TAMING WILD SIMPLE CLOSED CURVES WITH MONOTONE MAPS

W. S. BOYD AND A. H. WRIGHT

1. Introduction. Hempel [6, Theorem 2] proved that if S is a tame 2 -sphere in E^{3} and f is a map of E^{3} onto itself such that $f \mid S$ is a homeomorphism and $f\left(E^{3}-S\right)=E^{3}-f(S)$, then $f(S)$ is tame. Boyd [4] has shown that the converse is false; in fact, if S is any 2 -sphere in E^{3}, then there is a monotone map f of E^{3} onto itself such that $f \mid S$ is a homeomorphism, $f\left(E^{3}-S\right)=$ $E^{3}-f(S)$, and $f(S)$ is tame.

It is the purpose of this paper to prove that the corresponding converse for simple closed curves in E^{3} is also false. We show in Theorem 4 that if J is any simple closed curve in a closed orientable 3 -manifold M^{3}, then there is a monotone map $f: M^{3} \rightarrow S^{3}$ such that $f \mid J$ is a homeomorphism, $f(J)$ is tame and unknotted, and $f\left(M^{3}-J\right)=S^{3}-f(J)$.

In Theorem 1 of $\S 2$, we construct a cube-with-handles neighbourhood of a simple closed curve in an orientable 3 -manifold. This neighbourhood is a solid torus, sectioned into 3 -cells, with a small cube-with-handles attached to each section to cover a small subarc of J associated with that section.

Theorem 1^{\prime} constructs an analogous neighbourhood for finite graphs.
In § 3 we extend the construction given in § 2 to give a cube-with-handles neighbourhood of a simple closed curve in which the simple closed curve is homotopic to a simple closed curve lying in the boundary of the solid torus portion of the neighbourhood. Similar extensions are given for neighbourhoods of finite graphs.

Sections 4 and 5 construct an infinite sequence of cube-with-handles neighbourhoods similar to those of Theorem 1, each lying "nicely" in the previous one. In the process of constructing these neighbourhoods, it is shown that if J is homologous to zero, then J bounds an open surface.

In $\S 6$, the infinite sequence of neighbourhoods is used to construct the monotone map of the 3 -manifold onto S^{3} which carries a simple closed curve in the manifold onto a tame unknotted simple closed curve. In the case that the simple closed curve J has a solid torus neighbourhood in which it is homologous to a centreline, there is a monotone map of the manifold onto itself which tames J and which is the identity outside the solid torus neighbourhood.

In § 7, we show that any knot, link, or wedge of simple closed curves in an orientable 3 -manifold which is homologous to zero (respectively, contractible to a point) in the 3 -manifold, is homologous to zero (respectively, contractible to a point) in a cube-with-handles in the 3 -manifold.

Received June 29, 1971 and in revised form, May 1, 1972.

By a map or mapping we will mean a continuous function. If each point inverse of a map is compact and connected, then the map will be called monotone.

A surface is a 2-manifold. An open manifold is a noncompact manifold without boundary, and a closed manifold is a compact manifold without boundary. We will denote the boundary of a manifold M by ∂M, and the interior of M by Int M. A surface S will be said to be properly embedded in a 3 -manifold M if $\partial S \subset \partial M$ and Int $S \subset$ Int M. We will assume that any manifold has a given metric, and we will denote this metric by the symbol ρ. The diameter of a set X will be denoted by $\operatorname{diam}(X)$.

A punctured disk is a disk D minus the interior of the union of a finite mutually disjoint collection of subdisks of the interior of D.

By a graph, we will mean a finite connected 1-complex. A vertex or 1 -simplex v of a graph G has order n if v is a face of $n 1$-simplexes of G. The star of a vertex v of G is the closure of the union of the simplexes of G which have v as a face. An n-frame is the union of n arcs all intersecting at a common end point.

Let S be a 2 -sided polyhedral surface in a 3 -manifold M^{3}, and let A be an oriented polyhedral arc or simple closed curve which pierces S at each of its points of intersection with S. If A pierces $S n$ more times in one direction than in the other, we call n the (unsigned) algebraic intersection number of A and S.

We use the fact that a polygonal simple closed curve in a 3 -manifold M^{3}, which is homologous to zero in M^{3}, bounds a polyhedral orientable surface in M^{3}. Also, if two disjoint polygonal simple closed curves are homologous in M^{3}, then they bound a polyhedral orientable surface in M^{3}.
2. Neighbourhoods of finite graphs. In this section we construct neighbourhoods of finite graphs topologically embedded in a 3 -manifold which are as close as we can make them to a regular neighbourhood. This neighbourhood is in fact the regular neighbourhood of a polygonal approximation to the graph with small cubes-with-handles attached along disks in the boundary of this regular neighbourhood to give a cube-with-handles neighbourhood of the topologically embedded graph. Near points where the topologically embedded graph is tame we do not need to attach the small cubes-with-handles. If the graph is polygonal our neighbourhood is, in fact, a regular neighbourhood of the graph. This neighbourhood will be used in $\S \S 4$ and 5 to construct an infinite sequence of neighbourhoods of a simple closed curve which will in turn be applied in $\S 6$ to define a monotone mapping carrying the simple closed curve to a tame unknotted simple closed curve in S^{3}.

Theorem 1. Let J be a simple closed curve topologically embedded in the interior of an orientable 3 -manifold M^{3}. For any $\epsilon>0$, J has a cube-with-handles neighbourhood N with the following structure:
(1) There is a solid torus T with n meridional spanning disks $D_{1}, D_{2}, \ldots, D_{n}$ which divide T into n 3-cells $T_{1}, T_{2}, \ldots, T_{n}$ such that $D_{i}=T_{i} \cap T_{i+1}$ and $D_{n}=T_{n} \cap T_{1}$.
(2) There are n points $p_{1}, p_{2}, \ldots, p_{n}$ on J which divide J into n closed subarcs $J_{1}, J_{2}, \ldots, J_{n}$ such that $p_{i}=J_{i} \cap J_{i+1}$ and $p_{n}=J_{n} \cap J_{1}$.
(3) $p_{i} \in \operatorname{Int} D_{i}$, for each i.
(4) Each 3-cell T_{i} has an associated cube-with-handles H_{i} such that $T \cap H_{i}=$ $T_{i} \cap H_{i}=\left(\partial T_{i}-D_{i}-D_{i-1}\right) \cap \partial H_{i}$ is a disk F_{i}.
(5) $J_{i} \subset T_{i-1} \cup\left(T_{i} \cup H_{i}\right) \cup T_{i+1}$.
(6) $\operatorname{diam}\left(T_{i-1} \cup\left(T_{i} \cup H_{i}\right) \cup T_{i+1}\right)<\epsilon$.
(7) $N=T \cup\left(\cup H_{i}\right)$.
(8) If J is locally tame at each point J_{i}, then $T_{i} \cap J=J_{i}$ is an unknotted spanning arc of T_{i} (hence there is no need for H_{i}).

Remark. If M^{3} is non-orientable, the same theorem is true except that T may be a solid Klein bottle, so N is a cube with (possibly) non-orientable handles.

Proof of Theorem 1. Let $\delta<\epsilon / 25$. Choose points $p_{1}, p_{2}, \ldots, p_{n}$ of J dividing J into subarcs $J_{1}, J_{2}, \ldots, J_{n}$ of diameter less than $\delta / 3$ such that

$$
p_{i}=J_{i} \cap J_{i+1}, \quad i=1, \ldots, n
$$

(subscripts are understood to be integers $\bmod n$), and $J_{i} \cap J_{j}=\emptyset$ if $j \neq i-1$, i, or $i+1$. The $\operatorname{arcs} J_{1}, J_{2}, \ldots, J_{n}$ form the 2 -skeleton of a curvilinear triangulation of J with vertices $p_{1}, p_{2}, \ldots, p_{n}$.

Let J^{\prime} be a polygonal approximation to J, where $J^{\prime}=J_{1}{ }^{\prime} \cup J_{2}{ }^{\prime} \cup \ldots \cup J_{n}{ }^{\prime}$ is a simple closed curve with $J_{i}{ }^{\prime} \delta / 3$-homotopic to J_{i} by a homotopy keeping the endpoints of J_{i} fixed. By [9, Lemma 3], $J_{i}{ }^{\prime}$ can be adjusted slightly near $J_{i}{ }^{\prime} \cap \mathrm{Cl}\left(J-\left(J_{i-1} \cup J_{i} \cup J_{i+1}\right)\right)$ so that $J_{i}{ }^{\prime}$ is disjoint from

$$
\mathrm{Cl}\left(J-\left(J_{i-1} \cup J_{i} \cup J_{i+1}\right)\right) .
$$

Thus we will assume that J^{\prime} has this property for each subarc $J_{i}{ }^{\prime}$.
Take a polygonal solid torus neighbourhood T of J^{\prime} and a disjoint collection of meridional disks $D_{1}, D_{2}, \ldots, D_{n}$ such that $D_{i} \cap J^{\prime}=\left\{p_{i}\right\}, i=1,2, \ldots, n$, and $p_{i} \in \operatorname{Int} D_{i}$. If T_{i} is the closure of the component of $T-\cup\left\{D_{i}: i=\right.$ $1,2, \ldots, n\}$ containing $D_{i-1} \cup D_{i}$, then T_{i} is a 3 -cell for each $i=1,2, \ldots, n$. The D_{i} 's and T may be chosen so that diam $\left(T_{i}\right)<\delta / 3$, and because

$$
J_{i}^{\prime} \cap \mathrm{Cl}\left(J-\left(J_{i-1} \cup J_{i} \cup J_{i+1}\right)\right)=\emptyset
$$

we may assume that T and the D_{i} 's were chosen so that

$$
T_{i} \cap \mathrm{Cl}\left(J-\left(J_{i-1} \cup J_{i} \cup J_{i+1}\right)\right)=\emptyset, \quad i=1,2, \ldots, n .
$$

The latter condition insures that $J_{i} \cap \mathrm{Cl}\left(T-\left(T_{i-1} \cup T_{i} \cup T_{i+1}\right)\right)=\emptyset$ for each i.

