(δ−µ1G

)t ) for δ 	= µ1G
, (3.17)

E[λ2
t | λ0] = λ2

0 + (2(µ1H
ρ + aδ) + µ2G

)
(
λ0t + 1

2 (µ1H
ρ + aδ)t2)

+ µ2H
ρt for δ = µ1G

, (3.18)

where

µ2H
:=

∫ ∞

0
y2 dH(y), µ2G

:=
∫ ∞

0
z2 dG(z).

Proof. By setting f (λ, n, t) = λ2 in (2.2), we have

Aλ2 = −2(δ − µ1G
)λ2 + (2(µ1H

ρ + aδ) + µ2G
)λ + µ2H

ρ.

Since λ2
t − λ2

0 − ∫ t

0 Aλ2
s ds is an F -martingale by the martingale property of the generator, we

have

E

[
λ2

t −
∫ t

0
Aλ2

s ds

∣∣∣∣ λ0

]
= λ2

0.

Hence,

E[λ2
t | λ0] = λ2

0 − 2(δ − µ1G
)

∫ t

0
E[λ2

s | λ0] ds + (2(µ1H
ρ + aδ) + µ2G

)

∫ t

0
E[λs | λ0] ds

+ µ2H
ρt.

By differentiating with respect to t , we have the ODE

du(t)

dt
+ 2(δ − µ1G

)u(t) = (2(µ1H
ρ + aδ) + µ2G

)

(
λ0 − µ1H

ρ + aδ

δ − µ1G

)
e−(δ−µ1G

)t

+ (2(µ1H
ρ + aδ) + µ2G

)(µ1H
ρ + aδ)

δ − µ1G

+ µ2H
ρ,

where u(t) = E[λ2
t | λ0], with the initial condition u(0) = λ2

0. This ODE has a solution given
by (3.17) and (3.18).
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Theorem 3.7. The conditional variance of the process λt given λ0 at time t = 0 is given by

var[λt | λ0] = 1

2(δ − µ1G
)

(
µ2G

(µ1H
ρ + aδ)

δ − µ1G

− µ2H
ρ − 2µ2G

λ0

)
e−2(δ−µ1G

)t

+ µ2G

δ − µ1G

(
λ0 − µ1H

ρ + aδ

δ − µ1G

)
e−(δ−µ1G

)t

+ 1

2(δ − µ1G
)

(
µ2H

ρ + µ2G
(µ1H

ρ + aδ)

δ − µ1G

)
for δ 	= µ1G

, (3.19)

var[λt | λ0] = 1
2µ2G

(µ1H
ρ + aδ)t2 + (µ2G

λ0 + µ2H
ρ)t for δ = µ1G

. (3.20)

Proof. By var[λt | λ0]= E[λ2
t | λ0] − (E[λt | λ0])2, based onTheorem 3.6 and Lemma 3.1,

the result follows.

Corollary 3.5. Assume that δ > µ1G
. Then the first and second moments and the variance of

the stationary distribution of the process λt are given by

E[λt ] = µ1H
ρ + aδ

δ − µ1G

, (3.21)

E[λ2
t ] = (2(µ1H

ρ + aδ) + µ2G
)(µ1H

ρ + aδ)

2(δ − µ1G
)2 + µ2H

ρ

2(δ − µ1G
)
, (3.22)

var[λt ] = 1

2(δ − µ1G
)

(
µ2H

ρ + µ2G
(µ1H

ρ + aδ)

δ − µ1G

)
.

Proof. By setting time t → ∞ in (3.15), (3.16), (3.17), (3.18), (3.19), and (3.20), respec-
tively, the results follow.

We will now derive the moments for the point process Nt , assuming that δ > µ1G
.

Theorem 3.8. For the stationary distribution of the process λt , given the condition δ > µ1G

and N0 = 0, the expectation of the point process Nt is given by

E[Nt ] = µ1H
ρ + aδ

δ − µ1G

t. (3.23)

Proof. By setting f (λ, n, t) = n in (2.2), we have An = λ. Since Nt − N0 − ∫ t

0 λs ds is a
martingale by the martingale property of the intensity process λt of the point process Nt given
by definition (2.1), we have

E[Nt − N0 | F0] = E

[∫ t

0
λs ds

∣∣∣∣ F0

]
,

and we also know E[λt ] from Corollary 3.5. Then, by assuming that N0 = 0, we have

E[Nt ] = E[Nt − N0] =
∫ t

0
E[λs] ds = µ1H

ρ + aδ

δ − µ1G

t.

