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A radical of a field K is a non zero element of a given algebraic closure

some positive power of which lies in K. The group R{K) of radicals reflects

properties of the field K and is in turn easily determined as an extension of

the multiplicative group K* of non zero elements of K. The elements of the

quotient group R(K)/K* are then conveniently identified with certain subspaces

of the algebraic closure, the radical spaces of K (cf. §1). What we are here

concerned with is the corresponding arithmetic situation, in which we start

with a Dedekind domain o with quotient field K. The role of the radicals is

taken over by the radical modules. These form a group 9Uo) which contains

the group of fractional ideals of o (cf. §4).

The ideal theory of o is equivalent with its valuation theory. Although

the same is no longer strictly true, when translated into the new context, there

is still a close connection between the "valuations" of RiK) and the theory

of radical modules (cf. §3, 4). There is also the new feature, to which there

is no analogue in the valuation theory of o, that each discrete valuation gives

rise to a character of the radical spaces, i.e. of RiK)/K*. These characters

can in a natural manner be lifted back to real valued functions. On the basis

of the theory of integral radical modules—the analogue to the integral ideals—

one then obtains the conductor of a radical space (§6), which plays an important

role in the ramification theory.

The group 3ϊ(o) differs from R(K) in presenting a genuine divisibility problem.

We shall show, in § 5, that a radical module is divisible by n if and only if

its image under a canonical map onto the ideal class group of o is divisible by

n. Looking at it the other way round, one obtains in terms of 0ϊ(o) an essentially

local, necessary and sufficient condition for the class of a fractional ideal of o

to be an z-th power. As an application of this criterion we shall then give a
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644 A. FROHLICH

new proof for the theorem that the class of a discriminant is a square.

In the group of fractional ideals the base ring o itself is the only torsion

element, and the only unit (integral ideal with integral inverse). On the other

hand 3ΐ(o) has proper torsion elements and proper units. We shall show that

these coincide (cf. §7).

The principal application, which I shall give here is to the ramification

theory of pure extensions (cf. §8, with the algebraic background in §2). This

constitutes a generalization of some results of an earlier paper (cf. [3]), where

only normal, i.e. Abelian pure extensions had been considered. The precise

translation to the language of [3] can be read off from example 2 in § 2.

Elsewhere I shall introduce "arithmetic resolvents" for normal extensions

of the quotient field of a Dedekind domain. These associate with each "integral

representation" of the Galois group an object which will turn out to be a

radical module. It was this application which first motivated my interest in

radical modules.

1. Radical subspaces

The multiplicative group of non zero elements of a field K will always be

denoted by K*. Let K be a field, L an extension field of K. The radicals of

L/K, i.e. the elements a of L* for which some power an (n>0) lies in K*t

form a subgroup of L*, to be denoted by R(L/K), which contains ϋΓ*.

For subgroups M and N of the additive group of L we define the module

product MN to be the additive subgroup of L which is generated by the element

products aβ, with a e M and β e N. A radical subspace P of L/K is a K~

submodule of L} which is of if-rank 1 and which under the module product

satisfies an equation

for some natural n. The radical subspaces of L/K then form an Abelian group

under the module product, which will be denoted by ΪRiL/K). The map a^aK

defines a homomorphism R(L/K)-*yi(L/K), and the sequence

(1.1) 1 - if* -» R( L/K) -> 3? (L/K) - 1

is exact.

The pairs L/K form a category, a morphism L/K-+L'/K' being given by an
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RADICAL MODULES OVER A DEDEKIND DOMAIN 645

injective homomorphism L-+L1 of fields which maps K into K'. One clearly

has

1.1. PROPOSITION. The sequence (1.1) is a functor of L/K.

If L'^L^K then the sequence

(1.2) l-+$ί(L/K)->3i{L'/K)-+$l(L'/L)

is exact. If moreover L is algebraically closed in Lf then the maps

R(LIK) -»R(L'/K), 5KL/X) ->3ϊU'/#)

are isomorphisms.

From this proposition it follows that if K is an algebraic closure of K, then

the groups R(L/K) may be viewed as subgroups of

R(K)=R(K/K)

and the groups 3l(L/K) as subgroups of

We shall adopt this point of view throughout, and shall use the symbols K>

R(K) and ίίl(K) in the present connotation. The elements of 3ϊ(iD will be

called the radical spaces of K.

