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On Littlewood Polynomials with Prescribed
Number of Zeros Inside the Unit Disk

Peter Borwein, Stephen Choi, Ron Ferguson, and Jonas Jankauskas

Abstract. We investigate the numbers of complex zeros of Littlewood polynomials p(z) (polynomials
with coefficients {−1, 1}) inside or on the unit circle |z| = 1, denoted by N(p) and U (p), respectively.
Two types of Littlewood polynomials are considered: Littlewood polynomials with one sign change in
the sequence of coefficients and Littlewood polynomials with one negative coefficient. We obtain
explicit formulas for N(p), U (p) for polynomials p(z) of these types. We show that if n + 1 is a prime
number, then for each integer k, 0 6 k 6 n − 1, there exists a Littlewood polynomial p(z) of degree
n with N(p) = k and U (p) = 0. Furthermore, we describe some cases where the ratios N(p)/n and
U (p)/n have limits as n→∞ and find the corresponding limit values.

1 Introduction

Recall that a polynomial

p(z) = anzn + an−1zn−1 + · · · + a1z + a0, a j ∈ {−1, 1}, 0 6 j 6 n

is called Littlewood polynomial. Such polynomials are named in honor of J. E. Little-
wood [14–18] who studied various analytic properties (the mean value, the number
of zeros, etc.) of polynomials and power series with restricted coefficients on the
complex unit circle |z| = 1.

As usual, p∗(z) denotes the reciprocal of p(z); that is, p∗(z) := zdeg p p(1/z) for any
polynomial p(z) ∈ R[z] (not necessary a Littlewood). Polynomial p(z) is called self-
reciprocal if p∗(z) = ±p(z). If p∗(−z) = ±p(z), then p(z) is called skew-symmetric.

The study of complex zeros of Littlewood polynomials and {−1, 0, 1} polynomials
is an old subject. It was started by Bloch and Pólya [2] who proved that such polyno-
mials, on average, have at most O(

√
n) roots on the real line R. Later, Schur [23] and

Szegő [24] proved an upper bound of the magnitude O(
√

n log n) for the number of
real roots. Nowadays this result is usually derived as a consequence of the theorem
of Erdős and Turán [11] on the angular equidistribution of roots. More recently, it
was shown that any polygon with vertices on the unit circle |z| = 1 contains at most
O(
√

n) zeros of such polynomials [4], while any disk with the center on the unit circle
|z| = 1 and the radius at least 33π log n/

√
n contains at least 8

√
n log n zeros of p(z)

[7].
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For any polynomial p(z) ∈ C[z], let N(p) denote the the number of complex
zeros of p(z) inside the open unit disk |z| < 1, counted with multiplicities. In a
similar way, let U (p) denote the number of zeros of p(z) on the unit circle |z| = 1
(again, counting with multiplicities). Such zeros of the absolute value |z| = 1 are
called unimodular. In this paper, we consider two problems on the possible values of
N(p) and U (p) for Littlewood polynomials p(z).

Problem 1.1 Let (n, k) be a pair of integers such that 1 6 k 6 n− 1. For such a pair,
does there always exist a Littlewood polynomial p(z) of degree n with precisely k roots
inside the unit disk and no unimodular roots, that is, N(p) = k, U (p) = 0?

The values k ∈ {0, n} are not included in Problem 1.1, since the answer is trivial
in these cases. For a Littlewood polynomial p(z), the product of absolute values of
its roots is 1; hence, p(z) always has at least one zero |z| > 1, and N(p) = n is
impossible. Another extreme case is k = 0. In this situation, p(z) cannot have zeros
of absolute value |z| < 1, so it also cannot have any zero of absolute value |z| > 1.
Hence, all zeros of p(z) must be unimodular, U (p) = n, so the answer to Problem
1.1 is negative again. By the theorem of Kronecker [13], Littlewood polynomials p(z)
with U (p) = n are precisely products of cyclotomic polynomials and are described
in [1, 3].

For k between 1 and n − 1, Problem 1.1 is no longer trivial. If k = n − 1, then
p(z) must have precisely one zero of modulus |z| > 1. Polynomials p(z) with this
property are called Littlewood Pisot polynomials. Mukunda [21] proved that all such
polynomials are of the form±p(±z), where

p(z) = zn − zn−1 − · · · − z − 1.

Hence, the answer to Problem 1.1 in case k = n− 1 is positive. By taking a reciprocal
of a Littlewood Pisot polynomial, one also obtains a positive answer for k = 1. If the
degree n is even, then the result of Mercer [19] on non-vanishing of skew-symmetric
Littlewood polynomials on the unit circle provides a positive answer in case k =
n/2, since a skew-symmetric polynomial has the same number of zeros inside the
disk |z| < 1 as it has outside it. Apart from cases k ∈ {0, 1, n/2, n − 1, n} not
much of Problem 1.1 is known, as there is no simple formula to compute N(p) for
any Littlewood polynomial p(z). Since p∗(z) is a Littlewood polynomial if p(z) is
Littlewood, one might guess that, on average, N(p) ∼ n/2, as n → ∞ if we make a
reasonable assumption that the proportion of polynomials with unimodular roots is
negligible among 2n+1 Littlewood polynomials of degree n.

Why is the condition U (p) = 0 (no unimodular roots) included in Problem 1.1?
If p(z) has unimodular roots, then the problem becomes extremely complicated. It is
natural to expect that the majority of Littlewood polynomials with unimodular roots
are irreducible for large n, hence they must be self-reciprocal. It is known that each
self-reciprocal {−1, 0, 1} polynomial has at least one unimodular root; see [6,12,19].
For self-reciprocal Littlewood polynomials p(z), Mukunda proved that U (p) > 3
in the case where n is odd. Later, Drungilas [10] improved this to U (p) > 4 for
n > 14 if n is even, U (p) > 5 for n > 7 if n is odd. If p(z) is the n-th Fekete
polynomial whose coefficients are

( j
n

)
, the Legendre symbol modulo n, where n is
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an odd prime, then U (p) ∼ κ0n as n → ∞. Here κ0 is some constant lying in
the interval (0.500668, 0.500813), as it was established by Conrey, Granville, Poonen,
and Soundararajan [9]. The question of whether the minimal number of unimodular
roots of self-reciprocal {−1, 0, 1} polynomial tends to infinity as the number of terms
increases was posed in [6, 7]. A partial answer to this question was obtained in [5].