Lemma 3.2. For the stationary distribution of the process λt , given the condition δ > µ1G
and

N0 = 0, we have

E[λtNt ] = k̄(1 − e−(δ−µ1G
)t ) +

(
µ1H

ρ + aδ

δ − µ1G

)2

t, (3.24)
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where

k̄ := 2µ1G
(µ1H

ρ + aδ) + µ2H
ρ

2(δ − µ1G
)2 + µ2G

(µ1H
ρ + aδ)

2(δ − µ1G
)3 . (3.25)

Proof. By setting f (λ, n, t) = λn in (2.2), we have

A(λn) = −(δ − µ1G
)λn + (µ1H

ρ + aδ)n + λ2 + µ1G
λ.

Since λtNt − λ0N0 − ∫ t

0 A(λsNs) ds is an F -martingale by the martingale property of the
generator, given N0 = 0, we have the ODE

du(t)

dt
= −(δ − µ1G

)u(t) + (µ1H
ρ + aδ) E[Nt ] + E[λ2

t ] + µ1G
E[λt ],

where u(t) = E[λtNt ], with the initial condition u(0) = 0. Note that E[Nt ], E[λ2
t ], and E[λt ]

are already given by (3.23), (3.22), and (3.21), respectively; therefore, this ODE has a solution
given by (3.24).

Theorem 3.9. For the stationary distribution of the process λt , given the condition δ > µ1G

and N0 = 0, the second moment and the variance of the point process Nt are given by

E[N2
t ] = 2

δ − µ1G

(e−(δ−µ1G
)t − 1) + 2k̄t +

(
µ1H

ρ + aδ

δ − µ1G

)2

t2,

var[Nt ] = 2

δ − µ1G

(e−(δ−µ1G
)t − 1) + 2k̄t,

where the constant k̄ is given by (3.25).

Proof. By setting f (λ, n, t) = n2 in (2.2), we have A(n2) = (2n + 1)λ. Since N2
t −

N2
0 − ∫ t

0 (2Ns + 1)λs ds is an F -martingale by the martingale property of the generator, given
N0 = 0, we have

E[N2
t ] = 2

∫ t

0
E[λsNs] ds +

∫ t

0
E[λs] ds,

where E[λtNt ] and E[λt ] are given by (3.24) and (3.21), respectively. Then E[N2
t ] follows.

Since var[Nt ] = E[N2
t ] − E[Nt ]2 given E[Nt ] in (3.23), var[Nt ] follows.

The moments for the special case Hawkes process and other similar processes can also be
found in Oakes (1975) and Azizpour and Giesecke (2008), and, more generally, in Brémaud et
al. (2002).

4. Example: jumps with exponential distributions

To give an explicit example for the key distributional properties derived above, in this section
we assume that both externally excited and self-excited jumps follow exponential distributions,
i.e. the density functions are given by

h(y) = αe−αy, g(z) = βe−βz, where y, z; α, β > 0, (4.1)

and the Laplace transforms have the explicit forms

ĥ(u) = α

α + u
, ĝ(u) = β

β + u
. (4.2)
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In the next two subsections we obtain the corresponding Laplace transform ofλT , the conditional
probability generating function of NT , and the conditional probabilities P{NT = 0 | λ0} and
P{NT = 1 | λ0}. We will use these results to model the credit default risk in Section 5. Note
that there are parameters (a, ρ, δ; α, β; λ0) for the general dynamic contagion process and
(a, δ; β; λ0) for the Hawkes process.

4.1. Laplace transform of λT

Lemma 4.1. If both the self-excited and externally excited jumps follow exponential distribu-
tions, i.e. the density functions are specified by (4.1), then the conditional Laplace transform
of λT given λ0 at time t = 0, under the condition δβ > 1, is given by

E[e−vλT | λ0] = exp[−(C1(v) − C1(G
−1
v,1(T )))] exp[−G−1

v,1(T )λ0],

where

C1(u) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

au + ρ(α − β)

δ(α − β) + 1
ln(α + u)

+ 1

δ

(
a + ρ

δ(α − β) + 1

)
ln

(
u + δβ − 1

δ

)
for α 	= β − 1

δ
,

au + ρβ

δβ − 1
ln(α + u) − αρ

δ(δβ − 1)

1

α + u

+ 1

δ

(
a − ρ

δβ − 1

)
ln

(
u + δβ − 1

δ

)
for α = β − 1

δ
,

(4.3)

and

Gv,1(L) = 1

δ(δβ − 1)

[
δβ ln

(
v

L

)
− ln

(
δv + (δβ − 1)

δL + (δβ − 1)

)]
.

Proof. By Theorem 3.2 and µ1G
= 1/β, the condition is δ > 1/β. Substituting (4.2) into

Theorem 3.2 yields

Gv,1(L) =
∫ v

L

u + β

δu(u + (δβ − 1)/δ)
du

and

C1(v) − C1(G
−1
v,1(T )) =

∫ v

G−1
v,1(T )

(a + ρ/δ(u + α))(β + u)

u + (δβ − 1)/δ
du.