2. Pure extensions

If (S is a subgroup of ίίl(K) then the sum

(2.1)

of submodules of K is a field. We shall call K(®) a pure extension of K (by

©) if this sum is direct.

2.1. PROPOSITION. Suppose that K{®) is a pure extension of K by ©. If £>

zs # subgroup of (& then L = if(ξ>) /s # ^&f£ extension of K by £>, contained in

), and

//" © zs //?£ image of © m 9?(D Â̂ ^ //?£ sequence

(2.2) 1 ->€>-^©->©->l
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is a pure extension of L by ©.

Proof It is immediately obvious that the sum over ξ> is direct, i.e. that

L = K(ξ>) is pure. It is clearly a subfield of #(©). If P e © Π VUL/K), i.e.

P c Σ Q then P = Q for some Qe©, by the directness of the sum (2.1). The

exactness of (2.2) is thus a consequence of the exactness of (1.2). Now

however we see that each P e ® is the sum over a coset of © mod £>, and so

the sum over © is obtained by grouping together terms of (2.1), i.e. it is direct.

In the sequel we denote by | © | the order of © and by (L : K) the degree

over K of an extension field L.

2.2. PROPOSITION. iΓ(©) is a pure extension of K by % if and only if, for all

finite subgroups ξ> of ©, if(ξ>) is a pure extension of K by ξ>.

If © is a finite group, then a necessary and sufficient condition for iΓ(©) to

be a pure extension of K by © is that

(#(©) : K) = \®\.

Proof. The last assertion is trivial. For the first part of the proposition

one only has to note that © is a torsion group, hence the union of its finite

subgroups £>. Consequently iΓ(@) is the composite of the subfields K(φ).

Let a <= R(K), and let © be the cyclic group generated by aK. Then K(®)

= K{a) and we have clearly

2.3. PROPOSITION. iΓ(©) is pure, if and only if the minimal polynomial of a

over K is pure, i.e. of form Xn — a.

We mention one other proposition, which in conjunction with 2.3. yields a

description of the finite pure extensions.

2.4. PROPOSITION. Let © be the direct product of subgroups ®i and ©2, each

of which gives rise to a pure extension of K. Then K{%) is a pure extension of

K by © if and only if the fields iΓ(©i) and iΓ(©2) are linearly disjoint over K.

This follows from the definition of linear disjointness (cf. [7] Ch. II).

Examples. 1. Let a be an element of K and let 5 be a multiplicatively

closed set of natural numbers, such that for all n&S the polynomial Xn - a

is irreducible in KlXl. Then there is a subgroup © of SJMϋD with the following
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properties (i) K{(§>) is a pure extension of K by ®, (ii) K((§>) is the composite

of the root fields Kn of the polynomials Xn - a, for n^S. More precisely, if

©„ is the subgroup of © of elements in © which are annihilated by n, then

K(®n) = K(an) where an = α.

To see this let (as throughout this paper) Z be the ring of integers.

Denote by Zs the quotient ring of Z with respect to S. As R(K) is an injective

Abelian group the homomorphism Z -»ϋΓ* which takes 1 into <z can be extended

to a homomorphism ZS-*R{K). © is then the image of the homomorphism

2. Let L be a finite or infinite, normal, separable extension of K with

Galois group Γ. Let Φ be the group of continuous homomorphisms Γ->K*, for

the discrete group K* and the profinite group Γ. For each φ^Φ the elements

a of L with

αr = ̂ 0(r)? all r ^ Γ

form a radical subspace L^. The map φ'<-^Lφ is an injective homomorphism

Φ-*ίR(K), i.e. we may view Φ as embedded in 9?(/£"). By the normal basis

theorem K{Φ) is then a pure extension of K by Φ.

3. Let K have prime characteristic p and let L be a purely inseparable

extension. Then ϊίUL/K) = L*. Let {a,-} be a £-basis of ϋΓ1^ Π L over X and

let © be the group generated by the subspaces a:K. Then K(®) is a pure

extension.

3. Valuations

Let in the sequel the symbol P stand for the multiplicative group of positive

real numbers. A valuation of R{K) is a function ψ, defined on R{K) UO with

values in P U 0, so that

(i) The restriction ψm of ψ to K is a valuation of K.