One intuitive way of producing a Littlewood polynomial p(z) with prescribed
number N(p) = k is to take a polynomial of degree n with all coefficients 1 (a geo-
metric progression in z) and then change the signs of some coefficients. This tech-
nique was pioneered by Mossinghoff, Pinner, and Vaaler in their search of integer
polynomials with small Mahler measures; see [20]. They considered the perturba-
tion of a middle coefficient for polynomials p(z) that are the products of cyclotomic
polynomials (not necessary p(z) being Littlewood polynomial). We also exploit this
strategy. In connection with this approach, we pose the second problem.

Problem 1.2 Suppose that p(z) is a Littlewood polynomial of degree n with all roots
of modulus |z| = 1. If the sign of the coefficient of the term zk, where 0 6 k 6 n, is
changed, how do the numbers N(p) and U (p) change?

Two possible measures of sensitivity to perturbations are∣∣∣ N(p)

n
− 1

2

∣∣∣ or 1− U (p)

n
,

for the perturbed polynomial p(z). They measure the asymmetry between number
of roots of modulus |z| > 1 and |z| < 1 and the number of unimodular roots lost
after the perturbation.

In this paper, we attempt to give partial answers to Problems 1.1 and 1.2 for Little-
wood polynomials of a simple shape. The main results are formulated as theorems in
the Section 2. In our proofs, we will repeatedly use the method of Boyd [8] to count
zeros of polynomials. Also, we will need some basic properties of the Dirichlet kernel
Dk(t). For the convenience of a reader, all results that are needed in the proofs are
formulated in Section 3. Proofs of the main theorems are postponed to Section 4.

2 Main Results

2.1 Littlewood Polynomials with One Sign Change

We start with the existence of Littlewood polynomials with prescribed number of
roots inside the open unit disk.

Theorem 2.1 Suppose that n and k are two positive integers 1 6 k 6 n − 1. We
assume that

gcd(k, n + 1) = 1, if n > 2k,

and

gcd(k + 1, n + 1) = 1, if n < 2k.

Then there exists Littlewood polynomial p(z) of degree n, such that N(p) = k and
U (p) = 0.
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We have the following corollary.

Corollary 2.2 Let n + 1 be an odd prime. Then, for any k in the range 1 6 k 6 n−1,
there exists a Littlewood polynomial p(z) of degree n with N(p) = k and U (p) = 0.

For n = 12, n + 1 = 13 is prime. Hence, it is possible to find Littlewood poly-
nomials p(z) of degree 12 with k = 1, 2, 3, . . . , 11, roots inside the unit disk. For
n = 11, n + 1 = 12 and Theorem 2.1 works in cases k = 1, 5, 6, 10; however, it says
nothing for k = 2, 3, 4, 7, 8, 9. The conditions on n + 1, k and k + 1 being co-prime
are simply the artifacts of the construction we use (as p(z) vanish at roots of unity in
certain cases). We hope these restrictions can be removed.

In order to prove Theorem 2.1, we will consider Littlewood polynomials with one
sign change in the coefficient sequence. Up to the± sign, they take the form

(2.1) p(z) = zn + zn−1 + · · · + zk− zk−1 − · · · − z − 1︸ ︷︷ ︸
k negative terms

,

for some integers n > k > 1. Alternatively, one can write these polynomials as a
difference of two geometric progressions

(2.2) p(z) =
zn+1 − 1

z − 1
− 2 · zk − 1

z − 1
=

zn+1 − 2zk + 1

z − 1
.

For k = n − 1, they are exactly the Littlewood Pisot polynomials considered by
Mukunda [21, 22]. Theorem 2.1 is a consequence of a general formula for the num-
bers of roots N(p) and U (p) for polynomials p(z) in (2.1).

Theorem 2.3 Let n > k be positive integers with gcd(k, n + 1) = d. A Littlewood
polynomial p(z) of degree n with one sign change (which occurs between terms zk and
zk−1) has

N(p) =


k if n > 2k− 1,

0 if n = 2k− 1,

k− d if n < 2k− 1,

and

U (p) =

{
d− 1 if n 6= 2k− 1,

n if n = 2k− 1,

roots inside and on the unit circle |z| = 1, respectively.

Theorems 2.1 and 2.3 provide a partial answer to Problem 1.1.

2.2 Littlewood Polynomials with One Negative Term

Now we turn to Problem 1.2. We start with a Littlewood polynomial of degree n > 2
with all coefficients equal to 1 (it is a geometric progression). We pick one term (say,
zk, 0 6 k 6 n) and make its coefficient negative. The polynomial we obtain takes the
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form

(2.3) p(z) = zn + · · · + zk+1 − zk + zk−1 + · · · + 1 =
zn+1 − 1

z − 1
− 2zk.

The zeros of the initial polynomial are (n + 1)-th roots of unity, except z = 1. Our
goal is to calculate the numbers N(p) and U (p) for the perturbed polynomial p(z)
and investigate the behavior of N(p) as a function of n and k. The analysis breaks
into two cases.
• Case 1: p(z) = p∗(z). This occurs if and only if n = 2k (that is, the central term is

negative).
• Case 2: p(z) 6= p∗(z). This occurs if and only if n 6= 2k. The analysis breaks down

into two sub-cases:

(a) p(z) has no unimodular roots on the unit circle;
(b) p(z) has some unimodular roots on the unit circle.

Here is the result for Case 1 polynomials.

Theorem 2.4 Let p(z) be a self-reciprocal Littlewood polynomial of degree n > 2
with one negative coefficient. Then p(z) has

U (p) = 4

⌊
n− 2

12

⌋
+ 2

unimodular roots,

N(p) =
n

2
− 2

⌊
n− 2

12

⌋
− 1

roots inside the unit disk and the same number of roots outside the unit disk. All roots of
p(z) have multiplicity 1. In particular, both U (p) and N(p) ∼ n/3, as n→∞.

We see that roots of geometric progression polynomials are sensitive to changing
the sign of the central coefficient. Roughly 1/3 of all roots of p(z) move inside the
unit disk, 1/3 outside the unit disk; the total loss (as introduced in Section 1) is 2/3.

Now we turn to Littlewood polynomials in Case 2. Cases 2(a) and 2(b) can be
distinguished by the following proposition.

Proposition 2.5 A nonself-reciprocal Littlewood polynomial p(z) of Case 2 in (2.3)
belongs to Case 2(b), if n ≡ 2 (mod 6) and k ≡ 1 (mod 6). Otherwise, p(z) is as in
Case 2(a).