Note that, when calculating the integral, we need to consider the special case α = β − 1/δ.
Then the result follows.

Theorem 4.1. If both the externally excited and self-excited jumps follow exponential distri-
butions, i.e. the density functions are specified by (4.1), then, under the condition δβ > 1, the
stationary distribution of the process {λt }t≥0 is given by

a + ̃1 + ̃2 for α ≥ β,

a + ̃3 + B̃ for α < β and α 	= β − 1/δ,

a + ̃4 + P̃ for α = β − 1/δ,
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where

̃1 ∼ Gamma

(
1

δ

(
a + ρ

δ(α − β) + 1

)
,
δβ − 1

δ

)
, ̃2 ∼ Gamma

(
ρ(α − β)

δ(α − β) + 1
, α

)
,

̃3 ∼ Gamma

(
a + ρ

δ
,
δβ − 1

δ

)
, ̃4 ∼ Gamma

(
a + ρ

δ
, α

)
,

N1 ∼ NegBin

(
ρ

δ

β − α

γ1 − γ2
,
γ2

γ1

)
, N2 ∼ Poisson

(
ρ

δ2α

)
,

X
(1)
i ∼ Exp(γ1), X

(2)
i ∼ Exp(α),

γ1 = max

{
α,

δβ − 1

δ

}
, γ2 = min

{
α,

δβ − 1

δ

}
,

B̃
d=

N1∑
i=1

X
(1)
i , P̃

d=
N2∑
i=1

X
(2)
i ,

are independent random variables; B̃ follows a compound negative binomial distribution with
underlying exponential jumps and P̃ follows a compound Poisson distribution with underlying
exponential jumps.

Proof. By Lemma 4.1 and Theorem 3.3, and as G−1
v,1(T ) → 0 when T → ∞, the Laplace

transform of the stationary distribution of the process {λt }t≥0 is given by 	̂(v)= e−(C1(v)−C1(0)),
where C1(u) is the explicit function given in (4.3). Then

	̂(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−va

(
α

α + v

)ρ(α−β)/(δ(α−β)+1)

×
(

(δβ − 1)/δ

v + (δβ − 1)/δ

)(1/δ)(a+ρ/(δ(α−β)+1))

for α ≥ β,

e−va

(
(δβ − 1)/δ

v + (δβ − 1)/δ

)(a+ρ)/δ

×
(

γ2/γ1

1 − (1 − γ2/γ1)(γ1/(γ1 + v))

)(ρ/δ)((β−α)/(γ1−γ2))

for α < β and

α 	= β − 1/δ,

e−va

(
α

α + v

)(ρ+a)/δ

exp

[
ρ

δ2α

(
α

α + v
− 1

)]
for α = β − 1/δ.

(4.4)

Ifα ≥ β, it is obvious that (4.4) is the Laplace transform of two independent gamma distributions
̃1 and ̃2 shifted by a constant a. If α < β and α 	= β − 1/δ, then γ1 > γ2 always, and
the second term is the Laplace transform of a gamma distribution with parameters (a + ρ)/δ

and (δβ − 1)/δ. The third term is the Laplace transform of a compound negative binomial
distribution with parameters (ρ/δ)((β − α)/(γ1 − γ2)) and γ2/γ1, and the underlying jumps
follow an exponential distribution with parameter γ1, since we know that the Laplace transform
of a negative binomial distribution N1 with parameters (r, p) is

E[e−vN1 ] =
(

p

1 − (1 − p)e−v

)r

.
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Then

E[e−vB̃ ] = E

[
E

[
exp

[
−v

N1∑
i=1

X
(1)
i

]] ∣∣∣∣ N1

]

= E

[(
γ1

γ1 + v

)N1
]

= E

[
exp

[
− ln

(
γ1 + v

γ1

)
N1

]]
=

(
p

1 − (1 − p) exp[− ln((γ1 + v)/γ1)]
)r

=
(

p

1 − (1 − p)(γ1/(γ1 + v))

)r

,

where

p = γ1

γ2
∈ (0, 1), r = ρ

δ

β − α

γ1 − γ2
∈ R

+.

Also, it is easy to identify the corresponding Laplace transforms for the case when α = β−1/δ.

We discuss some important special cases below.

Remark 4.1. If both jumps follow the same exponential distribution, i.e. α = β, then ̃1 and
̃2 combine as one single gamma random variable ̃3.

Remark 4.2. For the nonself-excited case, i.e. when β = ∞, the Laplace transform of the
stationary distribution of the process {λt }t≥0 is given by

	̂(v) = e−va

(
α

α + v

)ρ/δ

.

Then λt follows a shifted gamma distribution, i.e.

