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More on unpolarized deep inelastic scatterings

18.1 Target mass corrections

Target mass corrections have been introduced by Nachtmann [229], and later on in [168]. If
one considers the NS part of the moments defined in Eq. (16.16), one can show [168] that
they can be written as:
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Inverting this expression, one can express the structure function in terms of the Nachtmann
variable [229]:
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1 +
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. (18.2)

In the region x → 1, higher twist contributions can also be important and can cancel the
target mass corrections [230], it is instructive to do an expansion in x . Keeping the leading
term, one obtains (see e.g. [46)]:
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, (18.3)

where the quality of the expansion can be controlled by the size of the next term. This
contribution can be compared with the higher-twist contribution in Eq. (18.6).

18.2 End points behaviour and the BFKL pomeron

18.2.1 The limit x → 1

The NLO perturbative expression of the non-singlet structure function indicates that for
x → 1, it behaves as [231]:

F N S ∼ (1 − x)2[ln(1−x)](αs/3π ) , (18.4)
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18 More on unpolarized deep inelastic scatterings 181

showing that perturbation theory fails. This result can be generalized to all orders by formally
replacing αs(Q2) by αs[(1 − x)Q2] [241]. One can also interpret this feature because, in
this limit, we are in the bound state regime where the reaction of the type:

γ ∗ + N → N (18.5)

dominates. In this limit, one may also expect that non-perturbative higher twist contributions
behave as [230]:

F H T
2 (x, Q2) ∼ p2

T

Q2

x

1 − x
F2(x, Q2) , (18.6)

where pT is the transverse momentum of partons in the nucleon.

18.2.2 The limit x → 0 for the non-singlet case

This limit has been studied extensively in hadron physics for the non-singlet scattering
process.1 It corresponds to the kinematic region where Q2 is fixed and the hadronic energy
ν going to infinity. This is the so-called Regge limit, where the cross-section of the photon
scattering off the proton is proportional to the structure function:

σ (γ ∗(Q2)p(s)) = 4π2α

Q2
F2(x, Q2) : s = Q2/x , (18.7)

and where the non-singlet amplitude can be expressed as:

T N S(ν → ∞) � f (Q2)sαρ (0) , (18.8)

due to exhange of Regge trajectories, either the ρ trajectory or the one degenerate to it. αρ(0)
is the universal intercept of the ρ trajectory, which has an experimental value of about 0.5.
Therefore, one can show that the structure function behaves as:

F N S
2 (x, Q2) ∼ x1−αρ (0) . (18.9)

18.2.3 The limit x → 0 for the singlet case and the BFKL pomeron

The singlet case is more subtle due to the coupled evolution equations from the presence
of the gluon density. At present, there is no consensus on the behaviour of the structure
functions at Q2

0 ∼ few GeV2. There are three proposals:

� Soft pomeron
In this case, the structure functions are expected to behave as a constant in the x = 0 limit. This
behaviour was first considered in [230] and completed later on. However, it has been known for a
long time that a soft pomeron for off-shell processes leads to inconsistencies [243].

� Hard pomeron
The previous remark then leads some people to postulate the hard pomeron exchange, where:

F S
(
x, Q2

0

) ∼ x−λq , FG
(
x, Q2

0

) ∼ x−λg . (18.10)

1 For a recent review, see e.g. [242].
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182 IV Deep inelastic scatterings at hadron colliders

Fig. 18.1. Comparison of the measured and BFKL predictions of F2 for small x = 4 × 10−4 and large
Q2. For a running value of αs , the HERA data are in disagreement with the BFKL result (F2 should
decrease with Q2).

It has been proved that:

λq = λg (18.11)

and are Q2 independent.
� BFKL pomeron

The usual procedure used now is to assume a given behaviour at fixed Q2
0 and then evolve the

behaviour using the RGE for an arbitrary Q2. Using a different approach, BFKL [244] found a
different behaviour:

F2

(
x, Q2

) ∼ x−ωαs (Q2) : ω = 4CA ln 2

π
. (18.12)

which is not compatible with the RGE where the exponent is constant. A comparison of this
prediction with data for a given small x value is given in Fig. 18.1.

A number of speculations have been suggested in order to explain this difference (two different
regimes in x ? αs function of a soft scale of the order of �2 but not of Q2 ? . . . ).

18.3 Experimental tests and new developments

� In the previous section, we have discussed in detail the scaling violation to the Bjorken sum rule
as an illustration of the OPE approach and of the Altarelli–Parisi evolution equation. We have also
concentrated the discussions on the photon scattering off a proton. A test of this prediction is given
in Fig. 18.2.

We also give the new compiled data from PDG [16] in Figs. 18.3 and 18.4.
� In [245], a model which interpolates the soft and hard pomeron parametrization and which can be

used at low Q2 has been proposed. It has been assumed that the soft pomeron contribution is given
by an ordinary pomeron which is constant when x → 0, while one has to find a parametrization
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18 More on unpolarized deep inelastic scatterings 183

Fig. 18.2. Comparison of the measured and QCD predictions for F2 where the N S and S components
(dashed) are explicitly shown. The full curve is the sum of the two. Data points are SLAC data [246].