For Case 2 polynomials, the behavior of N(p) as n and k varies is much more
complicated. Our findings can be described as follows:
• Geometric progression polynomials are rather insensitive to perturbations close

to the central term (but not for the perturbation of a central term itself). If the
distance from the central term to the position of the negative term grows slower
than the degree n as n→∞, then N(p) behaves very nicely.

• If the position of the negative term (the number k) is fixed and n goes to∞, then
the ratio N(p)/n has a limit. Asymptotic formulas can be found in this case, even
if the limits are not easy to evaluate. We conclude that the geometric progression
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polynomials are sensitive to the perturbations close to the leading term or the con-
stant term.

We will formulate these results in a quantitative form. We start with polynomials
in Case 2(a).

Theorem 2.6 Let the polynomial p(z) be as in Case 2(a) and l = |n− 2k|.
If n > 2k, then

k + 1 6 N(p) 6 k + 2
⌈ n− 2k

6

⌉
− 1,

where dxe is the ceiling function of x. The lower bound is attained when k ≡ 0 (mod l),
and the upper bound is attained when k ≡ 1 (mod l).

If n < 2k, then

k− 2
⌈ 2k− n

6

⌉
+ 1 6 N(p) 6 k− 1.

The lower bound is attained when k ≡ 1 (mod l) and the upper bound is attained
when k ≡ 0 (mod l).

Here is the corresponding result for polynomials in Case 2(b).

Theorem 2.7 Let the polynomial p(z) be as in Case 2(b) and l = |n− 2k|.
If n > 2k, then

k + 1 6 N(p) 6
n + k

3
− 1.

The lower bound is attained when k ≡ 0 (mod l), and the upper bound is attained
when k ≡ 1 (mod l).

If n < 2k, then
n + k

3
− 1 6 N(p) 6 k− 3.

The lower bound is attained when k ≡ 1 (mod l), and the upper bound is attained
when k ≡ 0 (mod l).

We describe a situation when the negative term occurs close to the middle term.

Corollary 2.8 Let p(z) be in Case 2. We have the following:

(i) If limn→∞k/n = 1/2, then limn→∞N(p)/n = 1/2.
(ii) If 0 < n− 2k 6 6, then N(p) = k + 1.
(iii) If 0 < 2k− n 6 6, then

N(p) =

{
k− 1 if p(z) is in Case 2(a),

k− 3 if p(z) is in Case 2(b).

For the next result we need to introduce the notation for the level set of the Dirich-
let kernel function.

Definition 2.9 Let k ∈ Z and α ∈ R be non-negative. Define the set Dk(α) as
the subset of the interval [0, 1] where the scaled Dirichlet kernel Dk(2πt) takes values
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greater than α:
Dk(α) := {t ∈ [0, 1] : Dk(2πt) > α}.

Here Dk(t) is the Dirichlet kernel of degree k, namely,

(2.4) Dk(t) := 1 + 2
k∑

j=1
cos( jt) =

sin(k + 1/2)t

sin(t/2)
.

A theorem of Conrey, Granville, Poonen, and Soundararajan [9] implies that, for
n-th Fekete polynomial p(z) (n is an odd prime), N(p) ∼ (1 − κ0)n/2 as n → ∞
for some (hard to evaluate) numerical constant κ0. Since κ0 is close to 1/2, N(p) is
about 1/4 of all roots. Our next Theorem 2.10 bears considerable similarities to the
result on Fekete polynomials [9].

Theorem 2.10 Let p(z) be a Littlewood polynomial of degree n with one negative
term zk. If k is fixed, then

lim
n→∞

N(p)

n
= meas (Dk(2)),

where meas (Dk(2)) denotes the Lebesgue measure of the set Dk(2). If k and n varies in
such a way that the difference m = n− k is fixed, then

lim
n→∞

N(p)

n
= meas (Dc

m(2)).

Here, Dc
m(2) := [0, 1] \Dm(2).

We calculated the values of Dk(2) for k 6 20 in Table 1. It is tempting to ask whether
the limit limk→∞Dk(2) exists, but we will not try to answer this question in this
paper.

Table 1: Table of measures of the set Dk(2) for 1 6 k 6 20 (first 8 digits)

k meas(Dk(2)) k meas(Dk(2)) k meas(Dk(2)) k meas(Dk(2))

1 1/3 6 0.13291444 11 0.12666414 16 0.12184061
2 0.27418711 7 0.12728673 12 0.12041045 17 0.11888251
3 0.21854988 8 0.14139922 13 0.11748373 18 0.11565045
4 0.18027852 9 0.13856714 14 0.12482311 19 0.11378430
5 0.15308602 10 0.13294934 15 0.12414168 20 0.11843827

Theorems 2.6, 2.7, and 2.10 are derived from zero counting formulas that will
be stated as Theorems 3.4 and 3.7 in the next section. In comparison to Theorem
2.4, they are more complicated. The value of N(p) depends on the distribution of
fractions j/l (mod 1) with respect to solutions of the equation Dk(2πt) = 2, t ∈
[0, 1). According to Theorems 3.4 and 3.7, the number N(p) is approximately equal
to the distance between the negative term and the closest end term of a polynomial
(either a leading term or a constant term) plus the Boyd number E(p, q), which will
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be discussed in the next section (that corresponds to an error term). Because of this
error term, it is impossible to write N(p) in a closed form for all pairs (n, k) as in
Theorem 2.4.

3 Zero Counting

In this section we describe Boyd’s method and some facts about Dirichlet kernel that
will be useful in later proofs.

3.1 Boyd’s Entry-exit Lemma

Boyd [8] developed a method to count roots of polynomials inside and outside the
unit circle. Let p(z) ∈ R[z] be not self-reciprocal polynomial of degree n. Consider
the auxiliary polynomial q(z) = p(z) + ε · p∗(z), where ε ∈ {−1, 1}. Suppose
that all unimodular roots of q(z) are simple (that is, they have multiplicities 1). The
unimodular root ζ of q(z) is called an exit point if a continuous algebraic curve z =
z(t), defined by the equation

q(z, t) := p(z) + ε · t · p∗(z) = 0,

for t ∈ [0, 1], exits the open unit disk at z = ζ when t = 1, while z(t) remains
inside the unit disk |z(t)| < 1 for t ∈ [0, 1). The number of exit points associated
with polynomials p(z) and q(z) via the equation q(z, t) = 0 will be denoted E(p, q).
We call the number E(p, q) a Boyd’s number of p(z) and q(z). Proposition 3.1 is
essentially proved in Boyd’s paper [8]. We state it in the form most convenient for
our applications.