λt
d= a + ̃5,

where

̃5 ∼ Gamma

(
ρ

δ
, α

)
,

which recovers the result in Dassios and Jang (2003) by setting a = 0.

Remark 4.3. For the Hawkes process, i.e. the nonexternally excited case when α = ∞, or
ρ = 0, the Laplace transform of the stationary distribution of the process {λt }t≥0 is given by

	̂(v) = e−va

(
(δβ − 1)/δ

v + (δβ − 1)/δ

)a/δ

.

Then λt follows a shifted Gamma distribution, i.e.

λt
d= a + ̃6,

where

̃6 ∼ Gamma

(
a

δ
,
δβ − 1

δ

)
.
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The result for the particular case α = β − 1/δ is actually the limit version of the result for
the case when α < β and α 	= β − 1/δ. In the following sections, we focus only on the main
case when α 	= β −1/δ, with the Laplace transform of the stationary distribution of the process
{λt }t≥0 specified by (4.4).

4.2. Probability generating function of NT

Theorem 4.2. If both the externally excited and self-excited jumps follow exponential distribu-
tions, i.e. the density functions are specified by (4.1), then the conditional probability generating
function of NT given λ0 and N0 = 0 at time t = 0, under the condition δβ > 1, is given by

E[θNT | λ0] = exp[−(C2(G
−1
0,θ (T )) − C2(0))] exp[−G−1

0,θ (T )λ0], α 	= −v∗−,

where

C2(u) := −au + α(β − α)ρ

δ(α + v∗−)(α + v∗)
ln(u + α)

+ 1

δ(v∗ − v∗−)

{[
a(v∗− + (1 − θ)β) + ρv∗−

β + v∗−
α + v∗−

]
ln(u − v∗−)

−
[
a(v∗ + (1 − θ)β) + ρv∗ β + v∗

α + v∗

]
ln(v∗ − u)

}
and

G0,θ (L) = K(L) − K(0), 0 ≤ L < v∗,

where

K(u) := − 1

δ(v∗ − v∗−)
[(v∗ + β) ln(v∗ − u) − (v∗− + β) ln(u − v∗−)], 0 ≤ u < v∗,

v∗ =
√

� − (δβ − 1)

2δ
> 0, (4.5)

−β ≤ v∗− = −
√

� + (δβ − 1)

2δ
< 0,

� = (δβ + 1)2 − 4θδβ > 0, 0 ≤ θ < 1.

Proof. Since 0 < u < v∗, by substituting the explicit results of (4.2) into Theorem 3.4, we
have

G0,θ (L) =
∫ L

0

β + u

−δu2 − (δβ − 1)u + (1 − θ)β
du = K(L) − K(0)

and

C2(u) = −a

{
u − K(u) − θβ

δ

1

v∗ − v∗−
ln

v∗ − u

u − v∗−

}
+ ρ

{
K(u) + α

δ

1

v∗ − v∗−

[
ln

v∗ − u

u − v∗−

+ (β − α)

(
1

α + v∗ ln
v∗ − u

u + α
− 1

α + v∗−
ln

u − v∗−
u + α

)]}
;
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furthermore,

v∗ = √
� − δβ − 1

2δ

=
√

(δβ − 1)2 + 4(1 − θ)δβ − (δβ − 1)

2δ

>
(δβ − 1) − (δβ − 1)

2δ

= 0,

and

−v∗− = √
� + δβ − 1

2δ
=

√
(δβ + 1)2 − 4θδβ + (δβ − 1)

2δ
≤ (δβ + 1) + (δβ − 1)

2δ
= β,

where v∗− = −β only when θ = 0.

Remark 4.4. We need to assume that α 	= −v∗− in Theorem 4.2, since

−v∗− =
√

(δβ + 1)2 − 4θδβ + (δβ − 1)

2δ
,

and, for each θ ∈ [0, 1), we have a unique v∗−, where

−v∗− ∈
(

β − 1

δ
, β

]
.

Therefore, if α ∈ (β − 1/δ, β], there exists a unique θ ∈ [0, 1) such that α + v∗− = 0.

We will not consider the particular case α = −v∗− here, choosing in the sequel to assume
that α 	= −v∗−.

Now we derive the probabilities P{NT = 0 | λ0} in Corollary 4.1 and P{NT = 1 | λ0} for
α 	= β in Corollary 4.2; a discussion for the special case α = β is given in Remark 4.5 below.

Corollary 4.1. If both the externally excited and self-excited jumps follow exponential distri-
butions, i.e. the density functions are specified by (4.1), then the conditional probability of no
jump given λ0 and N0 = 0, under the condition δβ > 1, is given by

P{NT = 0 | λ0} = exp

[
−

(
a + ρ

1 + δα

)
T

]
exp

[
a − λ0

δ
(1 − e−δT )

]
×

(
1 − e−δT + δα

δα

)αρ/(1+δα)

.