Consider the collection of sets $J_{1} \cap \partial T, J_{2} \cap \partial T, \ldots, J_{n} \cap \partial T$. This is a collection of mutually exclusive compact subsets of ∂T such that no component
of any $J_{i} \cap \partial T$ separates a neighbourhood of itself in ∂T. Hence, there is a collection

$$
\mathscr{D}=\mathscr{D}_{1} \cup \mathscr{D}_{2} \cup \ldots \cup \mathscr{D}_{n}
$$

of mutually exclusive disks in ∂T such that \mathscr{D}_{i} is a mutually exclusive collection of disks containing $J_{i} \cap \partial T$ in the union of their interiors and $\mathscr{D}_{i} \cap \mathscr{D}_{j}=\emptyset$ if $i \neq j$. Furthermore, \mathscr{D}_{i} can be chosen so that the union $\mathscr{D}_{i}{ }^{*}$ of the disks in \mathscr{D}_{i} lies in $\partial\left(T_{i-1} \cup T_{i} \cup T_{i+1}\right)$ missing the two end disks D_{i-2} and D_{i+1}, and since $J_{i} \cap \partial T$ is a $\delta / 3$-set we may assume that each disk of \mathscr{D}_{i} has diameter less than $\delta / 3$.

By "sliding" each ∂D_{i} along ∂T we may adjust $\cup D_{i}$ so that $\left(\cup D_{i}\right) \cap \mathscr{D}^{*}=\emptyset$, no point of D_{i} is moved more than $\delta / 3$, and $\mathscr{D}_{i}{ }^{*}$ lies in $T_{i-1} \cup T_{i} \cup T_{i+1}$. We do this adjustment so close to each component of \mathscr{D} that p_{i} is still in the adjusted D_{i} and the resulting T_{i} 's retain the property that J_{i} does not meet any T_{j} unless $j=i-1, i$, or $i+1$, and $\operatorname{diam}\left(T_{i}\right)<\delta$.

As in [7, Lemma 2], let $\mathscr{D}^{*}{ }_{i, j}$ denote the set $\mathscr{D}_{i}{ }^{*} \cap \partial T_{j}$ for $j=i-1, i$, $i+1$. There are three mutually disjoint disks on $\partial T_{j}-D_{j-1}-D_{j}$, namely $B_{j-1, j}, \quad B_{j, j}, \quad B_{j+1, j}$ so that $\mathscr{D}^{*}{ }_{j-1, j} \subset \operatorname{Int} B_{j-1, j}, \quad \mathscr{D}^{*}{ }_{j, j} \subset \operatorname{Int} B_{j, j}$ and $\mathscr{D}^{*}{ }_{j+1, j} \subset \operatorname{Int} B_{j+1, j}$. Thus $\mathscr{D}_{i}{ }^{*} \subset B_{i, i-1} \cup B_{i, i} \cup B_{i, i+1}$ and $B_{i, i-1} \subset \partial T_{i-1}$, $B_{i, i} \subset \partial T_{i}, B_{i, i+1} \subset \partial T_{i+1}$. There are two arcs, one joining $B_{i, i-1}$ to $B_{i, i}$ intersecting D_{i-1} precisely once, and one joining $B_{i, i}$ to $B_{i, i+1}$ intersecting D_{i} precisely once; both arcs are disjoint from any other $B_{j, k}$'s and lie in $\partial\left(T_{i-1} \cup T_{i}\right)$ and $\partial\left(T_{i} \cup T_{i+1}\right)$, respectively.

It is easy to see that there is a disjoint collection of such arcs in ∂T such that each arc intersects $\cup \partial D_{i}$ precisely once and joins some $B_{i, i}$ to $B_{i, i-1}$ or some $B_{i, i}$ to $B_{i, i+1}$ and each $B_{i, i}$ is joined to $B_{i, i-1}$ by one such arc and to $B_{i, i+1}$ by one. Replacing these arcs by thin disks we obtain disks $F_{1}, F_{2}, \ldots, F_{n}$ on ∂T such that

$$
\begin{gathered}
\mathscr{D}_{i}^{*} \subset B_{i, i-1} \cup B_{i, i} \cup B_{i, i+1} \subset F_{i} \\
F_{i} \subset \partial\left(T_{i-1} \cup T_{i} \cup T_{i+1}\right)-D_{i-2}-D_{i+1}, \quad \text { and } \quad F_{i} \cap F_{j}=\emptyset
\end{gathered}
$$

if $i \neq j$. We now adjust the disks $D_{1}, D_{2}, \ldots, D_{n}$ near ∂T to slip them off $\cup F_{i}$ so that $F_{i} \subset \partial T_{i}-D_{i-1}-D_{i}$. This adjusts $T_{1}, T_{2}, \ldots, T_{n}$, also. We now have the structure of (1), (2), and (3) of the conclusions to the theorem. Since

$$
\operatorname{diam}\left(F_{i}\right) \leqq \operatorname{diam}\left(T_{i-1} \cup T_{i} \cup T_{i+1}\right)<3 \delta
$$

before this last adjustment, then

$$
\operatorname{diam} T_{i}<\delta+2(3 \delta)=7 \delta
$$

after pushing the D_{i} 's off the F_{i} 's.
Let $M_{i}{ }^{\prime}$ be a compact 3 -manifold with connected boundary intersecting T in a collection of punctured disks in the boundary of each of $M_{i}{ }^{\prime}$ and T, with $M_{i}{ }^{\prime} \cap T \subset F_{i}, J_{i}-T \subset \operatorname{Int} M_{i}{ }^{\prime}, \operatorname{diam}\left(M_{i}{ }^{\prime}\right)<\delta / 3$, and $M_{i}{ }^{\prime} \cap M_{j}{ }^{\prime}=\emptyset$ if $i \neq j$. Fatten the disk F_{i} slightly into the complement of T and add the
resulting cell to $M_{i}{ }^{\prime}$ to obtain a compact 3 -manifold with connected boundary M_{i} intersecting T in exactly the disk F_{i}.

There is a collection \mathscr{A}_{i} of arcs in M_{i} such that each arc lies in Int M_{i} except that its endpoints lie in $\partial M_{i}-F_{i}$ and such that M_{i} minus a small tubular neighbourhood of every arc of \mathscr{A}_{i} is a cube-with-handles. Such arcs exist by [9, Lemma 1]. By [9, Lemma 3], the collection of arcs \mathscr{A}_{i} may be adjusted near $\mathscr{A}_{i}{ }^{*} \cap J_{i}$ so that $J_{i} \cap \mathscr{A}_{i}{ }^{*}=\emptyset$. Let H_{i} be the cube-withhandles obtained by removing small tubular neighbourhoods of these adjusted arcs of \mathscr{A}_{i} from M_{i}. Then $H_{i} \cap T=F_{i}$ and

$$
\begin{aligned}
\operatorname{diam}\left(H_{i}\right) & \leqq \operatorname{diam}\left(M_{i}{ }^{\prime}\right)+\operatorname{diam}\left(F_{i}\right) \\
& <\delta / 3+3 \delta=3 \frac{1}{3} \delta .
\end{aligned}
$$

The cube-with-handles H_{i} is the one promised in (4); and (5) follows. We let $N=T \cup\left(\cup H_{i}\right)$ and note that

$$
\begin{aligned}
\operatorname{diam}\left(T_{i-1} \cup\left(T_{i} \cup H_{i}\right) \cup T_{i+1}\right) \leqq & \operatorname{diam} T_{i-1}+\operatorname{diam} T_{i}+\operatorname{diam} H_{i} \\
& +\operatorname{diam} T_{i+1} \\
< & 7 \delta+7 \delta+3 \frac{1}{3} \delta+7 \delta \\
= & 24 \frac{1}{3} \delta<\epsilon .
\end{aligned}
$$

To obtain (8) we assume without loss of generality by [3, Theorem 9] that J is locally polyhedral mod its set of wild points. If J is locally tame at each point of J_{i}, then J_{i} is polyhedral and we can choose $J_{i}{ }^{\prime}=J_{i}$. It then follows that T, T_{i}, D_{i} and D_{i-1} can be so chosen as in (8). This completes the proof of Theorem 1 .

Remark. Let p be a point of a (possibly wild) simple closed curve J and let U be a neighbourhood of p. Then there is a disk D in U such that $\partial D \cap J=\emptyset$ and any polygonal approximation of J which is homotopic to J in the complement of ∂D intersects D algebraically once. Just choose D to be a D_{i} of a sufficiently close neighbourhood N of J as constructed in Theorem 1.

A special decomposition P of a graph G is a decomposition of G into vertices, 1 -simplexes, and n-frames obtained as follows from a triangulation of the graph which is so fine that the star of two vertices of order greater than 2 do not intersect: At each vertex v of order $n>2$, replace v and each 1 -simplex containing v with the n-frame star of v. The 1 -simplexes and n-frames of the decomposition will be called 1-elements. The special decomposition P^{\prime} of the graph G is a subdivision of P if each vertex of P is also a vertex of P^{\prime}.

Theorem 1^{\prime}. Let G be a finite graph topologically embedded in an orientable 3 -manifold M^{3}. For any $\epsilon>0$, G has a cube-with-handles neighbourhood N with the following structure:
(1) There is a special decomposition P of G and a cube-with-handles $T=\cup\left\{T_{\sigma}: \sigma\right.$ is a 1 -element of $\left.P\right\}$, where each T_{σ} is a 3 -cell associated with σ.
(2) $T_{\sigma} \cap T_{\sigma^{\prime}}=\emptyset$ if $\sigma \cap \sigma^{\prime}=\emptyset$ and $T_{\sigma} \cap T_{\sigma^{\prime}}=D_{\tau}$, where D_{τ} is a disk in the boundary of each of T_{σ} and $T_{\sigma^{\prime}}$ if $\tau=\sigma \cap \sigma^{\prime}$ is a vertex P. In this case, $\tau \in \operatorname{Int} D_{\tau}$.
(3) Each 3-cell T_{σ} has an associated cube-with-handles H_{σ} such that $T \cap H_{\sigma}=T_{\sigma} \cap H_{\sigma}=\left(\partial T_{\sigma}-\cup\left\{D_{\tau}: \tau\right.\right.$ is a vertex of $\left.\left.\sigma\right\}\right) \cap \partial H_{\sigma}$ is a disk F_{σ}.
(4) If σ is a 1-element of P, then $\sigma \subset T_{\sigma} \cup H_{\sigma} \cup\left(\cup\left\{T_{\sigma^{\prime}}: \sigma^{\prime}\right.\right.$ is a 1-element of P and $\left.\sigma^{\prime} \cap \sigma \neq \emptyset\right\}$).
(5) If σ is a 1 -element of P, then $\operatorname{diam}\left(\cup\left\{T_{\sigma^{\prime}} \cup H_{\sigma^{\prime}}: \sigma^{\prime}\right.\right.$ is a 1-element of P and $\left.\left.\sigma^{\prime} \cap \sigma \neq \emptyset\right\}\right)<\epsilon$.
(6) $N=T \cup\left(\cup H_{\sigma}\right)$.
(7) If G is locally tame at each point of the 1-element σ, then $T_{\sigma} \cap G=\sigma$ and σ lies in T_{σ} as the cone from an interior point of the 3 -cell T_{σ} to a finite collection of points of ∂T_{σ}. In this case, there is no H_{σ}.
Remark. If M^{3} is non-orientable, T (and hence N) may be a cube with non-orientable handles; with this exception Theorem 1^{\prime} holds for a nonorientable M^{3}.