Proposition 3.1 (Boyd) Suppose that a real polynomial p(z) is not self-reciprocal,
p(z) 6= ±p∗(z) and that p(z) has no unimodular roots. If all unimodular roots of q(z)
are simple, then

N(p) = N(q) + E(p, q).

Proof Since |p(z)| = |p∗(z)| if |z| = 1, for fixed t ∈ [0, 1), the polynomial q(z, t) in
z has the same number of roots z inside the open unit disk |z| < 1 as the polynomial
p(z). Roots of q(z, t) in |z| < 1 converge to roots of p(z) in |z| < 1 or to exit points
(for each simple exit point ζ , exactly one branch of z(t) exits the unit disk at z = ζ)
as t → 1−. By continuity,

N(p) = lim
t→1−

N(q(z, t)) = N(q) + E(p, q).

Boyd also established a criterion for determining all exit points of q(z); see [8,
Lemma 3].

Criterion 3.2 (Boyd) Suppose that ζ is a simple unimodular root of the auxiliary
polynomial q(z). Then ζ1−deg p p(ζ)q′(ζ) is a nonzero real number. The root ζ is an
exit point if and only if

ε · ζ1−deg p p(ζ)q′(ζ) < 0.
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In the proof of Theorem 2.3, we need to identify polynomials with unimodular
roots. These bad cases are described in Lemma 3.3 below.

Lemma 3.3 Let f (z) = zv− 2zu + 1, v > u > 0, and gcd(v, u) = d. All unimodular
roots of f (z) are roots of the polynomial zd − 1. If v 6= 2u, then all unimodular roots of
f (z) are simple. If v = 2u, then f (z) = (zu − 1)2.

Proof of Lemma 3.3 The equation ζv + 1 = 2ζu and |ζ| = 1 implies |ζv + 1| = 2.
That is possible only if ζv = 1. This gives ζu = 1, so ζ is a common root of zu−1 and
zv − 1, and so it is the root of gcd(zu − 1, zv − 1) = zd − 1. On the other hand, each
root of zd−1 satisfies ζu = 1 and ζv = 1, so it is a root of f (z). Hence, (zd−1) | f (z),
since the roots of zd − 1 are pairwise distinct and simple. If v 6= 2u, the derivative
f ′(z) = vzv−1 − 2uzu−1 = zu−1(vzv−u − 2u) does not have unimodular roots. For
v = 2u, f (z) is simply (zu − 1)2.

Proof of Theorem 2.3 In the case where n + 1 = 2k, p(z) = (zk − 1)2/(z − 1) by
(2.2), so one has N(p) = 0, U (p) = 2k−1 = n. We assume that n 6= 2k−1 through
the rest of the proof. Write k = du and n + 1 = dv with coprime integers v and u,
v > u > 0. Divide p(z) in (2.2) by (zd − 1)/(z − 1) to obtain

p(z)
( zd − 1

z − 1

)−1
=

zn+1 − 2zk + 1

zd − 1
= p1(zd),

where

p1(z) =:
zv − 2zu + 1

z − 1
.

By Lemma 3.3, the numerator zv − 2zu + 1 vanishes on the unit circle only at z = 1
with multiplicity 1, since gcd(u, v) = 1 and v 6= 2u (this corresponds to n 6= 2k− 1).
Therefore, U (p1) = 0. This yields

(3.1) N(p) = d · N(p1) and U (p) = d ·U (p1) + (d− 1) = d− 1.

Since p1(z) has no unimodular roots, Proposition 3.1 is applicable. Consider

(3.2) q1(z) := p1(z) + p∗1 (z) = 2 · zv−u − zu

z − 1
= ±2zm · zl − 1

z − 1
,

where

m := min{v − u, u} and l := |v − 2u|.
According to Proposition 3.1, the number of roots of p1(z) inside the unit disk is
N(p1) = N(q1) + E(p1, q1) = m + E(p1, q1). By (3.2), q1(ζ) = 0 yields

(3.3) ζv−u = ζu, ζv = ζ2u, ζv−2u = 1.

Hence,

p1(ζ) =
ζ2u − 2ζu + 1

ζ − 1
= ζu · ζ

u + ζ−u − 2

ζ − 1
.

By (3.2), ζ = eit , where t = 2π j/l, 1 6 j 6 l− 1. Thus

p1(ζ) = eiut · eiut + e−iut − 2

eit − 1
= ei(u−1/2)t · cos (ut)− 1

i sin (t/2)
.
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The derivative of q1(z) is

q′1(z) = 2
(zv−u − zu)′(z − 1)− (zv−u − zu)(z − 1)′

(z − 1)2

= 2 · zu−1 · ((v − u)zv−2u − u)

z − 1
− 2 · zv−u − zu

(z − 1)2
.

In view of (3.3), we have

q′1(ζ) = 2ζu−1 · (v − u)ζv−2u − u

ζ − 1
= 2 · ζu−1 · v − 2u

ζ − 1
= ei(u−3/2)t · v − 2u

i sin (t/2)
.

Since deg p1 = v − 1, ζ1−deg p1 = ei(2−v)t , we obtain

ζ1−deg p1 p1(ζ)q′1(ζ) =
(v − 2u)(1− cos(ut))

sin2(t/2)
= 2(v − 2u)

sin2(ut/2)

sin2(t/2)
.

By Criterion 3.2 (with ε = 1), none of the unimodular roots of q1(ζ) are exit points
if v > 2u (v − u > u). In this case, one has m = u, E(p1, q1) = 0, so that N(p1) =
m = u. If v < 2u (v−u < u), then all unimodular roots of q1(z) are exit points. This
case yields m = v − u, l = 2u− v, so that E(p1, q1) = U (q1) = l − 1 = 2u− v − 1.
This yields N(p1) = m + l− 1 = u− 1. It remains to substitute N(p1) into (3.1).

The proofs of Theorems 2.6, 2.7, and 2.10 are also based on Boyd’s method.

Theorem 3.4 Let p(z) be as in Case 2(a). Set

m := min{k, n− k} and l := |n− 2k|.

The number of roots of p(z) inside the open unit disk is N(p) = m + E(p, q). For k = 0,
one has E(p, q) = 1; for k = n, E(p, q) = n− 1. For 1 6 k 6 n− 1, we have

E(p, q) =
l−1∑
j=0

1Dk(2)

( j

l

)
, if n > 2k,(3.4)

and

E(p, q) =
l−1∑
j=0

1Dc
k(2)

( j

l

)
, if n < 2k,(3.5)

where 1A(x) is the characteristic function of a set A.

