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Unit fractions with shifted prime denominators
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We prove that any positive rational number is the sum of distinct unit fractions with
denominators in {p − 1 : p prime}. The same conclusion holds for the set
{p − h : p prime} for any h ∈ Z\{0}, provided a necessary congruence condition is
satisfied. We also prove that this is true for any subset of the primes of relative
positive density, provided a necessary congruence condition is satisfied.
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The study of decompositions of rational numbers into sums of distinct unit fractions
(often called ‘Egyptian fractions’) is one of the oldest topics in number theory (see
[2] for further background and many related problems on Egyptian fractions). It
is elementary to prove that such a decomposition is always possible (for example a
simple greedy algorithm suffices). In this paper we explore a natural variant that
imposes restrictions on the denominators in these decompositions.

Question 1. For which A ⊆ N is it true that every positive rational number can
be written as

∑
n∈B 1/n for some finite B ⊂ A?

A trivial necessary condition is that the set contains multiples of every prime;
for example, the set of all odd numbers does not have this property (it cannot
represent 1/2). The condition

∑
n∈A 1/n = ∞ is also clearly necessary. Both of

these conditions together are not sufficient – indeed, it is easy to see that there
is no solution to 1 =

∑
p∈A 1/p where A is any finite set of primes, even though∑

p�N 1/p ∼ log log N .
An early seminal paper on this topic is by Graham [6], who proved a general

result that implies, for example, that such a decomposition always exists when A is
the set of all primes and squares. Motivated by a conjecture of Sun [12, Conjecture
4.1], Eppstein [4] developed an alternative elementary method, which implies such
a decomposition always exists when A is the set of ‘practical numbers’ (those n
such that all m � n can be written as the sum of distinct divisors of n).

A variant of question 1 can be asked even when there are trivial obstructions.
For example, Graham [6] has shown that every rational number x can be written
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2 T. F. Bloom

as the sum of distinct unit fractions with square denominators, subject to the
obviously necessary condition that x ∈ [0, π2/6 − 1) ∪ [1, π2/6), and further showed
that every rational number x with square-free denominator can be written as the
sum of distinct unit fractions with square-free denominators.

A natural candidate of number theoretic interest, for which there exist no obvious
obstructions to any rational decomposition, and for which the methods of [6] and
[4] are not applicable, is the set of shifted primes {p − 1 : p prime}. That such a
restricted Egyptian fraction decomposition always exists was conjectured by Sun
[12, Conjecture 4.1] (see also [13, Conjecture 8.17] and [11] for some numerical
data). In this paper we use the method of [1] to prove this conjecture: any positive
rational x > 0 has a solution (indeed, infinitely many) to

x =
1

p1 − 1
+ · · · + 1

pk − 1

where p1 < · · · < pk are distinct primes. We also prove a similar result with denom-
inators pi − h for any (fixed) h �= 0, although for |h| > 1 there are some trivial
congruence obstructions – for example, since no subset of {p + 2 : p prime} has
lowest common multiple divisible by 8 the fraction 1/8 cannot be represented as
the sum of distinct unit fractions of the shape 1/p + 2.

We deduce this existence result from the following more general result, showing
that any shifted set of primes, all divisible by q, of ‘positive upper relative logarith-
mic density’ contains a decomposition of 1/q. (Recall that

∑
p�N 1/p ∼ log log N ,

and so it is natural to consider
∑

p�N
p∈A

1/p divided by log log N as a measure of the

size of A.)

Theorem 0.1. Let h ∈ Z\{0} and q � 1 be such that (|h| , q) = 1. If A is a set of
primes congruent to h (mod q) such that

lim sup
N→∞

∑
p∈A∩[1,N ]

1
p

log log N
> 0

then there exists a finite S ⊂ A such that

1
q

=
∑
p∈S

1
p − h

.

A simple application of partial summation produces the following version with
(relative) upper logarithmic density replaced by (relative) lower density.

Corollary 0.2. Let h ∈ Z\{0} and q � 1 be such that (|h| , q) = 1. If A is a set
of primes congruent to h (mod q) with positive relative lower density, that is,

lim inf
N→∞

|A ∩ [1, N ]|
N/ log N

> 0,

then there exists a finite S ⊂ A such that

1
q

=
∑
p∈S

1
p − h

.
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Unit fractions with shifted prime denominators 3

We remark that (unlike the statement for unrestricted sets of integers, see
[1, Theorem 2]) the stronger version of Corollary 0.2 with the lim infN→∞ replaced
by lim supN→∞ is false - for example, if A[N ] is the set of primes in [N/2, N ] then∑

p∈A[N ] 1/p 
 1/log N , and hence if A = ∪kA[Nk] where Nk = 2kC

for some large
absolute constant C > 0 then

∑
n∈A 1/n < 1, and hence certainly we cannot find a

finite S ⊂ A such that
∑

n∈S 1/n = 1, and yet

lim sup
N→∞

|A ∩ [1, N ]|
N/ log N

� 1/2.

We now show how Theorem 0.1 implies the headline result: any positive rational
number (subject to the necessary congruence conditions) can be written as the sum
of distinct unit fractions with shifted prime denominators.