(ii) The restriction of ψ to a radical subspace P is a norm of the K-module

P with respect to ψκ

(iii) The restriction of ψ to R(K) defines a homomorphism i?(iO->P.

In the sequel we shall always use the same symbol both for valuations of

R(K) (or of K), and for the associated homomorphisms i?(ϋO->P (or ϋC*->P).

3.1. PROPOSITION. Fαr gz ery valuation <ρ of K there is a unique valuation ψ*

https://doi.org/10.1017/S0027763000026453 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026453


648 A. FROHLICH

Of R(K) With <pκ = 0

For every subgroup G of R(K) the restriction of <ρ* to G is already uniquely

determined by the property that it defines a homomorphism G->P, which extends

the homomorphism K*-*J?.

Proof P is a torsion free, injective Abelian group. Hence the diagram

with exact row

1—>#*—>G

P

can in a unique manner be completed to a commutative diagram

P

The proposition is an immediate consequence of this observation.

Remarks 1. If L is purely inseparable over K, i.e. L* = R(L/K) we obtain

a valuation of L.

2. The unique extension of the trivial valuation of K is the trivial valua-

tion of R(K), which from now on will be excluded from consideration.

3. The extensions of equivalent valuations φ and ψ = <ρs(s> 0) are equivalent,

i.e. 0* = 0*\ It is left to the reader to convince himself that the objects we

shall associate with valuations depend effectively only on the equivalence class.

From the last proposition we obtain a commutative diagram

K*—>R(K)

(3.1) I [φ* [φ (D(K,φ))
Imφ—> P —>P/Im0

Now let θ : K->K' be an embedding of fields and let ψ be a valuation of K1

which extends the given valuation φ of K. We then obtain commutative

diagrams

K

(3.2)
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and

Im φ—>P—>P/Im φ

(3.3) i || i
Im^—>P—>F/lmψ

and we have

3.2. PROPOSITION. The diagrams (3.2) and (3.3) define a homomorphism

D{Ky φ) ->D{K', φ')

of diagrams (3.1).

From now on we consider a discrete valuation φ of K. In this case it is

preferable to use the language of "exponential valuations". The exponential

valuation vt associated with φ, is a surjective homomorphism

K*^Z (additive)

extended to a map

/ε>ZU oo

by the rule v(0) = °°, and connected with φ by equations

ψ(fl) = p-f;(β) for all a<aK*y

where p is a fixed real number > 1. Let R be the additive group of real numbers.

Diagram (3.1) now takes on the form of a commutative diagram

(3.4) [v [v* [v

Z —> R —> R/Z

and we shall use the symbols v* and υ always to denote the homomorphisms

given in this manner.

We now define for a radical space P of K the ramification index e (P) by

(3.5) e(P) = order of ϋ(P) in R/Z,

and the invariant u(P) as the real number with

0<u{PXl,
(3.6)

t v{P) = «(P) modZ.

3,3. PROPOSITION. / / e(P) = 1 ί t o
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If e(P)>l then

u(P)>0,

and

u{P)

Proof. Obvious.

3.4. COROLLARY. For r&Z

u(Pr)+u(P~r)<u{P)-^u(P~1).

Proof e{P) divides e(Pr). Hence if e{P) = 1 then e(Pr) = 1. Now apply

the proposition.

We now give another interpretation of u(P). We shall, for any non empty

subset 5 of R(K) U 0, write

(3.7) v*(S)= intv*(x).
α?e»9

If 5 = (0), then p*(S) = oo. If ^* is not bounded below on 5, then v*(S)

Otherwise v*(S) ε R .

Now let

(3.8) Ep

Then we have

3.5. PROPOSITION. U(P) = v*{EP).

Proof The set of values of v* on P is the coset v(P) of R mod Z (cf.

(3.4)), and u(P) is the least positive number in that coset.

Now let again K1 be an extension field of K and let </>' be a discrete valua-

tion of K1 extending φ. For the associated exponential valuations we then

have a commutative diagram

( 3 9 ) ί l

where the natural number e is the ramification index of valuation theory.

3,6. PROPOSITION. / / ? ε 9?(if) then
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= e(P)/(e(P), e),

u(PK') =e-u(P) (modZ).