Proof of Theorem 1'. The proof is essentially the same as that of Theorem 1, except at the vertices of G of order $r>2$. We indicate here how to modify the proof of Theorem 1. We take first of all a special decomposition P of the graph G instead of the triangulation of J. We choose a polygonal approximation G^{\prime} of $G \delta / 3$-homotopic to G keeping the vertices of P fixed; in particular, each vertex of G is also a vertex of G^{\prime}. Instead of a solid torus neighbourhood of J^{\prime}, as in Theorem 1, we choose a regular neighbourhood T of G^{\prime} and a collection of spanning disks D_{τ} of T, one for each vertex τ of P, which divides T into 3 -cells satisfying (1) and (2). Note that there is a 3 -cell T_{σ} for each 1-element σ of P and each T_{σ} is separated from "adjacent" $T_{\sigma^{\prime}}$'s by a disk D_{τ}. If σ is an n-frame, note that T_{σ} is "adjacent" to more than two $T_{\sigma^{\prime}}$'s, and is separated from them by a collection of disks $\left\{D_{\tau}: \tau\right.$ is a vertex of $\left.\sigma\right\}$, where there is one D_{τ} for each $T_{\sigma^{\prime}}$.

The rest of the proof is the same as the proof for Theorem 1 with the appropriate change in notation.
3. In this section we take the neighbourhood N of Theorem 1 and modify it so that the simple closed curve J (respectively, graph G) is homotopic in N to a homeomorphic copy of itself in ∂N. As a consequence we can rename subsets of the new neighbourhood so that it satisfies the conclusion of Theorem 1 (respectively, Theorem 1^{\prime}) except that possibly (5) holds in a slightly weaker form, but in which J (respectively, G) is homotopic in N to a spine of T. There is a corresponding version of each theorem for non-orientable 3 -manifolds, which holds with little or no change in proof.

Theorem 2. Let J be a simple closed curve in the interior of an orientable 3-manifold M^{3}. For any $\epsilon>0, J$ has a cube-with-handles neighbourhood
$N=T \cup H_{1} \cup H_{2} \cup \ldots \cup H_{n}$ as given in Theorem 1 with the additional property that J is ϵ-homotopic in N to a simple closed curve L on ∂N which crosses each D_{i} precisely once and has no other points of intersection with $\cup D_{i}$.

Proof. Let N be a cube-with-handles neighbourhood of J as given by Theorem 1 for $\epsilon / 3$. Denote $T_{i} \cup H_{i}$ by N_{i}. Then $J_{i} \subset T_{i-1} \cup N_{i} \cup T_{i+1}$, $\operatorname{diam}\left(T_{i-1} \cup N_{i} \cup T_{i+1}\right)<\epsilon / 3, p_{i-1} \in \operatorname{Int} D_{i-1}, p_{i} \in \operatorname{Int} D_{i}$, where p_{i-1}, p_{i} are the endpoints of J_{i}, and D_{i} is the disk $N_{i} \cap N_{i+1}=T_{i} \cap T_{i+1}$.

Let us consider $N_{i}=T_{i} \cup H_{i}$. Let $E_{1}, E_{2}, \ldots, E_{k}$ be a collection of handles for H_{i}. That is, $E_{1}, E_{2}, \ldots, E_{k}$ is a mutually exclusive collection of disks properly embedded in H_{i} such that the closure of H_{i} minus a sufficiently close regular neighbourhood of $\cup E_{j}$ is a 3 -cell. By choosing the E_{j} to miss the disk $F_{i}=T_{i} \cap H_{i}$, we ensure that $\cup E_{j}$ is a collection of handles for the cubes-with-handles $T_{i-1} \cup N_{i} \cup T_{i+1}$ and also for the cube-with-handles N_{i}.

Let $\delta>0$ be less than half the distance between any two of the disks $E_{1}, E_{2}, \ldots, E_{k}$. Let $J_{i}{ }^{\prime \prime}$ be any polygonal arc which is δ-homotopic to J_{i} in $T_{i-1} \cup N_{i} \cup T_{i+1}$ by a homotopy keeping p_{i-1} and p_{i} fixed. Suppose that J_{i} and $J_{i}{ }^{\prime \prime}$ are oriented from p_{i-1} to p_{i} and that each E_{j} is oriented. Suppose further that $J_{i}{ }^{\prime \prime}$ pierces each disk E_{j} at each point of intersection.

We assign a letter to each crossing of $J_{i}{ }^{\prime \prime}$ with one of the disks E_{j} as follows:
e_{j} is a positive crossing through the disk E_{j},
e_{j}^{-1} is a negative crossing through the disk E_{j}.
Using this convention we can write out a word in the letters $e_{1}, e_{2}, \ldots, e_{k}$ representing $J_{i}{ }^{\prime \prime}$. For example, if $J_{i}^{\prime \prime}$ were represented by the word $e_{1} e_{3}{ }^{-1} e_{2}$ it would mean that proceeding along $J_{i}{ }^{\prime \prime}$ from p_{i-1} to $p_{i}, J_{i}{ }^{\prime \prime}$ crosses E_{1} in the positive direction, then E_{3} in the negative direction, then E_{2} in the positive direction and that there are no other intersections of $J_{i}{ }^{\prime \prime}$ with any E_{j}.

If $J_{i}{ }^{\prime \prime}$ is represented by the word

$$
x_{1}{ }^{\epsilon 1} x_{2}{ }^{\epsilon 2} \ldots x_{l}^{\epsilon l}
$$

where $\epsilon_{j}= \pm 1$ and $x_{j}=e_{\tau}$ for some $r \in\{1,2, \ldots, k\}$, we can obtain (uniquely) a reduced word

$$
\alpha_{1}{ }^{\eta_{1}} \alpha_{2}^{\eta_{2}} \ldots \alpha_{m}{ }^{\eta_{m}}
$$

 $\alpha \alpha^{-1}$. We do this by successively deleting such combinations from the word $x_{1}{ }^{\epsilon 1} x_{2}{ }^{\epsilon 2} \ldots x_{i}{ }^{\epsilon l}$ until none occur. (If $J_{i}^{\prime \prime}$ were a closed curve at p_{i-1} this procedure would yield the reduced word of $J_{i}{ }^{\prime \prime}$ in the fundamental group based at p_{i-1} of the cube-with-handles $T_{i-1} \cup N_{i} \cup T_{i+1}$ in a presentation of this group.) Note that for any two approximations to J_{i} such as $J_{i}{ }^{\prime \prime}$ we obtain the same reduced word which we will refer to as the word of J_{i}. This follows from our choice of δ.

Now suppose that $\alpha_{1}{ }^{\eta_{1}} \alpha_{2}{ }^{\eta_{2}} \ldots \alpha_{m}{ }^{\eta_{m}}$ is the (reduced) word of J_{i}. We emphasize that this word is unique. We would like to construct an arc on
$\partial N_{i}-\left(D_{i-1} \cup D_{i}\right)$ whose word is also $\alpha_{1}{ }^{\eta_{1}} \alpha_{2}{ }^{\eta_{2}} \ldots \alpha_{m}{ }^{\eta_{m}}$. In general, this is not possible. However, there is an oriented polygonal curve L^{\prime} in ∂N_{i} running from a point $p^{\prime}{ }_{i-1}$ in ∂D_{i-1} to a point p_{i}^{\prime} in ∂D_{i} with $\operatorname{Int} L^{\prime} \subset \partial N_{i}-$ ($D_{i-1} \cup D_{i}$) such that the word of L^{\prime} is the same as that of J_{i} and L^{\prime} has a finite number of self-intersections, all crossing points. We may assume that each such crossing is a double point and that none of the double points lies in the boundary of one of the disks $E_{j}, j=1,2, \ldots, k$. We will drill out holes in N_{i} to make a new cube-with-handles in N_{i} for which it is possible to find an L^{\prime} with no self-intersections.

Let q denote one of the double points of L^{\prime} and let $A^{\prime}, A^{\prime \prime}$ be two subarcs of L^{\prime} which cross at q and contain no other singularities of L. Let A^{\prime} and $A^{\prime \prime}$ have the orientations inherited from L^{\prime}. If E is a small disk in N_{i} with $E \cap \partial N_{i}=\partial E \cap \partial N_{i}=A^{\prime}$ and $E \cap\left(\cup E_{j}\right)=\emptyset$, then we could drill out a tube in N_{i} along the arc $A=\partial E-\operatorname{Int} A^{\prime}$ and obtain a new cube-withhandles $N_{i}{ }^{\prime} \subset N_{i}$ in place of N_{i}. By replacing the subarc A^{\prime} of L^{\prime} with the $\operatorname{arc} A$ on the tube we can reduce the number of singularities of L^{\prime} by one. However, the new curve $L^{\prime \prime}$ so obtained would have a different word in $N_{i}{ }^{\prime}$ because of the crossing of $A^{\prime \prime}$ through the disk E, which must now be taken as a handle of $T_{i-1} \cup N_{i} \cup T_{i}$ along with $E_{1}, E_{2}, \ldots, E_{k}$.

To compensate for this we choose E so that J_{i} also has this letter in its (reduced) word. Suppose that the new letter e corresponding to passage of $L^{\prime \prime}$ through E is between $\alpha_{s}{ }^{\eta_{s}}$ and $\alpha_{s+1} 1_{s+1}$ in the word of L^{\prime}. The word of $L^{\prime \prime}$, then, is the word of L^{\prime} with e inserted between $\alpha_{s}{ }^{\eta_{s}}$ and $\alpha_{s+1}{ }^{\eta_{s+1}}$:

$$
\alpha_{1}{ }^{\eta_{1}} \alpha_{2}{ }^{\eta_{2}} \ldots \alpha_{s}{ }^{\eta_{s}} e \alpha_{s+1}{ }^{\eta_{s}+1} \ldots \alpha_{m}^{\eta_{m}}
$$

J_{i} can be divided into 3 subarcs B_{1}, B_{2}, B_{3} such that the word of B_{1} is $\alpha_{1}{ }^{\eta_{1}} \alpha_{2}{ }^{\eta_{2}} \ldots \alpha_{s}{ }^{\eta_{s}}$, the word of B_{2} is the identity (i.e., B_{2} does not intersect any of the disks $E_{1}, E_{2}, \ldots, E_{k}$), and the word of B_{3} is $\alpha_{s+1^{\eta_{s}+1}} \ldots \alpha_{m}^{\eta_{m}}$.