Fig. 18.3. The proton structure function F2 from ep scattering versus x at two values of Q2, exhibiting
scaling at the pivot point x ≈ 0.14.

where the cross-section does not blow up when Q2 → 0. This can be achieved by replacing the
coupling by:

αs

(
Q2

) → α̃s ≡ 2π

−β1 ln(Q2 + M2)/�2
, (18.13)
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184 IV Deep inelastic scatterings at hadron colliders

Fig. 18.4. The proton structure function F2 from ep scattering versus Q2 at different values of x . A
constant c(x) = 0.3(ix − 0.4) has been added to F2 where ix is the number of the x bin ranging from
ix = 1(x = 0.85) to ix = 28(x = 0.000063).

and the soft pomeron term by:

C → C
Q2

Q2 + M2
, (18.14)

where M is a typical hadronic scale of the order of Mρ . In this way, the structure function takes the
form:

F2 = 〈
e2

q

〉
BSα̃

−d+(n=1+λ)
s Q−2λsλ + C

Q2

Q2 + M2
+ BN Sα̃

−d N S (n=1−λN S )
s Q2λN S

s−λN S
, (18.15)
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18 More on unpolarized deep inelastic scatterings 185

Fig. 18.5. Comparison of the measured and QCD model predictions for F2 at low x and small Q2.

with:

d+(1 + λ0) = 1 + λ0 , d N S
(
1 − λN S

0

) = 1 − λN S
0 , (18.16)

and:

d(n) ≡ γn/(−2β1) . (18.17)

The different fits give a good description of the HERA data at low x and small Q2, as shown in
Fig. 18.5.

The results of the fit give:

λ0 = 0.47 , λN S
0 = 0.522 . (18.18)

which are larger than a hard pomeron fit λ = 0.32 − 0.38 but are in the range given by a soft
pomeron fit λ = 0.44 ± 0.04 .

� We also know that deep inelastic scatterings and some other related sum rules have been traditionally
used for extracting the QCD coupling αs(Q2) and the scale � due to their sensitivity to leading
order to these quantities. The determinations of αs from different methods will be discussed in
Section 18.4, Chapter 25 and Part VI. Various more involved systematic tests of scaling violations
and modern analysis can, for example, be found in different textbooks [42–46], reviews [47–52]
and also the proceedings of the QCD series of the Montpellier-Conference.

18.4 Neutrino scattering sum rules

For (anti)-neutrino off-proton scattering, we have the following sum rules:

� The Adler sum rule ∫ 1

0

dx

x

(
F ν̄ p

2 − Fνp
2

) = 2 , (18.19)

valid for all Q2, and which has no corrections because it is related to an equal-time commutator
[247].
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186 IV Deep inelastic scatterings at hadron colliders

Fig. 18.6. x F3 measured from electroweak scattering of (a) electrons on protons and (b) muons on
carbon versus x and for different Q2.

Fig. 18.7. x F3 measured from ν − Fe scattering versus Q2 and for different x .
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18 More on unpolarized deep inelastic scatterings 187

� The Gross–Llewellyn Smith sum rule
It reads [248]:

∫ 1

0

dx

x

[
F ν̄ p

3 (x, Q2) + Fνp
3 (x, Q2)

] = 3
{
1 − as(Q2) − 3.58 a2

s (Q2) − 19.0 a3
s (Q2)

}
, (18.20)

where higher order corrections have been evaluated by [249] and are shown in Fig. 18.6.
Data [16] from ν-Fe scattering is shown in Fig. 18.7.

18.5 Summary of αs measurements from DIS

The different analysis from DIS lead to the values of αs given in Table 25.3 and Fig. 25.13
from [139]. The most recent and precise result comes from the analysis of F2 by [250] using
data on protons from SLAC, BCDMS, E665 and HERA. It leads to:

αs(MZ0 ) = 0.1166 ± 0.0009 (stat) ± 0.0020 (syst) , (18.21)

where the systematic error has been multiplied by a factor 2 as a guess of the µ-dependence
and effects of power corrections not fully analysed in [250]. It reaches the accuracy of the
determination from, for example, the inclusive τ -decay data. However, the DIS data have
shown large fluctuations in recent years, and then are less satisfactory than those from e+e−

and τ -decay data. The previous value αs(MZ0 ) = 0.113 ± 0.005 from BCDMS, SLAC data
[251] and soon confirmed by the CCFR result from F2,3, become 0.119 ± 0.002 (stat) ±
0.003 (th) after a new energy calibration. Recent result on F2γ photon structure function is
also available from LEP leading to:

αs(MZ0 ) = 0.1198 ± 0.0028 (exp) +0.0034
−0.0046 (th) . (18.22)

These different DIS results are compared with other determinations given in Table 25.3
and Figs. 25.13 and 25.15. The overall agreement shows a great achievement of the pQCD
calculations.
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