Proof. By Theorem 4.2 and setting θ = 0, we have � = (δβ + 1)2, v∗ = 1/δ, v∗− = −β,

G−1
0,0(T ) = 1

δ
(1 − e−δT ), K(u) = −1

δ
ln(1 − δu), 0 ≤ u < 1/δ,

C2(u) = −au + α(β − α)ρ

δ(α + v∗−)(α + v∗)
ln(u + α)

− 1

δ(v∗ − v∗−)

(
a + ρv∗

v∗ + α

)
(v∗ + β) ln(v∗ − u)

= −au − αρ

δα + 1
ln(u + α) − 1

δ

(
a + ρ

δα + 1

)
ln

(
1

δ
− u

)
,

and the result follows.
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Corollary 4.2. If both the externally excited and self-excited jumps follow exponential distri-
butions, i.e. the density functions are specified by (4.1) (α 	= β), then the conditional probability
of exactly one jump given λ0 and N0 = 0, under the condition δβ > 1, is given by

P{NT = 1 | λ0} = P{NT = 0 | λ0}
×

[
(HT + aδβ − ρ)QT − aβ(eδT − 1)

+ ρ
αβ

1 + δβ

(
ā ln

(
α + uT

α

)
− b̄ ln

(
β + uT

β

)
+ c̄T + d̄(eδT − 1)

)]
,

where

HT =
(

a + ρ

δα + 1 − e−δT

)
(1 − e−δT ) + λ0e−δT ,

QT = β

1 + δβ

[
1

1 + δβ
ln

(
β + uT

β

)
+ δT + (eδT − 1)

]
,

uT = 1

δ
(1 − e−δT ),

ā = 1

1 + δβ

1

β − α
+ δ

1 + δα

(
1

1 + δβ
+ 1

1 + δα

)
,

b̄ = 1

1 + δβ

1

β − α
,

c̄ = δ2

1 + δα

(
1

1 + δβ
+ 1

1 + δα

)
,

d̄ = δ

1 + δα
.

Proof. By Corollary 3.4 and

1

(β + u)(1 − δu)2 = 1

1 + δβ

[
1

1 + δβ

(
1

β + u
+ δ

1 − δu

)
+ δ

(1 − δu)2

]
,

we obtain QT by∫ uT

0

ĝ(u)

(1 − δu)2 du = β

∫ uT

0

1

(β + u)(1 − δu)2 du

= β

1 + δβ

{
1

1 + δβ

[
ln

(
β + uT

β

)
+ δT

]
+ eδT − 1

}
,

and ∫ uT

0

ĝ(u)u

(1 − δu)2 du = β

δ
(eδT − 1) − βQT .

Furthermore, when α 	= β,∫ uT

0

ĝ(u)ĥ(u)

(1 − δu)2 du = αβ

∫ uT

0

1

(α + u)(β + u)(1 − δu)2 du

= αβ

1 + δβ

(
ā ln

(
α + uT

α

)
− b̄ ln

(
β + uT

β

)
+ c̄T + d̄(eδT − 1)

)
,

completing the proof.
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Remark 4.5. If α = β then

P{NT = 1 | λ0} = P{NT = 0 | λ0}
×

{
(HT + aδβ − ρ)ZT − aβ(eδT − 1)

+ ρ

(
β

1 + δβ

)2[
uT

β(β + uT )
+ δ(eδT − 1)

+ 2δ

δβ + 1

(
ln

(
β + uT

β

)
+ δT

)]}
,

where

HT =
(

a + ρ

δβ + 1 − e−δT

)
(1 − e−δT ) + λ0e−δT ,

QT = β

1 + δβ

[
1

1 + δβ
ln

(
β + uT

β

)
+ δT + (eδT − 1)

]
.

Note that, when α = β,∫ uT

0

ĝ(u)ĥ(u)

(1 − δu)2 du

= β2
∫ uT

0

(
1

(β + u)(1 − δu)

)2

du

=
(

β

1 + δβ

)2[
uT

β(β + uT )
+ δ(eδT − 1) + 2δ

δβ + 1

(
ln

(
β + uT

β

)
+ δT

)]
.

Remark 4.6. For the Hawkes process, we obtain the conditional probabilities of no jump and
exactly one jump by setting ρ = 0 in Corollary 4.1 and Corollary 4.2, respectively:

P{NT = 0 | λ0} = e−aT exp

[
a − λ0

δ
(1 − e−δT )

]
,

P{NT = 1 | λ0} = P{NT = 0 | λ0}

× β

[
a(1 − e−δT + δβ) + λ0e−δT

1 + δβ

×
(

1

1 + δβ
ln

(
β + uT

β

)
+ δT + (eδT − 1)

)
− a(eδT − 1)

]
.