Proof of Theorem 3.4 If p(z) is of type 2(a), in view of (2.3), define q(z) by

q(z) := p(z)− p∗(z) =
( zn+1 − 1

z − 1
− 2zk

)
−
( zn+1 − 1

z − 1
− 2zn−k

)
= 2zn−k − 2zk.

Then q(z) = ±2zm(zl − 1). The unimodular zeros of q(z) are ζ = e2πi j/l, 0 6 j 6
l − 1. All roots of unity are simple zeros of q(z). The polynomial p(z) does not
vanish at any of them, since p(z) is as in Case 2(a). By Proposition 3.1, N(p) =
N(q) + E(p, q) = m + E(p, q). To determine E(p, q) we evaluate p(z) and q′(z) at all
roots of unity ζ of q(z). The derivative of q(z) is

q′(z) = 2(n− k)zn−k−1 − 2kzk−1 = 2zk−1
(

(n− k)zn−2k − k
)
.
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First we consider ζ = 1. One has

p(1) = n− 1, q′(1) = 2(n− 2k), p(1)q′(1) = 2(n− 1)(n− 2k).

By Criterion 3.2 (with ε = −1), ζ = 1 is an exit point if and only if n > 2k.
Next we consider roots ζ 6= 1. Observe that ζ l = 1 implies that ζn = ζ2k and

ζk = ζn−k. Hence, for ζ 6= 1,

(3.6) p(ζ) =
ζ2k+1 − 1

ζ − 1
− 2ζk = ζk

(
Dk

( 2π j

l

)
− 2
)
,

where Dk(t) is the Dirichlet kernel given by (3.10). The derivative q′(z) at the point
z = ζ takes the value q′(ζ) = 2(n− 2k)ζk−1. By Proposition 3.2, ζ is the exit point if
and only if

ζ1−n · p(ζ) · q′(ζ) = 2(n− 2k)
(

Dk

( 2π j

l

)
− 2
)
> 0.

Suppose that n > 2k. It was noted earlier that ζ = 1 is an exit point in this case.
Other roots of unity ζ = e2πi j/l, j = 1, 2, . . . , n are exit points precisely when the
fraction j/l ∈ Dk(2). By the summation of the characteristic function 1Dk(2)(x) over
all such fractions, one obtains

E(p, q) = 1 +
l−1∑
j=1

1Dk(2)

( j

l

)
.

For k = 0, D0(t) = 1 < 2 and D0(2) = ∅, so E(p, q) = 1. For k > 1, 1Dk(2)(0) = 1,
so one can include the term 1 into the sum.

Suppose that n < 2k. Then ζ = 1 is not an exit point. Other roots of unity
ζ = e2πi j/l, j = 1, 2, . . . , n are exit points precisely when j/l ∈ Dc

k(2). In this case,

E(p, q) =
l−1∑
j=1

1Dc
k(2)

( j

l

)
=

l−1∑
j=0

1Dc
k(2)

( j

l

)
,

since 0 6∈ Dc
k(2) for every k > 1. If k = n, then l = n and Dk(2π j/l) = 1 for each

j = 1, . . . , l− 1, which implies that E(p, q) = n− 1.

The next lemma identifies all roots of unity that are zeros of Littlewood polyno-
mials in Case 1.

Lemma 3.5 The polynomial Φ6(z) = z2− z + 1 is the only possible cyclotomic divisor
of the polynomial p(z) = (z2k+1− 1)/(z− 1)− 2zk, k > 1. Furthermore, Φ6(z) divides
p(z) precisely when k ≡ 1 (mod 6).

Proof of Lemma 3.5 Suppose that ζ is a root of unity and let h ∈ N be the multi-
plicative order of ζ . Without loss of generality, we may assume ζ = e2πi/h.

First, let us show that h 6∈ {1, 2}. For h = 1, one has ζ = 1. For h = 2, one has
ζ = −1. One can easily check that p(1) = n− 1 6= 0 and p(−1) = 1− 2(−1)k 6= 0
from (2.3). Hence, h > 3.

If h is odd, then h = 2 j + 1 for some j > 1. In this case, set η := ζ j . It is an
algebraic conjugate of ζ , since gcd( j, 2 j + 1) = 1.
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If h is even, then h = 4 j for some j > 1, or h = 4 j + 2 for some j > 1.
In both cases, set η := ζ2 j−1. This number η is an algebraic conjugate of ζ , since
gcd(4 j, 2 j − 1) = gcd(4 j + 2, 2 j − 1) = 1. Now consider inequalities

(3.7)
1

6
6

2 j − 1

4 j + 2
<

2 j − 1

4 j
<

j

2 j + 1
<

1

2
,

where j > 1. The equality in the left side of (3.7) can be attained only for j = 1.
Inequalities (3.7) imply that π/3 < arg (η) < π for j > 1. It follows that p(η) 6= 0,
since

p(η)η−k = Dk(arg(η))− 2 ≤ 1

sin(arg(η)/2)
− 2 < 0

by (2.4). However, this contradicts the fact that η is the algebraic conjugate of ζ ,
so it must be the root of p(z). Moreover, we can rule out cases h = 2 j + 1 and
h = 4 j by the same argument using inequalities (3.7). Thus, one must have j = 1
and h = 4 j + 2 = 6, so that ζ = eπi/3. Since ζ6 = 1, it suffices to check whether

p(ζ) =
ζ2k+1 − 1

ζ − 1
− 2ζk = 0

for k = 0, 1, 2, 3, 4, 5. We have p(ζ) = ζ2 − ζ + 1 = 0 for k = 1 and p(ζ) 6= 0 for
k ∈ {0, 2, 3, 4, 5}. Thus Φ6(z) (the minimal polynomial of ζ) divides p(z) if k ≡ 1
(mod 6).

At this point we already have everything that is needed to identify all unimodular
zeros of polynomials in Case 2.

Lemma 3.6 Let p(z) be as in Case 2, and n > 2. Then all possible unimodular roots
ζ of p(z) are ζ = e±πi/3. The polynomial p(z) vanishes at ζ (with multiplicity 1) if and
only if k ≡ 1 (mod 6) and n ≡ 2 (mod 6).

Proof of Lemma 3.6 If ζ is the unimodular root of p(z), then it is also the unimod-
ular root of q(z) = p(z) − p∗(z) = 2zk(zn−2k − 1) of the same multiplicity. Since
zn−2k−1 has no repeated factors, such unimodular roots are simple. Hence, ζn = ζ2k

and

p(ζ) =
ζ2k+1 − 1

ζ − 1
− 2ζk = 0.