Proof. Translating 3.2. into the language of exponential valuations, we

derive from (3.9) a commutative diagram

>P/Z

le

>P/Z

which immediately yields the proposition.

3.7. COROLLARY. If Pe=W(K'/K) then e(P) divides e.

Proof PK' = K' and e(K') = 1.

3.8. COROLLARY. If e—\ then

u(PK') = u(P).

This last Corollary applies in particular to the z -adic completion K1 of K.

4. Radical modules

We consider from now on a Dedekind domain o. To avoid wasting time

on trivialities we shall assume o not to be a field. We shall then use the

following notations. $(o) is the group of fractional ideals of o, always in the

sense of non-zero fractional ideal. The symbol p always stands for a maximal

ideal of o. The associated exponential valuation of the quotient field K of o

will be denoted by v$9 and the subscript p also indicates the associated objects

as defined in § 3, op is the valuation ring of vv, ie . the local ring of o at p (in

K).

Let L be an extension field K of o. A radical module of L/o is a non zero,

finitely generated o-submodule M of some radical subspace P of L/K. M will

then span P, i.e. P = MK. Recalling the definition of the module product in

§ 1, we have

4.1. THEOREM. The radical modules in L/o form an Abelian group 5R(L/o)

under the module product} which contains F(o). The map M*-ϊMK is a homomor-
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phism $t(L/o) -*(3i(L/K) and the sequence

(4.1) l

is exact.

The map a±-?ao is a homomorphism R(L/K) -»3ϊ(L/o) and the diagram

K* —*R(L/K)

(4.2) 1 1 y%i L/K)

Proof. The following facts are immediately obvious: (i) 3ϊ(L/o) is a com-

mutative monoid and the maps involving it are monoid homomorphisms. (ii)

$(o) is the inverse image in 3t(Z,/o) of the identity K of t3l{LlK) under the

map 3i(L/o)->3i(L/UL). (iii) The diagram (4.2) commutes. But (iii), together

with the exactness of (1.1) implies that the map 3f(L/o) -»3ΐ(L/iΠ is surjective.

Now it follows from (i) and (ii) that 3ϊ(L/o) is in fact a group.

The pairs L/o form a category, a morphism Z,/o-»L'/o' being given by an

injective homomorphism L-+L1 which maps o into o'.

4.2. PROPOSITION. The sequence (4.1) and the diagram (4.2) are functors of

L/o.

If LaLf then the map 3l(L/o)-+(3l(L'/ό) is injective. If moreover L is alge-

braically closed in V then it is surjective.

Proof The first assertion is obvious. For the remainder use the exactness

of (4.1) together with 1.1.

In view of the last proposition we shall view the groups 3ϊ(L/o) as embedded

in the group

K being as always an algebraic closure of K. An element of this group is a

radical module over o.

We shall now establish the connection with § 3. Recalling the definition of

v$(M) (cf. (3.7)) we have

4.3. PROPOSITION. The map M^-)Vp(M) is a homomorphism 3ϊ(o) -* R of groups

and the diagrams
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(4.3)

Z —> R —> R/Z

R(K)

(4.4)

R

commute.

Proof. By the defining property (ii) of a valuation of R(K) (cf. §3), the

function v* of R(K) U 0 satisfies the relations

( 4 5 ) i

L Vp (aa) = v$(a) + fp (α)

for α, j9 in a fixed radical subspace P and for a^K. It follows that if the

radical module M is generated over o by elements ai, . . . , an then

(4.6) ι£(M) = inf ί£(α, ).

As a first consequence one now deduces easily that the map M<- v$(M) is a

homomorphism as indicated. Secondly one sees that vp(M) actually lies in the

coset vpiMK) of R mod Z, i.e. that the right hand square in (4.3) commutes.

The other commutativity relations are obvious.

4.4. PROPOSITION. Let a e R(K), Af e SR(o), PeίR(X). Then for almost all p

v*(cc) =0, v£{M) =0, £P(P) =0.

Proof Let are /?(ϋΓ), α^eiΓ* (n>0). Thenv^(a) = 0 whenever vv{ocn) =0,

i.e. for almost all p. Hence z)p(αϋΓ) =0 for almost all p. To show that v$(M)

= 0 for almost all py use (4.6).