Remark 4.7. The corresponding moments of λt and Nt based on exponential jump distributions
are omitted as they can be easily obtained using the results in Section 3.4.

We now state and prove the results for the size of clusters based on Theorem 3.5 for this
exponential distribution case.

Theorem 4.3. If both the externally excited and self-excited jumps follow exponential distri-
butions, i.e. the density functions are specified by (4.1), then, for the size of a cluster generated
by a point of any generation, Ñt , under the condition δβ > 1, we have

E[θÑ∞ | λ̃0] = exp

[
−

√
(δβ − 1)2 + 4δβ(1 − θ) − (δβ − 1)

2δ
λ̃0

]
, (4.6)
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and Ñ∞ conditional on λ̃0 actually follows a mixed Poisson distribution, i.e.

P{Ñ∞ = k | λ̃0} =
∫ ∞

0

vke−v

k! m(v) dv, k = 0, 1, 2, . . . , (4.7)

where m(v) is the density function of the mixing distribution,

m(v) = exp

[
δβ − 1

2δ
λ̃0

]
exp

[
−

(
δβ − 1

2δ

)2
δ

β
v

]
(
√

β/2δ)̃λ0√
2πv3/2

exp

[
−βλ̃2

0/2δ

2v

]
, (4.8)

which is an inverse Gaussian distribution with parameters (βλ̃0/(δβ − 1), βλ̃2
0/2δ).

Proof. By substituting the explicit exponential distribution functions of (4.2) and the constant
v∗ of (4.5) into Theorem 3.5, we obtain (4.6) immediately.

To prove that Ñ∞ follows a mixed Poisson distribution, we rewrite (4.6) as

E[θÑ∞ | λ̃0] = exp

[
δβ − 1

2δ
λ̃0

]
e−√

2ξ λ̃0 ,

where ξ = 1
2 ((δβ − 1)/2δ)2 + β(1 − θ)/2δ, and identify that

e−√
2ξ λ̃0 = E[e−ξ ĨG] =

∫ ∞

0
e−ξu (̃λ2

0)
1/2

√
2πu3/2

e−̃λ2
0/2u du,

where ĨG follows the (infinite mean) inverse Gaussian distribution with parameters (∞, λ̃2
0).

Then we have

E[θÑ∞ | λ̃0] = exp

[
δβ − 1

2δ
λ̃0

] ∫ ∞

0
e−ξu (̃λ2

0)
1/2

√
2πu3/2

e−̃λ2
0/2u du

=
∫ ∞

0
exp

[
−

[
1

2

(
δβ − 1

2δ

)2

+ β

2δ
(1 − θ)

]
u

]
exp

[
δβ − 1

2δ
λ̃0

]
× (̃λ2

0)
1/2

√
2πu3/2

e−̃λ2
0/2u du.

Let v = βu/2δ. Then

E[θÑ∞ | λ̃0] =
∫ ∞

0
e−(1−θ)v exp

[
δβ − 1

2δ
λ̃0

]
exp

[
−

(
δβ − 1

2δ

)2
δ

β
v

]
× (βλ̃2

0/2δ)1/2

√
2πv3/2

exp

[
−βλ̃2

0/2δ

2v

]
dv

=
∫ ∞

0
e−(1−θ)vm(v) dv

= m̂(θ − 1),

where m̂(u) = ∫ ∞
0 e−uvm(v) dv. Hence, by the definition of the mixed Poisson distribution,

we have (4.7) and (4.8); setting u = 1 − θ , we have

m̂(u) = exp

[
−

√
(δβ − 1)2 + 4δβu − (δβ − 1)

2δ
λ̃0

]

= exp

[
βλ̃2

0/2δ

βλ̃0/(δβ − 1)

(
1 −

√
1 + 2

(βλ̃0/(2δ − 1))2

βλ̃2
0/2δ

u

)]
,
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Table 1: The probability P{Ñ∞ = k} for k = 0, 1, 2, . . . and (δ; α, β) = (2.0; 2.0, 1.5).

k P{Ñ∞ = k} (%) k P{Ñ∞ = k} (%)

0 80.000 13 0.012
1 12.000 14 0.008
2 4.050 15 0.006
3 1.789 16 0.004
4 0.904 17 0.003
5 0.496 18 0.002
6 0.287 19 0.001
7 0.172 20 0.001
8 0.106 21 0.001
9 0.067 22 0.000

10 0.043 23 0.000
11 0.028 24 0.000
12 0.019 25 0.000

which is exactly the Laplace transform of an inverse Gaussian distribution with parameters
(βλ̃0/(δβ − 1), βλ̃2

0/2δ).