By Lemma 3.5, one has ζ = e±πi/3 and k ≡ 1 (mod 6). The multiplicative order
of ζ is h = 6. From ζn−2k = 1 one deduces that h | (n − 2k), hence n ≡ 2k ≡ 2
(mod 6).

Proof of Proposition 2.5 This is a direct consequence of Lemma 3.6.

Theorem 3.7 Let p(z) be as in Case 2(b). Then

U (p) = 2 and N(p) = m + E(p, q).

where m and l are the same as in Theorem 3.4. In case n > 2k, E(p, q) can be evaluated
as in (3.4). In case n < 2k, we have

E(p, q) =
l−1∑
j=0

1Dc
k(2)

( j

l

)
− 2.
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Proof of Theorem 3.7 In order to apply Proposition 3.1, cyclotomic factors need to
be eliminated from p(z). By Lemma 3.6, such a cyclotomic factor is Φ6(z). For the
polynomial p(z) in (2.3) and q(z) = p(z)− p∗(z), define

p1(z) :=
p(z)

Φ6(z)
=

zn+1 − 2zk+1 + 2zk − 1

(z − 1)(z2 − z + 1)
and

q1(z) := p1(z)− p∗1 (z) =
q(z)

Φ6(z)
=

2zn−k − 2zk

z2 − z + 1

=
2zk(zn−2k − 1)

z2 − z + 1
= ±2zm(zl − 1)

z2 − z + 1
.

By Proposition 3.1, N(p) = m + E(p, q). The equation q1(ζ) = 0 for ζ = eit ,
t ∈ [0, 2π) implies q(ζ) = 0 and p(ζ) = ζk(Dk(t) − 2) as in (3.6). Since Φ6(z) is
factored out, we have ζ 6= e±πi/3 and

p1(ζ) =
ζk(Dk(t)− 2)

ζ2 − ζ + 1
= ζk−1 Dk(t)− 2

2 cos t − 1
.

Similarly,

q′1(z) =
q′(z)Φ6(z)− q(z)Φ′6(z)

Φ2
6(z)

,

which leads to

q′1(ζ) =
q′(ζ)

Φ6(ζ)
=

2ζk−1(n− 2k)

ζ2 − ζ + 1
= 2ζk−2 n− 2k

2 cos t − 1
,

for any unimodular root ζ of q1(z). Hence,

ζ1−deg p1 p1(ζ)q′1(ζ) =
2(n− 2k)(Dk(t)− 2)

(2 cos t − 1)2
.

If n > 2k, then ζ = e2πi j/l, 0 6 j 6 l − 1 is an exit point if and only if the fraction
j/l ∈ Dk(2). Since Dk(π/3) 6 2 by the envelope inequality (3.11), e±πi/3 is not an
exit point and the indicator sum formula (3.4) for E(p, q) in Theorem 3.4 holds. Sim-
ilarly, formula (3.5) of Theorem 3.4 holds for E(p, q) in case n < 2k if one removes
the points π/3, 5π/3 from Dc

k(2) (these correspond to unimodular roots e±πi/3 of
p(z)), so that 2 needs to be subtracted from (3.5).

To prove Theorems 2.6 and 2.7 we need sharp bounds for the Boyd numbers
E(p, q) (the error term). The error term essentially depends on the distance between
the negative term and the middle coefficient of p(z) and it does not exceed 2/3 of
that distance. The precise statement is given in the next lemma.

Lemma 3.8 Let k and l be positive integers. Then

1 6
l−1∑
j=0

1Dk(2)

( j

l

)
6 2dl/6e − 1,(3.8)

and

l− 2dl/6e + 1 6
l−1∑
j=0

1Dc
k(2)

( j

l

)
6 l− 1.(3.9)
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If k ≡ 0 (mod l), we have the equality in the left side of (3.8) and the right side of
(3.9). If k ≡ 1 (mod l), we have the equality in the right side of (3.8) and the left side
of (3.9). Moreover, if the number l is fixed and k varies, indicator sums in (3.8) and
(3.9) (as functions of k) are periodic modulo l.

Proof of Lemma 3.8 Consider fractions j/l, j = 0, 1, . . . , l− 1. We have

Dk(2π j/l) 6 1/ sin(π j/l) 6 2

if j/l ∈ [1/6, 5/6]. The number of such fractions is equal to the number of integers
j in the interval [l/6, 5l/6], namely,

b5l/6c − dl/6e + 1 = bl− l/6c − dl/6e + 1 = l + b−l/6c − dl/6e + 1

= l− 2dl/6e + 1.

Therefore, the inequality Dk(2π j/l) > 2 holds at most at

l− (l− 2dl/6e + 1) = 2dl/6e − 1

points j/l ∈ [0, 1). These numbers represent the largest possible number of fractions
j/l in Dk(2) and the smallest possible number of fractions in Dc

k(2), respectively.
Since Dk(0) > 2, Dk(2) contains at least one and Dc

k(2) contains at most l − 1 such
fraction. This proves inequalities (3.8) and (3.9).

The periodicity modulo l follows from the identity Dk+l(2π j/l) = Dk(2π j/l) for
j 6= 0 and from the fact that 0 ∈ Dk(2) for every k > 1.

Suppose that k ≡ 0 (mod l). By the periodicity, Dk(2π j/l) = D0(2π j/l) = 1
for 1 6 j 6 l − 1 and Dk(0) = 2k + 1. Thus, only the number 0 is in Dk(2), but
j/l 6∈ Dk(2) for 1 6 j 6 l − 1, so that the sum in (3.8) is equal to 1. This forces the
sum in (3.9) to be l− 1.

Suppose that k ≡ 1 (mod l). By the periodicity, Dk(2π j/l) = D1(2π j/l) =
1+2 cos(2π j/l). Thus, Dk(2π j/l) > 2 holds precisely for fractions j/l outside the in-
terval [1/6, 5/6]. By our earlier counting, the number of such fractions is 2dl/6e − 1.
That forces upper and lower bounds to be attained by sums in (3.8) and (3.9), respec-
tively.

Table 2 and the periodicity property of the error term mentioned in Lemma 3.8
are very useful when evaluating E(p, q) for small l and k.

Here is an example.

Example 3.9 Find N(p) for the polynomial

p(z) =
z52 − 1

z − 1
− 2z16.