4.5. COROLLARY. For a given radical space P of K let F be the set of functions

f from the maximal ideals p of o to the real numbers, such that

(i) f(p) lies in the coset ϋ$(P) of R mod Z

(ii) f(p) = 0 for almost all p.

Let furthermore G be the set of radical modules M^P. The map M fM, where
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is a bijection G •+ F.

Proof. That fM^F follows from 4.3 and 4.4. If fM = f, then MAT"1 εg(o)

and, by 4.3, ^(MAT1) = 0 for all p, i.e. MAT1 = o and so Af = AT. Thus Λf »-»/*

is an injection. To see that it is also a surjection, consider a function / e F.

Choose some M^G and let / be the fractional ideal with

T h e n / = / * for N=MI.

We now consider the localisation maps g$ ' 9ί(o)-*9ί(θp). In the direct

product Π3ί(θp) (over all p) we single out the elements N with the following
p

properties: (i) There is a radical subspace P dependent on AT, but not on p,

so that the ^-components Nip) are all contained in P, (ii) for almost all pf

vp(N(p)) =0. These elements form a group II*9Hop). From 4.3 and 4.5 we

then have

4.6. COROLLARY. The localisation maps gp give rise to an isomorphism

5. Divisibility

The groups RiK) and 'Sl(K) are divisible, but the group 3?(o) presents

genuine divisibility problems, which will be dealt with in the present section.

Recall that an element g of an Abelian group G is said to be divisible by the

natural number n if g e Gn.

We shall write S(o) for the ideal class group of o, i.e. for the cokernel of

the map ϋί*-»$(o).

5.1. THEOREM. There is a unique homomorphism

cl :

which makes the diagram

(5.1)

commutative, and its row exact.

A radical module M is divisible in 3Ko) by n if and only if cl(M) is divisible
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in S(o) by n.

Proof. The first part follows from the exactness of the sequences (1.1)

and (4.1) and the commutativity of (4.2). The second part follows from the

exactness of the row in (5.1) and the fact that RiK) is a divisible group.

One can identify the map cl : 9ϊ(o)-*S(o) in module theoretic terms. In

fact cl(M) is precisely the Steinitz invariant of M, which occurs in the theory

of finitely generated, projective o-modules.

5.2. COROLLARY. A fractional ideal I of o is n-th power of a radical module

if and only if cl(I) is n-th power of an ideal class.

Using 4.6 one can restate this criterion for cl(I) to be an n-th power in

almost entirely local terms.

5.3. COROLLARY. cl(I) is an n-th power if and only if there exists a radical

space P e 3ϊ(ϋΠ, and for each p a radical module M{p) e 9Hθp) so that

KM{p) = P

For, the last equation will then also imply that, for almost all p, v^

= 0.

As an illustration we give yet another proof of the theorem on the ideal

class of a discriminant. (In the case of algebraic number fields see ([5] Th.

177), for the general case see [1], and [6] (Ch. Ill, §2).)

5.4. PROPOSITION. Let L be a finite, separable, algebraic extension field of K

and let b be the discriminant over o of the integral closure of o in L. Then cl(b)

is a square.

Proof. Let σ% run through the distinct homomorphisms of L into the algebraic

closure K which leave K element wise fixed and let t L -* K be the trace. If

{ctkt is a iΓ-basis of L we have the determinantal equation

(5.2) (det (α*tf, ) ) 8 =det f (α*α7) .

The K-module P=K det {<xk<n) does not depend on the choice of basis, and by

(5.2) P2 = K.

Now choose in particular {otk) as an Op-basis of the integral closure of Op
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in L. Then

M(p) = Op det («

is a radical module in SR(θp) with

which by (5.2) satisfies the equation

Now apply 5.3, to get the Proposition.

6. Integral radical modules and the conductor of a radical space

We are here concerned with arithmetic properties of radical modules. This

will lead us to a function which associates with every radical space P an ideal

f(P) of o.

A radical module M is integral if its elements are integral (over o), i.e. if

all p, vp(M)>Q. These modules form a monoid, generating 3Ho).

6.1. THEOREM. Each radical subspace P contains a unique maximal integral

radical module

(6.1) &=[αeP|t/p(α)>0 for all pi,

with values

(6.2)

The product

(6.3)

is a square free integral ideal of o. A maximal ideal p divides f(P) if and only

if ev(P)>l, i.e. v$(EP)>0.