Corollary 4.3. For a cluster generated by a point of generation 0, we have

E[θÑ∞] = 2δα

δ(2α − β) + 1 + √
(δβ − 1)2 + 4δβ(1 − θ)

; (4.9)

for a cluster generated by a point of subsequent generations, we have

E[θÑ∞] = 2δβ

1 + √
1 − 4δβθ/(δβ + 1)2

(4.10)

and

P{Ñ∞ = k} = (δβ)k+1

(δβ + 1)2k

(2k)!
k! (k + 1)! , k = 0, 1, . . . . (4.11)

Proof. By substituting the explicit exponential distribution functions of (4.2) and the constant
v∗ of (4.5) into Theorem 3.5, we obtain (4.9). Setting α = β in (4.6) and expanding explicitly,
we obtain (4.10) and (4.11).

Remark 4.8. We can also expand (4.6) explicitly for some other special cases. For instance,
if 2δα + (1 − δβ) = 0, we have

P{Ñ∞ = k} = δβ − 1

2
√

δβ

(2k)!
(k! 2k)2

[
(δβ + 1)2

4δβ

]−(k+1/2)

, k = 0, 1, . . . .

For the general case, we can expand (4.9) with respect to θ using the Taylor expansion function
in MATLAB®. An example with (δ; α, β) = (2.0; 2.0, 1.5) for P{Ñ∞ = k} is given in Table 1.

5. An application in credit risk

Our motivation for applying the dynamic contagion process to model the credit risk is the
works of Duffie and Singleton (1999) and Lando (1998). Duffie and Singleton (1999) introduced
the affine processes to model the default intensity. Lando (1998), the extension of Jarrow et
al. (1997), used the state of credit ratings as an indicator of the likelihood of default, and
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modelled the underlying credit rating migration driven by a probability transition matrix with
Cox processes in a finite-state Markov process framework. However, we go beyond this and
model the bad events that can possibly lead to credit default, and the number and the intensity
of these events are modelled by the dynamic contagion process.

Based on this idea, we proceed with the following modification of the intensity models. We
assume that the final default or bankruptcy is caused by a number of bad events relating to the
underlying company. The bad events are not only restricted to the credit rating downgrades
announced by rating agencies, but could be other bad news relevant to this company, such as
bad corporate financial reports. The frequency of these bad events is dependent both on the
common bad news in the market exogenously and the company’s bad events endogenously.
Each company has a certain level of capability or resistance to overcome some of its bad events
to avoid bankruptcy, for example, if we use the credit rating system as the indicator to quantify
this level, usually the higher-rated companies have a higher capability level. We provide an
application in credit risk for this idea by using the dynamic contagion process, based on the
explicit results obtained in Section 4 for the case of exponential jumps.

The point process Nt models the number of bad events released from the underlying company.
It is driven by a series of bad events {Zj }j=1,2,... from itself and the common bad events
{Yi}i=1,2,... widely in the whole market via its intensity process λt . The impact of each event
decays exponentially with constant rate δ. We assume that each jump, or bad event, can result to
default with a constant probability d, 0 < d ≤ 1, which measures and quantifies the resistance
level. Therefore, the survival probability, conditional on the (initial) current intensity λ0 at
time T , is Ps(T ) = E[(1 − d)NT | λ0], which can be calculated simply by letting θ = 1 − d

in the conditional probability generating function derived in Theorem 4.2. By setting the
parameters (a, ρ, δ; α, β; λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7), the term structure of the survival
probabilities ps(T ) based on d = 2%, 10%, 20%, and 100% are shown in Figure 2, with the
corresponding numerical results given in Table 2.

As in Lando (1998), we could consider different values of d, corresponding to different
credit ratings, by assuming that these bad events are all related to the company’s credit ratings.
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Figure 2: The survival probability Ps(T ) for (a, ρ, δ; α, β; λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7).
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Table 2: The survival probability Ps(T ) for (a, ρ, δ; α, β; λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7).

Time, T (%)
d (%)

1 2 3 4 5 6

2 98.15 95.92 93.65 91.40 89.21 87.06
10 91.26 81.78 72.99 65.07 58.01 51.70
20 83.66 67.91 54.78 44.13 35.54 28.63

100 46.73 21.10 9.48 4.26 1.92 0.86

We also provide a comparison for the survival probabilities based on the three main processes
discussed in this paper: the dynamic contagion process, the Hawkes process (by setting ρ = 0),
and the nonself-excited process (by setting β = ∞), with the same parameter setting and fixed
d = 10%. The results are shown in Figure 3, with numerical output in Table 3.