Since n = 51 ≡ 3 (mod 6), p(z) is of type 2(a) by Proposition 2.5. One has k = 16,
l = n− 2k = 19, so E(p, q) = 1 according to Table 2 since k ≡ 16 (mod l). Hence,
p(z) has N(p) = k + E(p, q) = 17 roots in the open unit disk.
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Table 2: Values of
∑l−1

j=0 1Dk(2) for small values of k and l, k > 1, 0 6 l 6 20. Rows
represent l, columns represent the remainder of k (mod l).

l \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1
2 1 1
3 1 1 1
4 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1 1 1
7 1 3 1 1 1 1 1
8 1 3 3 1 1 1 1 1
9 1 3 3 1 1 1 1 1 1

10 1 3 3 3 1 1 1 1 1 1
11 1 3 3 3 1 1 1 1 1 1 1
12 1 3 3 3 3 1 1 1 1 1 1 1
13 1 5 3 3 3 1 1 1 3 1 1 1 1
14 1 5 3 3 3 3 1 1 3 1 1 1 1 1
15 1 5 5 3 3 3 1 1 1 3 1 1 1 1 1
16 1 5 5 3 3 3 3 1 1 3 3 1 1 1 1 1
17 1 5 5 3 3 3 3 1 1 1 3 3 1 1 1 1 1
18 1 5 5 3 3 3 3 3 1 1 3 3 1 1 1 1 1 1
19 1 7 5 5 3 3 3 3 1 1 1 3 3 1 3 1 1 1 1
20 1 7 5 5 3 3 3 3 5 1 1 3 3 3 1 1 1 1 1 1

3.2 Useful Facts About Dirichlet Kernel

Recall that the Dirichlet kernel Dk(t) is a trigonometric polynomial of degree k, de-
fined by

(3.10) Dk(t) := 1 + 2
k∑

j=1
cos ( jt) =

sin (k + 1/2)t

sin (t/2)
.

Since |sin(k + 1/2)t| 6 1, the graph of Dk(t) for 0 6 t 6 π is enveloped by

(3.11) |Dk(t)| 6 1

sin (t/2)
.

The function Dk(t) touches the envelope at points

s j :=
2 j + 1

2k + 1
π, j = 0, . . . , k.

We will need some knowledge about the behavior of Dk(t) in the interval [0, π]. The
Dirichlet kernel vanishes at points

t j =
2π j

2k + 1
, j = 1, . . . , k,
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so that the total number of zeros in the period [0, 2π) is 2k. In the interval [0, π] Dk(t)
has extrema at the endpoints of the interval and between each of its two consecutive
zeros: points of positive local maxima occur in intervals

(3.12) [t2 j , s2 j] =
[ 4 j

2k + 1
π,

4 j + 1

2k + 1
π
]
,

while negative local minima occur in

(3.13) (t2 j+1, s2 j+1] =

(
4 j + 2

2k + 1
π,

4 j + 3

2k + 1
π

]
,

for j = 0, . . . , b(2k + 1)/4c (discard intervals which go outside [0, π]). Extremal
points lie strictly inside of these intervals with the exception of the point t = 0,
where Dk(t) takes its largest absolute value Dk(0) = 2k + 1 and the point t = π,
where Dk(π/2) = (−1)bk/2c. These basic facts can be proved by tracking the sign
changes of D′k(t) at the endpoints of intervals given in (3.12) and (3.13), thus we
omit the details.

Proof of Theorem 2.4 Observe that p(z) is self-reciprocal when n = 2k, thus,

p(z) =
z2k+1 − 1

z − 1
− 2zk =

z2k+1 − 2zk+1 + 2zk − 1

z − 1
.

We need to show that all zeros of p(z) are simple. Consider the numerator

f (z) := z2k+1 − 2zk+1 + 2zk − 1

as a polynomial in the finite field F2[z]:

f (z) ≡ z2k+1 + 1, f ′(z) ≡ (2k + 1)z2k (mod 2).

Hence f (z) has no repeated factors in Z[z].
We proceed to find the number U (p). Let z = eit , t ∈ [0, 2π). Since n = 2k,

p(eit ) =
ei(2k+1)t − 1

eit − 1
− 2eikt = eikt

( e(k+1/2)it − e−(k+1/2)it

eit/2 − e−it/2
− 2
)

= eikt (Dk(t)− 2).

Thus, the argument arg(ζ) of a unimodular zero ζ of p(z) is a solution to the equation
Dk(t) = 2. By symmetry, the number of solutions to this equation in the interval
[0, 2π) is twice that number in the interval (0, π), since Dk(0) and Dk(π) are not
equal to 2, so assume that t ∈ (0, π).

For t > π/3, Dk(t) < 2 by the enveloping inequality (3.11) in Subsection 3.2,
since sin (t/2) > 1/2. Hence, all zeros occur in the interval (0, π/3]. For any integer
k > 1, there exists an integer l > 0, such that

(3.14)
(4l + 1)π

2k + 1
6
π

3
<

(4l + 5)π

2k + 1
.

In the interval (0, π/3], the Dirichlet kernel Dk(t) has l + 1 positive maxima, which
occur at the points θ j ,

θ j ∈
[

4 jπ

2k + 1
,

(4 j + 1)π

2k + 1

)
, j = 0, 1, . . . l.
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At each point θ j ,

Dk(θ j) > Dk

( (4 j + 1)π

2k + 1

)
=
(

sin
( (4 j + 1)π

2k + 1

))−1
>

1

sin (π/6)
= 2.

Observe that the (possibly empty) open interval(
θl,

(4l + 1)π

2k + 1

)
contains no solution, since Dk(t) is decreasing and greater than 2 in that interval. The
kernel Dk(t) has a negative minima between each two consecutive points of positive
maxima, hence the equation Dk(t) = 2 has precisely two solutions in each of the
intervals [θ j , θ j+1], j = 0, . . . , l − 1. In total, Dk(t) = 2 has exactly 2l solutions in
the interval [

0,
(4l + 1)π

2k + 1

)
.

By (3.14), other possible solutions are contained in[ (4l + 1)π

2k + 1
,
π

3

]
(it is a singleton if the endpoints coincide). Since Dk(t) > 2 at the left end-point
and Dk(π/3) 6 2, there exists at least one such zero, say φ. We claim that there are
no more zeros. Indeed, let us suppose that there exists another zero, say ψ. We can
assume that φ < ψ 6 π/3. With this assumption in mind, we want to determine
more precise location of numbers φ, ψ, π/3 in the interval (3.14) and find the value
of k in terms of l. We see that

ψ 6∈
[ (4l + 2)π

2k + 1
,

(4l + 4)π

2k + 1

]
,

since Dk(t) is negative there. There must be at least one critical point of D′k(t) between
φ and ψ. According to (3.12) and (3.13), the only possibility for this to happen in
(3.14) is

(3.15) ψ ∈
( (4l + 4)π

2k + 1
,

(4l + 5)π

2k + 1

)
.