For r e Z , f(Pr) divides f(P). In particular if P and Q generate the same

cyclic subgroup of Vt(K) then f(P) = / « ? ) .

Proof By the definition of up(P) (cf. (3.6)) this lies in the coset ϋp(P) of

R mod Z and, by 4.4, u$(P) = 0 for almost all p. Hence by 4.5 the equations

16.2) determine a unique radical module E$t which by 3.5 satisfies (6.1.).

The remainder of the theorem now follows from the fact that EPEP-<L

and from 3.3 and 3.4.
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/ (P) is called the conductor of P over o.

6.2. PROPOSITION, (i) /(P)θp is the conductor of P over Op.

(ii) If K$ is the p-adic completion of K and Op its valuation ring, then f {P)o$

is the conductor of Pop over Op.

Proof, (i) follows from 4.6 and (ii) from 3.8.

7. Units and torsion

We now establish a connection between the arithmetic properties of 3l(o)

and its torsion properties.

A radical module M is a unit if both M and M"1 are integral.

7.1. THEOREM. Each unit radical module is of form Ep.

The unit radical modules form a sub-group Π(o) of 0ΐ(o), and

(7.1) U(o)= Π
P

The homomorphism

U(o)

gW£s m ^ fo β^ isomorphism

(7.2)

U(o) coincides with the torsion group of SR(o).

/. M i s a unit if and only if for all p.

i.e.

This immediately yields (7.1) and the fact that a unit is of form Ep.

The group ll(o) Πgίo) is trivial. Hence by the exactness of (4.1) the map

ll(o) ->9ϊ(ϋC) is injective, and by (7.1) and the commutativity of (4.3) its image

is contained in Π Ker z)p. On the other hand if z)p(P)=0 for all p, then

^ p ( P ) = 0 and so by (6.2) Ep is a unit whose image is P. We have thus

established the isomorphism (7.2).

We know in particular that II(o) admits an injection into the torsion group

and is thus itself a torsion group. Conversely each v$ induces a homo-
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morphism of the torsion group of D?(o) into R, which must be null. Hence by

(7.1) the torsion group of 9l(o) is contained in ll(o), and so coincides with U(o).

8. Ramification of pure extensions

In this section we consider a separable, finite, pure extension L = K{(8>) of

K by a subgroup © of ϊfί(K). The degree (L : K) is then not a multiple of

the characteristic of K> and we may thus view it as an ideal of o. The integral

closure of o in L will be denoted by D and, in keeping with tradition, the

discriminant of D over o by b(L/K). The symbol $ stands for maximal ideals

of D, and e% denotes the ramification index relative to φ(Ίo = J). The residue

class field extension D/$β of o/p is not assumed to be separable. If it is, and

if the characteristic of o/p does not divide e% then $ is said to be tamely

ramified (over K).

By abuse of notation we write

(8.1) /

and

(8.2) p ( pp

$(L/K), as well as b(L/K), is an integral ideal of o.

The sum

(8.3) 6 =

of o-submodules of L is direct. D is a finitely generated o-module which spans

L over K, and hence the module index [O : O] is defined, (cf. [2], [4]). It

is an integral ideal, as clearly OcD, In fact O is an order of o in L.

8.1. THEOREM, (i) b(L/K) (CO : O]2) = ζ(L/K)((L : KΫL:K)).

In particular

b(L/K) divides $(L/K)((L : K){L:K)).

(ii) S(L/K) divides b(L/K)

and

DO : 6 ] 2 divides (L : KΫL:κ)

(iii) The following conditions are equivalent

(a) Each maximal ideal $ of O /s tamely ramified over K.
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(b) ${L/K) = b(L/K)

(c) [O : ®7 = (L : K)(L:K)

(iv) // Sβ is a maximal ideal of O with $ ί l ΰ = ί) then

βp{L/K) divides e<$.

If all $ are tamely ramified over K then

Proof. Without loss of generality we may assume o to be a local ring with

the single non zero prime ideal p. We shall first establish a series of Lemmas.

The residue class degree of a maximal ideal $ of D in L/K will be denoted

by /sβ and the natural numbers n$ are defined by the equations

for the values of the different Φ of

8.2. LEMMA. VP(Ϊ*(L/K) ) = Σ/φtop - 1).

Proof. Standard.