To obtain the arcs B_{1}, B_{2} and B_{3} we first take a regular neighbourhood U of $\cup E_{j}$ in N_{i} missing the endpoints of J_{i}. There is a finite collection of mutually disjoint closed subintervals of J_{i}, the union of the interiors of which cover $J_{i} \cap\left(\cup E_{j}\right)$, such that each interval lies in U. We can read a word for J_{i} from these intervals as follows: If the endpoints of an interval are separated in U by some E_{k}, then that interval represents a (net) crossing of J_{i} through E_{k} in either a positive direction or a negative direction. In the first case we associate the letter e_{k} with the interval; in the second case, the letter $e_{k}{ }^{-1}$. If the endpoints of the interval are not separated in U by any E_{k}, then that interval represents a (net) crossing of J_{i} through $\cup E_{k}$ of zero. If the interval intersects some E_{k} (it can intersect at most one), associate the letter t with that interval; otherwise, just eliminate it from the collection. The word for J_{i} is the word obtained by traversing J_{i} from p_{i-1} to p_{i} writing down the letter associated with each interval as we come to it. It follows that, if we treat t as equal to the trivial word, then this word reduces to the (reduced) word of J_{i} obtained before. Furthermore, reduction can be accomplished geometrically
by replacing the two intervals corresponding to an $e_{k} e_{k}^{-1}$ (or an $e_{k}^{-1} e_{k}$) by a longer interval equal to the union of these two intervals with the subinterval of J_{i} lying between them, associating the letter t with it (and ignoring it, henceforth, in the reduction as it represents the trivial word). It follows that the (reduced) word of J_{i} is represented by some subcollection of the original collection of intervals. We now have a collection \mathscr{A} of closed intervals of J_{i} remaining (including the intervals associated with letter t). Now eliminate from \mathscr{A} any interval which is contained in some other interval in \mathscr{A}. Note that each of these eliminated intervals has the letter t associated with it. Then \mathscr{A} is a collection of mutually disjoint closed intervals and the union of the interiors of these intervals covers $J_{i} \cap\left(\cup E_{j}\right)$. Furthermore, the (reduced) word of J_{i} can be read directly from the intervals of \mathscr{A} if letter t is ignored in each occurrence. Therefore there is a point x of J_{i} such that the

word of J_{i} from p_{i-1} up to x is the word $\alpha_{1}{ }^{\eta_{1}} \ldots \alpha_{s}{ }^{\eta_{s}}$ and x does not lie in any of the intervals of \mathscr{A}. Let B_{2} be a subarc of J_{i} containing x which is disjoint from each interval of \mathscr{A}. Let B_{1} and B_{3} be the closures of the appropriate components of $J_{i}-B_{2}$.

Let D be a small disk in Int N_{i} missing $\cup E_{j} \cup\left(J-\operatorname{Int} B_{2}\right)$ such that any sufficiently close polygonal approximation to J intersects D algebraically once. Let β be a polygonal arc joining ∂D to $q\left(=A^{\prime} \cap A^{\prime \prime}\right)$ with Int $\beta \subset \operatorname{Int} N_{i}-\left(J \cup\left(\cup E_{j}\right)\right)$. That β can be chosen to miss $\cup E_{j}$ follows because $N_{i}-\cup E_{j}$ is homeomorphic to a 3-cell less a finite disjoint collection of disks in its boundary. Replace β with a narrow disk (see Figure 1) intersecting L^{\prime} in the subarc A^{\prime} and D in a subarc of ∂D. Let the disk E be the union of D and the narrow disk. Drill a small tubular hole out of N_{i} along the $\operatorname{arc} \partial E-A^{\prime}$ to obtain the cube-with-handles $N_{i}{ }^{\prime}$. A set of handles for $N_{i}{ }^{\prime}$ is E, E_{1}, \ldots, E_{k}. Let $L^{\prime \prime}$ be the arc obtained from L^{\prime} by replacing the subarc A^{\prime} with an arc running along the tube and not intersecting E. If the narrow disk is given the appropriate "twist" before attaching to D to form E, then J_{i} has the same word

$$
\alpha_{1}{ }^{\eta_{1}} \alpha_{2}^{\eta_{2}} \ldots \alpha_{s}{ }^{\eta_{s}} e \alpha_{s+1}{ }^{\eta_{s+1}} \ldots \alpha_{m}{ }^{\eta_{m}}
$$

in N_{i}^{\prime} as does $L^{\prime \prime}$.
It is clear that we can apply the above technique at each point of singularity of L^{\prime} and obtain a cube-with-handles $N_{i}{ }^{\prime} \subset N_{i}$ by drilling out small tubular holes in N_{i}. We can replace the singular arc L^{\prime} by a non-singular arc L_{i} lying in $\partial N_{i}{ }^{\prime}-\left(D_{i-1} \cup D_{i}\right)$ except for its endpoints $p^{\prime}{ }_{i-1} \in \partial D_{i-1}$ and $p_{i}{ }^{\prime} \in \partial D_{i}$. Furthermore, the construction gives a set of handles $E_{1}{ }^{i}, E_{2}{ }^{i}, \ldots, E_{k i}{ }^{i}$ for $N_{i}{ }^{\prime}$ consisting of the handles for N_{i} together with the handles such as E introduced at the points of singularity of L^{\prime}. The word of L_{i} in $N_{i}{ }^{\prime}$ is the same as the word of J_{i}. Notice also that $J-\operatorname{Int} J_{i}$ is disjoint from each handle $E_{j}{ }^{i}$.

Let $L=\bigcup\left\{L_{i}: i=1,2, \ldots, n\right\}$. Then L is a simple closed curve on $\partial N^{\prime}=\partial\left(\cup N_{i}^{\prime}\right)$. All that remains is to show that L and J are ϵ-homotopic in $N^{\prime}=\cup N_{i}{ }^{\prime}$.

Join p_{i} to $p_{i}{ }^{\prime}$ by an $\operatorname{arc} l_{i}$ in D_{i} and orient l_{i} from p_{i} to $p_{i}{ }^{\prime}$. Then $J_{i} l_{i} L_{i}{ }^{-1} l_{i-1}{ }^{-1}$ is an oriented loop in $N^{\prime}{ }_{i-1} \cup N_{i}{ }^{\prime} \cup N^{\prime}{ }_{i+1}$ based at p_{i}. Because this loop does not intersect the handles of $N^{\prime}{ }_{i-1}$ or of $N^{\prime}{ }_{i+1}$ and its word in $N_{i}{ }^{\prime}$ is zero, this loop represents the trivial word in $N^{\prime}{ }_{i-1} \cup N_{i}{ }^{\prime} \cup N^{\prime}{ }_{i+1}$ and thus bounds a singular disk in this cube-with-handles. By piecing together these singular disks, we obtain an ϵ-homotopy in N^{\prime} from J to L.

Dropping the primes, we have the structure required in Theorem 2.
Corollary 1. Let J be a simple closed curve in the interior of an orientable 3-manifold M^{3}. For any $\epsilon>0$, J has a cube-with-handles neighbourhood $N=T \cup H_{1} \cup H_{2} \cup \ldots \cup H_{n}$ as given in Theorem 1, except that conclusion (5) becomes:
(5) there are 3 -cells $C_{i} \subset N_{i}$ with $C_{i} \cap \partial N_{i} \supset D_{i-1} \cup D_{i}$ and $J_{i} \subset C_{i-1} \cup N_{i} \cup C_{i+1}\left(\right.$ where $\left.N_{i}=T_{i} \cup H_{i}\right)$,
and with the additional property that J is ϵ-homotopic in N to a geometric centreline of T.

Proof. Let $N=N_{1} \cup N_{2} \cup \ldots \cup N_{n}$ be the neighbourhood constructed in Theorem 2 for J. Let T_{i} be a regular neighbourhood in N_{i} of $L_{i} \cup D_{i-1} \cup D_{i}$ and let H_{i} be the closure of $N_{i}-T_{i}$. Let $T=\cup T_{i}$.

Let the 3 -cells C_{i} be N_{i} minus a regular neighbourhood of $\cup E_{j}{ }^{i}$ which is so close to $\cup E_{j}{ }^{i}$ that it is disjoint from $J-\operatorname{Int} J_{i}$.

Theorem 2'. Let G be a finite graph topologically embedded in the interior of an orientable 3-manifold M^{3}. For any $\epsilon>0, G$ has a cube-with-handles neighbourhood $N=T \cup\left(\cup H_{\sigma}\right)$ as given by Theorem 1^{\prime} with the additional property that J is ϵ-homotopic in N to a polygonal finite graph L in ∂N which is homeomorphic to G.

Proof. The proof is essentially the same as that of Theorem 2. If P is the special decomposition of G used in constructing a neighbourhood N as in Theorem 1', each 1 -element σ of P has an associated cube-with-handles $N_{\sigma}=T_{\sigma} \cup H_{\sigma}$. We drill tubes out of each N_{σ} to form an N_{σ}^{\prime} which is a cube-with-handles and construct a homotopy of σ in $\cup\left\{N_{\sigma^{\prime}}: \sigma^{\prime}\right.$ is a 1-element of P and $\left.\sigma^{\prime} \cap \sigma \neq \emptyset\right\}$ onto a copy of σ in $\partial N_{\sigma}^{\prime}$ as in the proof of Theorem 2. The main difference occurs when σ is an n-frame.