Since ψ 6 π/3,

(3.16)
(4l + 4)π

2k + 1
<
π

3
<

(4l + 5)π

2k + 1
by (3.14) and (3.15). This leads to 12l + 11 < 2k < 12l + 14, hence k = 6l + 6.

Now we show that the existence of the second solution ψ is impossible. By (3.12),
the interval (3.15) contains the point of a local maximum of Dk(t) say, θ where the
derivative D′k(t) changes its sign from + to −. Since k = 6l + 6, D′k(π/3) = k

√
3 >

0. Together with (3.16), this implies π/3 < θ, hence Dk(θ) < 2 by the envelope
inequality (3.11). Thus, we arrive at inequalities

Dk(ψ) 6 Dk(θ) < 2,

which contradict the existence of the second solution ψ.
It follows that the total number of solutions in [0, π] to the equation Dk(t) is 2l+1.

The total number of solutions in [0, 2π) is 4l + 2. By solving inequalities (3.14), one
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obtains l = b(k− 1)/6c with k = n/2. We already know that p(z) has no repeated
roots, so all these zeros correspond to simple unimodular roots of polynomial p(z).
Thus, U (p) = 4 b(n− 2)/12c + 2. Since p(z) = p∗(z), one finds N(p) by using
N(p) = (n−U (p))/2.

4 Proofs of Main Theorems

Proofs of Theorem 2.1 and Corollary 2.2 If n > 2k, consider Littlewood polyno-
mial p(z) with one sign change among the terms zk and zk−1. By Theorem 2.3,
N(p) = k, U (p) = 0, since d = 1 (coprimality condition is fulfilled if n = 2k).
For n 6 2k, consider p(z) with one sign change among the terms zk+1 and zk and
apply Theorem 2.3 with k replaced by k + 1.

Proofs of Theorem 2.4 and Proposition 2.5 have been given in Section 3.

Proofs of Theorems 2.6 and 2.7 and Corollary 2.8 Apply formulas from Theorems
3.4 and 3.7. Use E(p, q) = 1 in case k = 0. For k > 1, estimate E(p, q) by inequalities
(3.8) and (3.9) in Lemma 3.8. In Theorem 2.7, p(z) has unimodular roots only for
n ≡ 2 (mod 6) and k ≡ 1 (mod 6) by Criterion 3.2. Thus |n − 2k| is divisible by 6,
2d(n−2k)/6e = (2k−n)/3 if n > 2k and 2d(2k−n)/6e = (2k−n)/3 if n < 2k. This
yields (n + k)/3 terms in inequalities. We note that there is no contradiction between
upper and lower bounds in Theorem 2.7. Since n 6= 2k and n ≡ 2k (mod 6), we
have |n − 2k| > 6. This shows that the right-hand side of the first inequality (for
n > 2k) in Theorem 2.7 is at least k + 1 , while the left-hand side of the second
inequality (for n < 2k) is at most k− 3.

Assume now that k ∼ n/2, so that l = |n − 2k| = o(n) as n → ∞. Then
m = min{k, n − k} ∼ n/2. By Lemma 3.8, E(p, q) < l/3 and hence it is also o(n).
By the formulas of Theorems 3.4 and 3.7, it follows that N(p) ∼ n/2 as n→∞.

In the case of l = |n − 2k| 6 6 in Corollary 2.8, we have E(p, q) = 1 for n > 2k,
E(p, q) = l − 1 for n < 2k if p(z) has no unimodular roots by Lemma 3.8. If
p(z) has unimodular roots, then E(p, q) = 1 and E(p, q) = l − 3 for n > 2k and
n < 2k, respectively. That yields the formulas of Corollary 2.8 in the cases where
0 < n− 2k 6 6 and 0 < 2k− n 6 6.

Proof of Theorem 2.10 By Theorem 3.4, for n > 2k > 0, one has N(p) = k +
E(p, q), where

E(p, q) =
l−1∑
j=0

1Dk(2)

( j

l

)
, l = n− 2k.

If k is fixed, then n ∼ l as l→∞. Hence,

lim
n→∞

N(p)

n
= lim

l→∞

N(p)

l
= lim

l→∞

k

l
+ lim

l→∞

E(p, q)

l
= lim

l→∞

1

l

l−1∑
j=0

1Dk(2)

( j

l

)
.

The last sum is the left endpoint Riemann sum of the indicator function 1Dk(2) in the
interval [0, 1]. It converges to

lim
l→∞

1

l

l−1∑
j=0

1Dk(2)

( j

l

)
=

∫ 1

0
1Dk(2)(x) dx = meas

(
Dk(2)

)
.
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For k = 0, one has E(p, q) = 1, so N(p) = 1 by Theorem 3.4, and N(p)/n = 1/n→
0 as n → ∞. Since meas(D0(2)) = 0, the statement of Theorem 2.10 also holds in
the case where k = 0.

For n < 2k, observe that N(p) = n − N(p∗) or N(p) = n − N(p∗) − 2 for
polynomials p(z) in Cases 2(a) and 2(b) respectively by Lemma 3.6. By applying the
first part of the proof of Theorem 2.10 to the polynomial p∗(z) with k replaced by
m = n − k and noting that 1 −meas(Dm(2)) = meas(Dc

m(2)), when n − k is fixed,
we have

lim
n→∞

N(p)

n
= meas

(
Dc

m(2)
)
.

This completes the proof of Theorem 2.10.
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[24] G. Szegő, Bemerkungen zu einem Satz von E. Schmidt über algebraische Gleichungen. Sitz Preuss.
Akad. Wiss., Phys.-Math. Kl. (1934), 86–98.

Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6
e-mail: pborwein@sfu.ca schoia@sfu.ca ronf@sfu.ca

Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithua-
nia
e-mail: jonas.jankauskas@gmail.com

https://doi.org/10.4153/CJM-2014-007-1 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.jnt.2005.05.009
mailto:pborwein@sfu.ca
mailto:schoia@sfu.ca
mailto:ronf@sfu.ca
mailto:jonas.jankauskas@gmail.com
https://doi.org/10.4153/CJM-2014-007-1