We can see that the dynamic contagion process, as the most general case of the three
processes, generates the lowest survival probability, and the differences between the other
two processes explain the impact of the endogenous and exogenous factors, respectively.
This process is capable of capturing more aspects of the risk, which is particularly useful for
modelling the risks during the economic downturn involving clusters of bad economic events.
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Figure 3: A survival probability comparison for the dynamic contagion, Hawkes, and nonself-excited
processes.

Table 3: A survival probability comparison for the dynamic contagion, Hawkes, and nonself-excited
processes.

Time, T (%)
Process

1 2 3 4 5 6

Dynamic contagion 91.26 81.78 72.99 65.07 58.01 51.70
Hawkes 91.99 83.68 75.92 68.84 62.40 56.57
Non-self-excited 92.59 85.34 78.62 72.41 66.70 61.72
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To make it easier for further industrial applications and statistical analysis, we also provide
the following simulation algorithm for one sample path of the general dynamic contagion
process (Nt , λt ), with m jump times {T ∗

1 , T ∗
2 , . . . , T ∗

m} in the process λt .

Algorithm 5.1. Set the initial conditions T ∗
0 = 0, λT ∗+

0
= λ0 > a, and i ∈ {0, 1, 2, . . . ,

m − 1}.
1. Simulate the (i + 1)th externally excited jump waiting time E∗

i+1 by

E∗
i+1 = − 1

ρ
ln U, U ∼ U[0, 1].

2. Simulate the (i + 1)th self-excited jump waiting time S∗
i+1 by

S∗
i+1 =

{
S

∗(1)
i+1 ∧ S

∗(2)
i+1 , di+1 > 0,

S
∗(2)
i+1 , di+1 < 0,

where

di+1 = 1 + δ ln U1

λT ∗+
i

− a
, U1 ∼ U[0, 1],

and

S
∗(1)
i+1 = −1

δ
ln di+1, S

∗(2)
i+1 = −1

a
ln U2, U2 ∼ U[0, 1].

3. Simulate the (i + 1)th jump time T ∗
i+1 in the process λt by

T ∗
i+1 = T ∗

i + S∗
i+1 ∧ E∗

i+1.

4. The change at jump time T ∗
i+1 in the process λt is given by

λT ∗+
i+1

=
{

λT ∗−
i+1

+ Zi+1, Zi+1 ∼ G(z), S∗
i+1 ∧ E∗

i+1 = S∗
i+1,

λT ∗−
i+1

+ Yi+1, Yi+1 ∼ H(y), S∗
i+1 ∧ E∗

i+1 = E∗
i+1,

where
λT ∗−

i+1
= (λT ∗+

i
− a) exp[−δ(T ∗

i+1 − T ∗
i )] + a.

5. The change at jump time T ∗
i+1 in the point process Nt is given by

NT ∗+
i+1

=
{

NT ∗−
i+1

+ 1, S∗
i+1 ∧ E∗

i+1 = S∗
i+1,

NT ∗−
i+1

, S∗
i+1 ∧ E∗

i+1 = E∗
i+1.

Note that this simulation algorithm applies to the general distribution assumption for jump
sizes H(y) and G(z) for externally and self-excited jumps, respectively.

By using the same parameter setting under the exponential distribution assumption for the
jump sizes, we can regenerate the survival probabilities Ps(T ) in Table 4 based on 10 000
simulated sample paths (truncated at time T ), which are very close to the analytical results
in Table 2. For instance, one simulated sample path (Nt , λt ) with T = 50 is provided in
Figure 4. For comparison, the theoretical expectations E[λt ], E[λt | λ0], and E[Nt ] (derived
from Corollary 3.5, Theorem 3.6, and Theorem 3.8, respectively) are also plotted.
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Table 4: The survival probability Ps(T ) by 10 000 simulated sample paths.

Time, T (%)
d (%)

1 2 3 4 5 6

2 98.13 95.89 93.60 91.46 89.18 87.04
10 91.18 81.71 72.97 65.24 58.00 51.67
20 83.65 67.85 54.83 43.85 35.26 28.81

100 46.66 21.68 9.98 4.39 1.77 0.84
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Figure 4: One simulated sample path of the dynamic contagion process (Nt , λt ) against theoretical
expectations. The parameter values are (a, ρ, δ; α, β; λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7).

6. Conclusion

In this paper we have provided a general mathematical framework for modelling the
dependence structure of arriving events with contagion dynamics, mainly based on generalising
the Hawkes process (with exponential decay) and the Cox process with shot noise intensity
(with exponential decay). The dynamic contagion process newly introduced here has been
systemically studied by analysing its various distributional properties, and has the significant
potential of being applicable to a variety of problems in economics, finance, and insurance.
Here, we only look at one possible implementation in credit risk. However, other applications
such as managing portfolio credit risk and pricing credit derivatives could be the object of
further research work.
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