Suppose that σ is an n-frame of P with $n>2$. That is, σ is a 1 -element of P containing a point v of G of order greater than 2. Let $\tau_{1}, \tau_{2}, \ldots, \tau_{m}$ be the vertices of σ. Let $E_{1}, E_{2}, \ldots, E_{k}$ be a set of handles for N_{σ}. Choose an arc γ in $N_{\sigma}-(G-\{v\})-\cup E_{j}$ joining v to a point v^{\prime} of

$$
\partial N-\cup\left\{D_{\tau_{i}}: i=1,2, \ldots, m\right\}
$$

The n-frame σ is the union of 1 -simplexes $\sigma_{i}, i=1,2, \ldots, m$, such that one vertex of σ_{i} is v and the other is τ_{i}. Construct, as in Theorem 2, singular arcs $L_{\sigma_{i}}^{\prime}$ on $\partial N_{\sigma}-\cup$ Int $D_{\tau_{i}}$ joining v^{\prime} to a point $\tau_{i}{ }^{\prime} \in \partial D_{\tau_{i}}$, such that the word of $L_{\sigma_{i}}^{\prime}$ is the (reduced) word of σ_{i} in N_{σ}. Each $L_{\sigma_{i}}^{\prime}$ may cross itself and other $L_{\sigma_{j}}^{\prime}$'s as well. We can drill tubes in N_{σ} as before to obtain a new $N_{\sigma}{ }^{\prime}$ on which each $L_{\sigma_{i}}^{\prime}$ can be replaced by a non-singular $L_{\sigma_{i}}$ such that $L_{\sigma_{i}} \cap L_{\sigma_{j}}$ is the point v^{\prime} and the word of $L_{\sigma_{i}}$ in $N_{\sigma}{ }^{\prime}$ is the same as the word of σ_{i} in $N_{\sigma}{ }^{\prime}$. To do this involves only a simple generalization of the technique of Theorem 2 to the case of a finite collection of arcs.

If l_{i} is an arc in $D_{\tau_{i}}$ from τ_{i} to $\tau_{i}{ }^{\prime}$ which misses $G-\left\{\tau_{i}\right\}$, then $\sigma_{i} l_{i} L_{\sigma_{i}}{ }^{-1} \gamma^{-1}$ is a simple loop which lies in $N_{\sigma}{ }^{\prime}$ except for part of σ_{i}. The part of σ_{i} outside of $N_{\sigma}{ }^{\prime}$ does not intersect any handles of any $N^{\prime}{ }_{\sigma^{\prime}}, \sigma^{\prime} \neq \sigma$, so the word of $\sigma_{i} l_{i} L_{\sigma_{i}}{ }^{-1} \gamma^{-1}$ in

$$
\cup\left\{N_{\sigma^{\prime}}: \sigma^{\prime} \cap \sigma \neq \emptyset\right\}
$$

is the same as its word in $N_{\sigma}{ }^{\prime}$, namely zero. Thus it bounds a singular disk in $\cup\left\{N^{\prime}{ }_{\sigma^{\prime}}: \sigma^{\prime} \cap \sigma \neq \emptyset\right\}$. Piecing together along γ all the singular disks obtained
in this way (one for each $\sigma_{i} l_{i} L_{\sigma_{i}}{ }^{-1} \gamma^{-1}$), we obtain an ϵ-homotopy in $N_{\sigma}{ }^{\prime}$ of $\sigma=\bigcup \sigma_{i}$ onto $\cup L_{\sigma_{i}}$ in $\partial N_{\sigma}{ }^{\prime}$. Let $L_{\sigma}=\bigcup L_{\sigma_{i}}$.

By piecing together all the L_{σ} 's, we obtain a homeomorphic copy L of G on the boundary of $N^{\prime}=\bigcup\left\{N_{\sigma}{ }^{\prime}: \sigma\right.$ is a 1-element of $\left.P\right\}$. By piecing together the homotopies, we obtain an ϵ-homotopy of G onto L in N^{\prime}.

Corollary 2. Let G be a finite graph topologically embedded in the interior of an orientable 3-manifold M^{3}. For any $\epsilon>0$, G has a cube-with-handles neighbourhood $N=T \cup\left(\cup H_{\sigma}\right)$ as given in Theorem 1^{\prime} except that conclusion (5) becomes:
(5) there exist 3-cells $C_{\sigma} \subset N_{\sigma}$ with $C_{\sigma} \cap \partial N_{\sigma} \supset \cup\left\{D_{\tau}: \tau\right.$ is a vertex of $\left.\sigma\right\}$ and $\sigma \subset N_{\sigma} \cup\left(\cup\left\{C_{\sigma^{\prime}}: \sigma^{\prime}\right.\right.$ is a 1-element of P and $\left.\left.\sigma^{\prime} \cap \sigma=\emptyset\right\}\right)$ (where $N_{\sigma}=T_{\sigma} \cup H_{\sigma}$), and with the additional property that G is ϵ-homotopic in N to a 1-spine of T.

Proof. Let $N=\cup N_{\sigma}$ be the neighbourhood constructed in Theorem 2^{\prime} for G. Let T_{σ} be a regular neighbourhood of $L_{\sigma} \cup\left(\cup\left\{D_{\tau}: \tau\right.\right.$ is a vertex of $\left.\left.\sigma\right\}\right)$ in N_{i} and let H_{σ} be the closure of $N_{\sigma}-T_{\sigma}$. Let $T=\bigcup\left\{T_{\sigma}: \sigma\right.$ is a 1-element of $P\}$. Then the T_{σ} and H_{σ} give N the required structure.

The 3 -cell C_{σ} is N_{σ} minus a regular neighbourhood of the handles of N_{σ} which is sufficiently close to these handles to not intersect $G-\operatorname{Int} \sigma$.
4. A second smaller neighbourhood. Let M^{3} be an orientable 3-manifold, and let J be a simple closed curve in Int M^{3} which is homologous to zero in M^{3}. In this section, we will take the neighbourhood N of J given in Theorem 1, and construct a smaller neighbourhood N^{1} which lies "nicely" in N. We will also construct a spanning surface S in N - Int N^{1}. This will be the inductive step in constructing an infinite sequence of neighbourhoods in the next section.

Let S be a polyhedral surface in a 3 -manifold, and let δ be a polydehral arc which intersects S only in its endpoints. There is a 3 -cell B such that $B \cap S$ consists of two disks D_{1} and D_{2} on ∂B, Int $\delta \subset \operatorname{Int} B$, and the endpoints of δ are in Int D_{1} and Int D_{2}, respectively. We can now add a handle to S by replacing (Int $\left.D_{1}\right) \cup\left(\operatorname{Int} D_{2}\right)$ with $\partial B-\left(D_{1} \cup D_{2}\right)$. We call this operation adding a handle to S along δ. Note that if S is orientable and two-sided, and if δ approaches S on the same side at both endpoints of δ, then the handle added to S is orientable.

Step 1. Let N be a cube-with-handles neighbourhood of J as given in Theorem 1. Then there is an orientable surface $S^{0} \subset M^{3}-\operatorname{Int} N$ where $S^{0} \cap N=\partial S^{0}=L$ is a simple closed curve which is homologous to J in N. Furthermore, S^{0} can be chosen so that $\partial S^{0}=L$ intersects every disk D_{i} exactly once.

Remark. If J is not homologous to zero in M^{3}, there is still a simple closed curve L on ∂N so that J is homologous to L in N and such that L intersects each D_{i} exactly once.

Proof. As in the proof of Theorem 1, we can choose a poiygonal approximation J^{\prime} to J which is homotopic to J in Int N. Furthermore, we can assume that the points $p_{1}, p_{2}, \ldots, p_{n}$ are on J^{\prime} and that they divide J^{\prime} into subarcs $J_{1}{ }^{\prime}, J_{2}{ }^{\prime}, \ldots, J_{n}{ }^{\prime}$ where $J_{i}{ }^{\prime} \subset T_{i-1} \cup T_{i} \cup H_{i} \cup T_{i+1}(\bmod n)$, and where J^{\prime} pierces the disk D_{i} at the point p_{i}. It is now easy to see that J^{\prime} intersects each D_{i} algebraically once.

Since J^{\prime} is homologous to zero in M^{3}, J^{\prime} bounds an orientable (and hence two-sided) surface S^{\prime} in Int M^{3}. Suppose that S^{\prime} is in general position with respect to ∂N and each ∂D_{i}. Then $S^{\prime} \cap \partial N$ is a 1-cycle in ∂N which intersects each ∂D_{i} algebraically once on ∂N. If $S^{\prime} \cap \partial D_{i}$ contains more than one point, there is a subarc δ_{i} of ∂D_{i} which intersects S^{\prime} only in its endpoints. Furthermore, δ_{i} can be chosen so that it approaches S^{\prime} on the same side at both endpoints. Thus, we can add an orientable handle to S^{\prime} along δ_{i}. By adding handles of this type, we can insure that $S^{\prime} \cap \partial N$ intersects each ∂D_{i} exactly once.

Let $N_{i}=T_{i} \cup H_{i}$. Then each N_{i} is a cube-with-handles, $N=\cup N_{i}$, and $N_{i} \cap N_{i+1}=D_{i}$. Thus $S^{\prime} \cap \partial N_{i} \cap \partial N$ is now an arc ξ_{i} from ∂D_{i-1} to ∂D_{i}, plus a finite collection of simple closed curves missing D_{i-1} and D_{i}. If there are any such simple curves in $S^{\prime} \cap \partial N_{i} \cap \partial N$, there is an arc $\delta_{i}{ }^{\prime}$ from one of them to ξ_{i} on $\partial N_{i} \cap \partial N$. The arc $\delta_{i}{ }^{\prime}$ can be chosen so that it approaches S^{\prime} on the same side at both endpoints. Then we can add an orientable handle to S^{\prime} along $\delta_{i}{ }^{\prime}$, and this will reduce the number of simple closed curves of $S^{\prime} \cap \partial N_{i} \cap \partial N$ by one. In this way, we can insure $S^{\prime} \cap \partial N$ is one simple closed curve which intersects each D_{i} exactly once. Let

$$
S^{0}=S^{\prime} \cap\left(M^{3}-\operatorname{Int} N\right)
$$

Step 2. Let N be a neighbourhood of J as given in Theorem 1 and let $\epsilon^{\prime}>0$. Then there is a neighbourhood N^{1} of J in $\operatorname{Int} N$ with

$$
N^{1}=\left(\cup T_{j}{ }^{1}\right) \cup\left(\cup H_{j}{ }^{1}\right)
$$

where $T_{j}{ }^{1}, H_{j}{ }^{1}, J_{j}{ }^{1}, p_{j}{ }^{1}$, and $D_{j}{ }^{1}$ are as described in Theorem 1. Furthermore, if $p_{i}=J_{i} \cap J_{i+1}(\bmod n)$, then for some $j=1,2, \ldots, n_{1}, p_{i}=p_{j}{ }^{1}=J_{j}{ }^{1} \cap J^{1}{ }_{j+1}$ $\left(\bmod n_{1}\right)$. Also, each D_{i} can be adjusted in a neighbourhood of ∂T^{1} so that

$$
p_{i}=p_{j}{ }^{1} \subset \operatorname{Int} D_{j}{ }^{1} \subset D_{j}{ }^{1} \subset \operatorname{Int} D_{i}
$$

Proof. We repeat the construction of Theorem 1 to construct N^{1}. The points $p_{1}{ }^{1}, \ldots, p_{n_{1}}{ }^{1}$ can be chosen so that each p_{i} is a $p_{j}{ }^{1}$. Thus, if $p_{j}{ }^{1}=p_{i}$, the disk $D_{j}{ }^{1}$ can be chosen initially so that it is a subdisk of D_{i}. For each adjustment of $D_{j}{ }^{1}$ near ∂T^{1} in the construction of Theorem $1, D_{i}$ can also be adjusted in the same way near ∂T^{1} so that $D_{j}{ }^{1}$ remains a subdisk of D_{i}.