8 3. LEMMA. n ^ > ^ , /̂/A equality holding if and only if $ is tamely ramified.

For a proof without hypothesis on the separability of residue class field

extensions see e.g. [4],

Let in the sequel g denote the order of the kernel of the map ®->R/Z

induced by v$.

8.4. LEMMA. ep(L/K) divides e<§ and ^

Also g

if and only if

ev(L/K) = e%

for all φ.

Proof. ep(L/K) is the order of Im [© - R/Z]. By 3.7, ep(L/K) thus divides

e$. By 2.2,

Also
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Hence

The Lemma now easily follows from this formula.

8.5. LEMMA.

vp(b(L/K)) = {L : K)-g.

Proof. By 6.1, the conductor / (P) has value o for precisely g of the spaces

P, and has value p for the other (L : K) - g = | (S | - g spaces.

Let €> be a subgroup of ©. By 2.1, Lx = K(ξ>) is a subfield of L, containing

K, and if © is the image of © in SR(Li) then L = Li((^) is a pure extension of

£i by ©. In this situation we have

8.6. LEMMA. If LJK is non ramified then

where NLliκ is the ideal norm.

Proof. The elements Q of (& are the spaces PLi(Pe($), each counted

I©I = (Li : K) times (cf. 2.1). Therefore

(8.4) b(i/ii) ( L ι : j c ) = Π/(PLi) .

Now consider a fixed space P e ® . Let Di be the integral closure of o in

Li. If 5 is a maximal ideal of Di then its ramification index over p has value

1 and consequently, by 3.8,

By 6.1, this implies that

This being true for all p, we now deduce from the equation

that

f{PLi) =/(P)Oi.

Hence

Π/(PLi) = b(L/K) Di.
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Comparing with (8.4) and taking norms we obtain

and this gives us the Lemma.

Now we return to the proof of the theorem. Note that the first assertion

under (iv) is contained in 8.4.

Let t be the trace L-*K, {&•} a free o-basis of O and select for each P an

element <xP so that EP - oaP. Then the <xP form a free o-basis of 6. It follows

(cf. [4]) that the determinant quotient

(άett(βiβj))'1 άett(aPaQ)

generates the ideal [O : O]2. Also

To establish 8.1 (i) we shall have to show that

(8.5) oάett(aPaQ) = b(L/K)({L : K){LιK)).

In fact, if PQ*K then

tiatpOCo) = 0,

while on the other hand

$OCpOCP-χ = f(P)i

and so

: K).

The last equation implies (8.5).

To establish (ii), we recall that Σ φ β / $ = (L : K), and get

vp(b(L/K)) = Έf%(r$~l) (by 8.2)

Σ D (by 8.3)

= (L : K)-^f^>{L : K) -g (by 8.4)

= vp(b(L/K)) (by 8.5)

Thus ί{L/K) divides b(L/K), and by (i) K) : O]2 will divide (L : KYL:K).

Moreover this string of inequalities, in conjunction with the criteria for equality

in 8.3 and 8.4, shows that the equation b(L/K) =b(L/K) implies firstly that

each maximal ideal $ of O is tamely ramified, and secondly that always e$(L/K)
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= eψ As by (i) the conditions (b) and (c) are clearly equivalent, it only

remains for us to show that (a) implies (b).

Assume then that all maximal ideals of O are tamely ramified over K.

If o/p is of prime characteristic p let £> be the ^-Sylowgroup of ©, otherwise

let £> = 1. The maximal ideals of the integral closure of o in Lx- K(ξ>) are

tamely ramified over K. In the case when o/p has prime characteristic p,

(Li' K) is a power of p. Therefore Li is non ramified over K. The same is

trivially true when o/j) has characteristic zero. Thus h(Li/K) = o, and hence

by the tower formula for discriminants

(8.6) HL/K) = NLlικ b(L/Li).

By 8.6,

(8.7) i(

On the other hand, the degree (L : Li) - |(S/£>| is not a multiple of the residue

class field characteristic and hence

: UYL''Ll)).

By the divisibility relations under (i) and (ii) it then follows that

and hence by (8.6>, (8.7) t h a t
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