Step 3. Given neighbourhoods N and N^{1} as in Step 2, there is a disjoint collection of orientable surfaces E_{1}, \ldots, E_{n} such that $E_{i} \cap \partial N=\partial D_{i}$, and $E_{i} \cap N^{1}=$ $\partial D_{j}{ }^{1}$ (where $D_{j}{ }^{1}$ is the special subdisk of D_{i} defined in Step 2). Each E_{i} can be obtained by adding handles to the annulus $D_{i}-\operatorname{Int} D_{j}{ }^{1}$.

Proof. Let J^{\prime} be a polyhedral centreline for $T^{1} \subset N^{1}$ so that each $p_{i} \in J^{\prime}$ and is in general position with respect to each D_{i}. As in § 2, we can associate a word with the intersections of J^{\prime} and $D_{1}, D_{2}, \ldots, D_{n}$. Thus for each disk D_{i} we have a letter e_{i}. Each time J^{\prime} crosses D_{i} in a positive direction, the letter e_{i} appears in the words, and for each negative crossing of D_{i}, the letter e_{i}^{-1} appears. We consider this word a cyclic word; in other words, it is equivalent to any of its cyclic permutations. Since J^{\prime} is homotopic in N to a simple closed curve which pierces each D_{i} exactly once, this word freely reduces to the word $e_{1} e_{2} \ldots e_{n}$. Corresponding to each free reduction $e_{i} e_{i}^{-1}$ (or $e_{i}^{-1} e_{i}$) we can add an orientable handle to D_{i}. In this way, we obtain new surfaces, also called $D_{1}, D_{2}, \ldots, D_{n}$ so that $J^{\prime} \cap D_{i}=p_{i}$. Since J^{\prime} is a spine for T^{1}, there is an isotopy of N onto itself, fixed on ∂N, which pushes each D_{i} off T^{1}, except for the disks $D_{j}{ }^{1} \subset D_{i}$ (where $D_{j}{ }^{1}$ is the meridional disk of T^{1} containing $p_{j}{ }^{1}=p_{i}$).

For each $j=1,2, \ldots, n$ there is a wedge of simple closed curves in $H_{j}{ }^{1}$ so that this wedge is a spine of $H_{j}{ }^{1}$. We can assume that the wedge lies in the interior of $H_{j}{ }^{1}$, except for the wedge point which lies in the interior of the disk $F_{j}{ }^{1}=H_{j}{ }^{1} \cap T^{1}$. Again, we can add orientable handles to the D_{i} 's so that they do not intersect the wedge. Then there is an isotopy of N onto itself which pushes the D_{i} 's off $H_{j}{ }^{1}$. Therefore, we can assume that $D_{i} \cap N^{1}=D_{j}{ }^{1}$. Let

$$
E_{i}=D_{i}-\operatorname{Int} D_{j}{ }^{1}
$$

If N^{1} is chosen sufficiently close to J, we can insure that each annulus with handles E_{i} constructed in this step lies in the union of the sections N_{i-1}, N_{i}, N_{i+1}, and N_{i+2} of the original neighbourhood N.

Step. 4. Let N and N^{1} be neighbourhoods of J as in Steps 2 and 3. Let L be a simple closed curve in ∂N which is homologous to J in N. Then there is an orientable surface $S \subset N$ - Int N^{1} such that $S \cap \partial N=L, S \cap \partial N^{1}$ is a simple closed curve L^{1} which is homologous to J in N^{1}, and $\partial S=L \cup L^{1}$. Furthermore, S can be chosen so that $S \cap E_{i}$ is an arc joining L to L^{1}.

Proof. Let $J^{\prime \prime}$ be a polyhedral simple closed curve in N^{1} which is homologous to J in N^{1}. Then L is homologous to $J^{\prime \prime}$ in N, so there is a surface S^{\prime} such that $\partial S^{\prime}=L \cup J^{\prime \prime}$. By the proof of Step 1 we can assume that $S^{\prime} \cap \partial N^{1}$ is a simple closed curve L^{1} which intersects each $D_{j}{ }^{1}$ exactly once. Let $S=S^{\prime} \cap\left(N-\right.$ Int $\left.N^{1}\right)$.

For each $i, S \cap E_{i}$ is an arc ξ_{i} joining the two boundary components of E_{i}, plus a finite number of simple closed curves. If this number of simple closed curves in $S \cap E_{i}$ is non-zero, there is an arc δ_{i} joining one of them to the arc ξ_{i}. The arc δ_{i} can be chosen so that it approaches S on the same side at both endpoints. We can add an orientable handle to S along δ_{i}, and this will reduce the number of simple closed curves in $S \cap E_{i}$ by one. Thus, we can assume that for each $i, S \cap E_{i}$ is an arc joining L to L^{1}.

Step 5. Let K_{i} be the closure of the component of $N-\left(N^{1} \cup\left(\cup_{i=1}^{n} E_{i}\right)\right)$ such that $E_{i-1} \cup E_{i} \subset \mathrm{Cl}\left(K_{i}\right)$. Then K_{i} is a 3-manifold with connected boundary,
and $S_{i}=S \cap K_{i}$ is an orientable surface with connected boundary which is properly embedded in K_{i}, and ∂S_{i} does not separate ∂K_{i}. Furthermore, $\operatorname{diam} K_{i}<\epsilon$.

Proof. This step just restates the results of the previous steps.
5. An infinite sequence of neighbourhoods. In Theorem 3 we construct an infinite sequence of cubes-with-handles neighbourhoods of the simple closed curve J, and an open surface S whose closure is $S \cup J$. In Theorem 3^{\prime}, we construct a similar sequence of neighbourhoods for a finite graph.

The proof of Theorem 3 is contained in Steps 1-5 of the previous section.
Theorem 3. Let M^{3} be an orientable 3 -manifold, and let J be a simple closed curve in Int M^{3} which is homologous to zero in M^{3}. Then there exist cubes-withhandles $N^{1}, N^{2}, N^{3}, \ldots$ and an open surface S such that:
(1) Int $M^{3} \supset N^{1} \supset \operatorname{Int} N^{1} \supset N^{2} \supset \operatorname{Int} N^{2} \supset \ldots \supset J$ and $J=\bigcap_{k=1}^{\infty} N^{k}$.
(2) N^{k} - Int $N^{k+1}=K_{1}{ }^{k} \cup \ldots \cup K^{k}{ }_{n k}$ where each $K_{i}{ }^{k}$ is a cube-with-holes.
(3) $K^{k}{ }_{i+1} \cap K_{i}{ }^{k}=E_{i}{ }^{k}$ where $E_{i}{ }^{k}$ is an annulus with orientable handles with one boundary component contained in ∂N^{k} and the other boundary component contained in ∂N^{k+1}.
(4) $K_{i}{ }^{k} \cap \partial N^{k}=\alpha_{i}{ }^{k}$ where $\alpha_{i}{ }^{k}$ is an annulus with orientable handles.
(5) $K_{i}{ }^{k} \cap \partial N^{k+1}=\beta_{i}{ }^{k}$ where $\beta_{i}{ }^{k}$ is an annulus with orientable handles.
(6) $\partial K_{i}{ }^{k}=E^{k}{ }_{i-1} \cup E_{i}{ }^{k} \cup \alpha_{i}{ }^{k} \cup \beta_{i}{ }^{k}$.
(7) $S=S^{0} \cup S^{1} \cup S^{2} \cup S^{3} \cup \ldots$, where, for each $k \neq 0, S^{k} \subset N^{k}-$ Int N^{k+1} is an annulus with orientable handles. One boundary component of S^{k} is contained in ∂N^{k} and one boundary component of S^{k} is contained in ∂N^{k+1}. The surface $S^{0} \subset M^{3}-\operatorname{Int} N^{1}$ is a disk with handles, and $\partial S^{0} \subset \partial N^{1}$.
(8) $S^{k} \cap K_{i}{ }^{k}=S_{i}{ }^{k}$ is a disk with orientable handles properly embedded in $K_{i}{ }^{k}$. Furthermore, $\partial S_{i}{ }^{k}$ is made up of a spanning arc of $E^{k}{ }_{i-1}$, a spanning arc of $\alpha_{i}{ }^{k}$, a spanning arc of $E_{i}{ }^{k}$, and a spanning arc of $\beta_{i}{ }^{k}$. (Thus, $\partial S_{i}{ }^{k}$ does not separate $\partial K_{i}{ }^{k}$.)
(9) There exist points $p_{i}{ }^{k}, \ldots, p^{k}{ }_{n k}$ on J dividing J into segments $J_{1}{ }^{k}, \ldots, J^{k}{ }_{n k}$ with $p_{i}{ }^{k}=J_{i}{ }^{k} \cap J^{k}{ }_{i+1}\left(\bmod n_{k}\right)$.
(10) Each $J_{j}{ }^{k+1}$ is contained in some $J_{i}{ }^{k}$, and each $\alpha_{j}{ }^{k+1}$ is contained in some $\beta_{i}{ }^{k}$.
(11) If $p_{i}{ }^{k}=p_{j}{ }^{k+1}$, then $E_{i}{ }^{k} \cap E_{j}{ }^{k+1}$ is a simple closed curve in ∂N^{k+1}.
(12) $\operatorname{diam}\left(K_{i}{ }^{k} \cup J_{i}{ }^{k}\right)<1 / k$.

Definition. Let $J_{1}, J_{2}, \ldots, J_{n}$ be a collection of mutually exclusive simple closed curves in a space X. Let S be an open orientable surface in X with $S \cap\left(\cup J_{j}\right)=\emptyset$ and $\mathrm{Cl} S=S \cup\left(\cup J_{i}\right)$. We say that $\cup J_{j}$ bounds the open surface S if there is a sequence h_{1}, h_{2}, \ldots of disjoint disks with handles in S with the following properties:
(1) $\operatorname{diam} h_{i} \rightarrow 0$ as $i \rightarrow \infty$
(2) $S-\cup h_{i}$ contains no non-separating simple closed curves.

Note that if h_{1}, h_{2}, \ldots is a finite sequence, then $\mathrm{Cl}(S)$ is a surface whose boundary is $\cup J_{j}$.

Corollary 3. Let J be a simple closed curve topologically embedded in the interior of a 3-manifold M^{3}, and suppose that J is homologous to zero in M^{3}. Then J bounds an open surface S in M^{3}.

Proof. If M^{3} is orientable this is part of Theorem 3. The required open surface is $S=S^{0} \cup S^{1} \cup S^{2} \cup \ldots$ and the null sequence of disks with handles are the $S_{i}{ }^{k}$ with a small annulus about $\partial S_{i}{ }^{k}$ removed to make them disjoint. If M^{3} is non-orientable, Theorem 1 still is valid if T is allowed to be a solid Klein bottle. The construction of the sequence of neighbourhoods and the surface proceeds analogously as in Steps $1-5$ of $\S 3$ and Theorem 3.

Question. What are necessary and sufficient conditions for a simple closed curve to be the boundary of a compact surface?

Corollary 4. Let J_{1} and J_{2} be disjoint simple closed curves topologically embedded in the interior of a 3-manifold M^{3} with J_{1} homologous to J_{2} in M^{3}. Then $J_{1} \cup J_{2}$ bounds an open surface S in M^{3}.

Remark. By virtue of Conclusion (8) of Theorem 1, S may be chosen so that if $p \in J$ (respectively, $p \in J_{1}$ or $p \in J_{2}$) is a point at which the simple closed curve is locally tame, then the null sequence h_{1}, h_{2}, \ldots of disks with handles of S does not cluster at p. In fact, $\lim _{i \rightarrow \infty} h_{i}$ lies in the set of wild points of J (respectively, $J_{1} \cup J_{2}$). Thus if J (respectively, $J_{1} \cup J_{2}$) is tame, then h_{1}, h_{2}, \ldots is a finite sequence and $\mathrm{Cl} S$ is a surface whose boundary is J (respectively, $J_{1} \cup J_{2}$).

Corollary 5. Let J be a simple closed curve in the interior of a 3-manifold M^{3} and let $p \in J$. Then there is a connected non-compact surface E with one simple closed curve boundary component such that $\mathrm{Cl}(E)=E \cup p, E \cap J=\emptyset$, and $\mathrm{Cl}(E)$ locally separates J at p.

Proof. In the construction of the neighbourhood sequence in § 3, choose p to be a $p_{i}{ }^{k}$. By Conclusion 11 of Theorem 3, $E=\bigcup\left\{E_{j}{ }^{l}: p_{j}{ }^{l}=p_{i}{ }^{k}, l \geqq k\right\}$ is the required non-compact surface.

Theorem 3^{\prime}. Let G be a finite graph topologically embedded in an orientable 3 -manifold M^{3}. Then there exist cubes-with-handles $N^{1}, N^{2}, N^{3}, \ldots$ such that:
(1) Int $M^{3} \supset N^{1} \supset \operatorname{Int} N^{1} \supset N^{2} \supset \operatorname{Int} N^{2} \supset \ldots \supset G$ and $G=\bigcap_{k=1}^{\infty} N^{k}$,
(2) There is a sequence $P^{1}, P^{2}, P^{3}, \ldots$ of special decompositions of G so that each P^{k} is a subdivision of P^{k-1}.
(3) For each 1-element σ of P^{k}, there is an associated cube-with-holes $K_{\sigma}{ }^{k}$.
(4) N^{k} - Int $N^{k+1}=\bigcup\left\{K_{\sigma}{ }^{k}: \sigma\right.$ is a 1 -element of $\left.P^{k}\right\}$.
(5) If σ and σ^{\prime} are two one elements of P^{k} which intersect in a vertex τ, there is an annulus with orientable handles $E_{\tau}{ }^{k}$ so that $K_{\sigma}{ }^{k} \cap K_{\sigma}{ }^{k}=E_{\tau}{ }^{k}$. If $\sigma \cap \sigma^{\prime}=\emptyset$, then $K_{\sigma}{ }^{k} \cap K_{\sigma}{ }^{k}=\emptyset$.
(6) $E_{\tau}{ }^{k}$ is properly embedded in N^{k} - Int N^{k+1}. One component of $\partial E_{\tau}{ }^{k}$ is contained in ∂N^{k}, and one component is contained in ∂N^{k+1}.
(7) If τ is a vertex of both P^{k} and P^{k+1}, then $E_{\tau}{ }^{k} \cap E_{\tau}{ }^{k+1} \subset \partial N^{k+1}$ is a simple closed curve.
(8) If σ is a 1-element of P^{k}, then $\operatorname{diam}\left(K_{\sigma}{ }^{k} \cup \sigma\right)<1 / k$.
(9) If τ is a vertex of $P^{k}, \cup_{i=k}^{\infty} E_{\tau}{ }^{i}$ is a noncompact surface E_{τ} with one boundary component in ∂N^{k}, and whose closure is $E_{\tau} \cup \tau$.

Proof. The proof of Theorem 3^{\prime} is analogous to the proof of Theorem 3.

6. Constructing the monotone map which tames J.

Lemma 1. Let K be an orientable compact 3-manifold with connected boundary, and let S be a disk with orientable handles properly embedded in K so that ∂S does not separate ∂K. Let H be a solid torus, and let F be a handle for H (i.e., F is a non-separating properly embedded disk in H). Let f_{0} be a monotone map of ∂K onto ∂H and f_{1} be a monotone map of S onto F where each of the finite number of nondegenerate point inverses of f_{0} and f_{1} is a finite 1 -complex missing ∂S, and where $f_{0}\left|\partial S=f_{1}\right| \partial S$. Then f_{0} and f_{1} can be extended to a monotone map f from K onto H such that $f(\operatorname{Int} K)=$ Int H. Furthermore, suppose X is a compact set in Int $K-S$ with the following property: For each open set $U \subset$ Int K, either $U-(U \cap X)$ is connected or $(\mathrm{Bd} U) \cap X \neq \emptyset$. Then f can be constructed so that each component of X is a point inverse.

Remark. A similar result could be proved for any cube-with-handles H. This lemma will be used to construct a monotone mapping from each $K_{i}{ }^{k}$ constructed in Theorem 3 onto a solid torus.

Proof. Let $R(S)$ be an embedding of $S \times[-1,1]$ in K with $S \times 0$ identified with S and lying so close to S that it is disjoint from the non-degenerate point inverses of f_{0}. Let $R(F)$ be an embedding of $F \times[-1,1]$ in H such that $f_{0}(\partial K \cap R(S))=\partial H \cap R(F)$. By using the product structures of $R(S)$ and $R(F)$, we extend f_{0} and f_{1} to a "level preserving" monotone map

$$
f: \partial K \cup R(S) \rightarrow \partial H \cup R(F)
$$

Let $K_{1}=\mathrm{Cl}(K-R(S))$ and $H_{1}=\mathrm{Cl}(H-R(F))$. Then $f \mid \partial K_{1}$ is a monotone map onto ∂H_{1}.

Finitely many point inverses of f lie in ∂K_{1} and each is a finite 1 -complex. Using [4, Lemma 4], we can extend f to take a collar (missing X) of ∂K_{1} in K_{1} onto a collar of ∂H_{1} in H_{1} so that f has precisely one point inverse on the inside of this collar in K_{1} and each point inverse of f is a connected finite 1-complex. As in the proofs of [$\mathbf{2}$, Theorems 6.2 and 7.6$], f$ can be extended to carry K_{1} minus this collar onto the 3 -cell H_{1} minus the collar of ∂H_{1} so that f has each component of X as a point inverse. Thus f is the required monotone map of K onto H extending f_{0} and f_{1}.

Theorem 4. Let M^{3} be a closed orientable 3-manifold, and let J be a simple closed curve topologically embedded in M^{3}. If J is homologous to zero in M^{3}, then there is a monotone map f of M^{3} onto S^{3} such that:
(1) $f(J)$ is a tame unknotted simple closed curve in S^{3}.
(2) $f \mid J$ is a homeomorphism.
(3) $f\left(M^{3}-J\right)=S^{3}-f(J)$.

Furthermore, suppose X is a compact set in $M^{3}-J$ so that if U is any connected open set in M^{3}, either $(\mathrm{Bd} U) \cap X=\emptyset$ or $U-(X \cap U)$ is connected. If J is homologous to zero in $M^{3}-X$, then the map f can be chosen so that each component of X is a point inverse.

Remark. The point inverse of f form an upper semi-continuous decomposition of M^{3} whose decomposition space is S^{3} and whose natural quotient map is f.

Proof. Regard S^{3} as E^{3} union a point at infinity. Let $f \mid J$ be a homeomorphism of J onto the unit simple closed curve $\left\{(x, y, z) \in E^{3}: z=0\right.$ and $\left.x^{2}+y^{2}=1\right\}$ in the $x y$-plane. Let $A=\left\{p \in E^{3}:(p, f(J)) \leqq 1 / 2\right\}$ be a solid torus with centreline $f(J)$. If we write the torus ∂A as $J \times S^{1}$, then we can regard the solid torus A as the quotient space of $J \times S^{1} \times[0,1]$ obtained by collapsing the circles $\{p\} \times S^{1} \times\{0\}$ to the points $f(p)$ of the centreline $f(J)$ of A. Then we have a quotient map $h: J \times S^{1} \times[0,1] \rightarrow A$ such that
(1) $h\left(J \times S^{1} \times\{1\}\right)=\partial A$,
(2) $h \mid J \times S^{1} \times(0,1]$ is a homeomorphism onto $A-f(J)$,
(3) if $p \in J, h\left(\{p\} \times S^{1} \times\{0\}\right)=f(p) \in f(J)$.

Furthermore, we can choose h such that, for $s_{0} \in S^{1}, h\left(J \times\left\{s_{0}\right\} \times[0,1]\right)$ is an annulus lying to the inside of J in the $x y$-plane.

Now we suppose we have the neighbourhoods $N^{1}, N^{2}, N^{3}, \ldots$ of J constructed in Theorem 3, and we suppose $X \subset M^{3}-\left(N^{1} \cup S^{0}\right)$. Since each $S_{i}{ }^{k}$ is a disk with handles (see (7) and (8) of Theorem 3), f can be extended to a map, also called f, from $S \cup J$ onto the disk $\left\{(x, y, 0): x^{2}+y^{2} \leqq 1\right\}$ so that S^{0} goes to the disk $\left\{(x, y, 0): x^{2}+y^{2} \leqq 1 / 2\right\}$ and $S_{i}{ }^{k}$ goes onto the disk $h\left(J_{i}{ }^{k} \times\left\{s_{0}\right\} \times[1 / k, 1 / k+1]\right)$. Furthermore, f can be chosen so that each nondegenerate point inverse of f is a 1 -complex lying either in the interior of an $S_{i}{ }^{k}$ or in the interior of S^{0}.

Since $\partial N^{k}=\bigcup_{i=1}^{n_{k}} \alpha_{i}{ }^{k}$, and each $\alpha_{i}{ }^{k}$ is an annulus with handles (see (4) of Theorem 3), f can be extended to take ∂N^{k} onto $h\left(J \times S^{1} \times\{1 / k\}\right)$ such that $f\left(\alpha_{i}{ }^{k}\right)=h\left(J_{i}{ }^{k} \times S^{1} \times\{1 / k\}\right)$ and such that each nondegenerate point inverse of $f \mid \partial N^{k}$ is a finite 1 -complex in the interior of some $\alpha_{i}{ }^{k}$ missing $S_{i}{ }^{k}$.

Each $E_{i}{ }^{k}$ is an annulus with handles and f has been defined on $\partial E_{j}{ }^{k}$ and on the spanning arc $S^{k} \cap E_{i}{ }^{k}$. Thus f can be extended to take $E_{i}{ }^{k}$ onto $h\left(\left\{p_{i}{ }^{k}\right\} \times\right.$ $\left.S^{1} \times[1 / k, 1 / k+1]\right)$ so that $f \mid E_{i}{ }^{k}$ has at most one nondegenerate point inverse, which is a 1 -complex in $\operatorname{Int} E_{i}{ }^{k}$.

Since f has already been defined on the boundary of each $K_{i}{ }^{k}$ and on the spanning surface $S_{i}{ }^{k}$, then f can be extended to take $K_{i}{ }^{k}$ monotonically onto
the solid torus $h\left(J_{i}{ }^{k} \times S^{1} \times[1 / k, 1 / k+1]\right)$ as in Lemma 1 . Thus we have defined f to take N^{1} onto A as well as to take the spanning surface S^{0} of M^{3} - Int N^{1} onto the spanning disk $\left\{(x, y, 0): x^{2}+y^{2} \leqq 1 / 2\right\}$ of the solid torus $S^{3}-\operatorname{Int} A$. By Lemma $1, f$ can now be extended to $M^{3}-\operatorname{Int} N^{1}$ to give the required map of M^{3} onto S^{3}. This completes the proof of Theorem 4.

It follows from our use of Bing's results [2], that each nondegenerate point inverse of the map f constructed in Theorem 4 is either a component of X or is a finite 1 -complex in $M^{3}-J$. Using results of Armentrout [1] as restated in [12, Lemma 5], one can see that there is no such map $f: M^{3} \rightarrow S^{3}$ which tames a wild simple closed curve J if each point inverse of f in some neighbourhood of J is cellular. If each point inverse of f in a neighbourhood of J is strongly acyclic over Z or Z_{2}, or has trivial C Cech cohomology with coefficients Z or Z_{2}, it follows from [12, Corollaries 1 and 3] that each point inverse of f in some neighbourhood of J is cellular. Also, if the image of the nondegenerate point inverses is 0 -dimensional in S^{3}, then it follows from [12, Theorem 7] that each point inverse of f in some neighbourhood of J is cellular.

Corollary 6. Let J be a simple closed curve which is topologically embedded in the interior of a 3-manifold M^{3}. Suppose that J has a solid torus neighbourhood N in M^{3} so that J is homologous to a centreline of N. Then there is a monotone map f from M^{3} onto itself such that:
(1) $f \mid J$ is a homeomorphism.
(2) $f \mid M^{3}$ - Int N is a homeomorphism.
(3) $f\left(M^{3}-J\right)=M^{3}-f(J)$.
(4) $f(J)$ is tame in M^{3}.

Proof. There is a neighbourhood N^{1} of J in Int N satisfying the requirements of Theorem 1. By the techniques of Steps 2 and 3 of $\S 3$, there is an annulus with orientable handles E properly embedded in $N-\operatorname{Int} N^{1}$ so that $E \cap \partial N$ is a simple closed curve in ∂E, and $E \cap \partial N^{1}$ is a simple closed curve in ∂E which bounds a disk in N^{1}. Using the techniques of Step 4, there is an annulus with orientable handles S properly embedded in N - Int N^{1} so that S has one boundary component in each of ∂N and ∂N^{1}, and so that $S \cap E$ is a spanning arc of both S and E. Thus the proof of Theorem 4 can be carried through to produce a map $f: N \rightarrow N$ with $f \mid \partial N=$ identity.

Question. Let G be a graph which is embedded in the interior of a 3-manifold M^{3}, and let N be a neighbourhood of G in M^{3}. Is there a monotone mapping f from M^{3} onto itself with the following properties:
(1) $f \mid G$ is a homeomorphism,
(2) $f \mid M^{3}-N$ is a homeomorphism,
(3) $f\left(M^{3}-G\right)=M^{3}-f(G)$,
(4) $f(G)$ is tame?
7. In this section, we give an alternative proof of Smythe's result [11] that any knot, link, or wedge of circles G, which is homologous to zero in an orient-
able 3 -manifold M^{3}, is homologous to zero in a cube-with-handles $K \subset M^{3}$. We do not require, as Smythe does, that G be polyhedrally embedded. Smythe can obtain that if G bounds a singular surface of genus g in M^{3}, then it bounds a singular surface of the same genus in K. Our proof, however, gives no such bound on the genus of a surface S bounded by G in K.

Corollary 7. Let G be a finite 1-complex topologically embedded in the interior of an orientable 3-manifold M^{3}. Suppose that each 1 -simplex of G is oriented, and that G is a 1-cycle if each 1-simplex has coefficient ± 1 according to orientation. (Thus, for each vertex v of G, the number of edges of G pointing into v is the same as the number of edges pointing out from v.) If G, considered as a 1-cycle, is homologous to zero in M^{3}, then there is a compact 3 -manifold $K \subset \operatorname{Int} M^{3}$, where each component of K is a cube-with-handles, such that G is homologous to zero in Int K.

Remark. As special cases, G can be taken to be a simple closed curve, an oriented link, or an oriented wedge of simple closed curves.

Proof. We apply Theorem 1^{\prime} to each component of G to obtain a neighbourhood N of G where each component of N is a cube-with-handles. There is a collection $J_{1}, J_{2}, \ldots, J_{m}$ of oriented polyhedral simple closed curves in N so that $J=J_{1} \cup J_{2} \cup \ldots \cup J_{m}$ is homologous to G in N. Then J bounds a compact, orientable surface S (not necessarily connected). Recall from Theorem 1^{\prime} that for each vertex τ of some special decomposition P of G, there is a spanning disk D_{τ} of N. Using the techniques of Step 1 of $\S 4$, we can assume that the surface S intersects the boundary of each disk D_{τ} exactly once. For each 1-element σ of P, there is a corresponding section $N_{\sigma}=T_{\sigma} \cup H_{\sigma}$ of N. Using the techniques of Step 1 again, we can assume that $S \cap\left(\partial N_{\sigma} \cap \partial N\right)$ contains no simple closed curve.

Let U be a regular neighbourhood of the surface S in Int $M^{3}-\operatorname{Int} N$. Then each component of U is a cube-with-handles. For each vertex τ of the special decomposition P, let V_{τ} be a regular neighbourhood of the disk D_{τ} in N which is so close to D_{τ} that $U \cap V_{\tau}$ is a disk. Then $U^{\prime}=U \cup\left(\cup\left\{V_{\tau}: \tau\right.\right.$ is a vertex of $P\}$) is homeomorphic to U.

Each component of $N-\bigcup\left\{V_{\tau}: \tau\right.$ is a vertex of $\left.P\right\}$ is a cube-with-handles whose intersection with U^{\prime} is a finite number of disks. Thus each component of $K=N \cup U$ is a cube-with-handles, and G is homologous to zero in Int K.

Corollary 8. Let G be a finite 1-complex topologically embedded in the interior of a 3 -manifold M^{3}. If G is inessential in M^{3}, then there is a compact 3-manifold $K \subset \operatorname{Int} M^{3}$, where each component of K is a cube-with-handles, so that G is inessential in Int K.

Proof. Since G is an ANR, there is a neighbourhood N of G which is inessential in M^{3}. By Theorem $1^{\prime}, N$ can be chosen so that it is compact and each component of N is a cube-with-handles. The required 3 -manifold K can now be produced by the Corollary of $[\mathbf{1 1}]$ or the techniques of $[\mathbf{6}, \S 2]$.

References

1. Steve Armentrout, Cellular decompositions of 3-manifolds that yield 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 453-456.
2. R. H. Bing, Extending monotone decompositions of 3-manifolds, Trans. Amer. Math. Soc. 149 (1970), 351-369.
3. -L Locally tame sets are tame, Ann. of Math. 59 (1954), 145-158.
4. William S. Boyd, Jr., Repairing embeddings of 3-cells with monotone maps of E^{3}, Trans. Amer. Math. Soc. 161 (1971), 123-144.
5. Wolfgang Haken, Trivial loops in homotopy 3-spheres, Illinois J. Math. 11 (1967), 547-554.
6. J. P. Hempel, A surface is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc. 111 (1964), 273-287.
7. F. M. Lister, Simplifying intersections of disks in Bing's approximation theorem, Pacific J. Math. 22 (1967), 281-295.
8. D. R. McMillan, Jr., Acyclicity in S-manifolds, Bull. Amer. Math. Soc. 76 (1970), 942-964.
9. - A criterion for cellularity in a manifold. II, Trans. Amer. Math. Soc. 126 (1967), 217-224.
10. E. E. Moise, Affine structures in 3-manifolds. VIII, Invariance of the knot-type; local tame imbedding, Ann. of Math. 59 (1954), 159-170.
11. N. Smythe, Handlebodies in 3-manifolds, Proc. Amer. Math. Soc. 26 (1970), 534-538.
12. Alden Wright, Mappings from 3-manifolds onto 3-manifolds, Trans. Amer. Math. Soc. 167 (1972), 479-501.

Western Michigan University, Kalamazoo, Michigan