Corollary 0.3. Let h ∈ Z and x = r/q ∈ Q>0 be such that (|h| , q) = 1. There are
distinct primes p1, . . . , pk such that

x =
1

p1 − h
+ · · · + 1

pk − h
.

Proof. By Dirichlet’s theorem (see for example [10, Corollary 4.12]) if A is the set
of primes congruent to h (mod q), then

∑
n∈A∩[1,N ]

1
n

�
(

1
φ(q)

+ o(1)
)

log log N.

Trivially the same must hold for A\B, for any finite set B. In particular by r
repeated applications of Theorem 0.1 (first to A, then A\S1, and so on) we can find
r disjoint finite sets S1, . . . , Sr ⊂ A such that

1
q

=
∑
p∈Si

1
p − h

for 1 � i � r. It follows that

x =
r

q
=

∑
p∈⋃

Si

1
p − h

as required. �

We prove Theorem 0.1 with an application of the author’s earlier work [1] (which
in turn is a stronger form of an argument of Croot [3]). Loosely speaking, the main
result of [1] shows that we can solve 1 =

∑
1/ni with ni ∈ A whenever A satisfies

(i)
∑

n∈A 1/n → ∞,

(ii) every n ∈ A is ‘friable’ (or ‘smooth’), in that if a prime power q divides n
then q � n1−δ(n) for some 0 < δ(n) = o(1),

(iii) every n ∈ A has ‘small divisors’, and
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4 T. F. Bloom

(iv) every n ∈ A has ≈ log log n many distinct prime divisors.

To prove Theorem 0.1, therefore, it suffices to show that the set {p − h/q : p ∈ A}
has these properties. Fortunately, there has been a great deal of study of the arith-
metic properties of shifted primes, and so using classical techniques from analytic
number theory we are able to find a large subset of our original set A satisfying all
four properties.

For experts in analytic number theory we add that in establishing the necessary
number theoretic facts about shifted primes we have followed the simplest path,
forgoing many of the more elaborate refinements possible. The main observation of
this paper is that the inputs required to the method of [1] are mild enough to be
provable for the shifted primes using (a crude form of) existing technology.

To minimize technicalities we have proved only a qualitative form of Theorem 0.1.
In principle a (very weak) quantitative version could be proved with the same meth-
ods, along similar lines to [1, Theorem 3], but this would complicate the presentation
significantly.

Finally, the methods and main results of [1] have now been formally verified using
the Lean proof assistant, in joint work with Bhavik Mehta.1 This formalization has
not been extended to the present work, but since the proof of Theorem 0.1 uses
the main result of [1] as its primary ingredient (combined with classical number
theory) it can be viewed as ‘partially formally verified’.

In § 1 we prove Theorem 0.1 assuming certain number theoretic lemmas. In § 2
we prove these lemmas.

1. Proof of Theorem 0.1

Our main tool is the following slight variant of [1, Proposition 1] (which is identical
to the below except that the exponent of c is replaced by 1/ log log N).

Proposition 1.1. Let c ∈ (0, 1/4) and N be sufficiently large (depending only
on c). Suppose A ⊂ [N1−c, N ] and 1 � y � z � (log N)1/500 are such that

(i)
∑

n∈A 1/n � 2/y + (log N)−1/200,

(ii) every n ∈ A is divisible by some d1 and d2 where y � d1 and 4d1 � d2 � z,

(iii) every prime power q dividing some n ∈ A satisfies q � N1−4c, and

(iv) every n ∈ A satisfies

99
100

log log N � ω(n) � 2 log log N.

There is some S ⊆ A such that
∑

n∈S 1/n = 1/d for some d ∈ [y, z].

Proof. The proof is identical to that of [1, Proposition 1], except that in the final
part of the proof we choose M = N1−c. Observe that the inputs to that proof,
namely [1, Proposition 2, Proposition 3, and Lemma 7], are valid for any M ∈

1The formalized proof can be found at https://github.com/b-mehta/unit-fractions.
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(N3/4, N). It remains to check the ‘friable’ hypothesis, for which we require that
if n ∈ A and q is a prime power with q | n then, for some small absolute constant
c′ > 0,

q � c′ min
(

M

z
,

M

(log N)1/100
,

M3

N2−4/ log log N (log N)2+1/50

)
.

For N sufficiently large (depending only on c and c′) the right-hand side is > N1−4c,
and so hypothesis (iii) suffices. �

It is convenient to recast this in a slightly different form.

Proposition 1.2. Let δ, ε > 0 and suppose y is sufficiently large, depending on δ
and ε, and y � w � z. If N is sufficiently large (depending on δ, ε, y, w, z) and
A ⊂ [2, N ] is such that for all n ∈ A

(i) if a prime power q divides n then q � n1−ε,

(ii) |ω(n) − log log n| � log log n/1000,

(iii) n is divisible by some d1 ∈ [y, w),

(iv) n is divisible by some d2 ∈ [4w, z), and

(v)
∑

n∈A 1/n � δ log log N ,

then there exists S ⊆ A such that
∑

n∈S 1/n = 1/d for some d � z.

Proof. For i � 0 let Ni = N (1−ε/4)i

, and let Ai = A ∩ (Ni+1, Ni]. Note that Ni < 2
for i � C log log N , where C is some sufficiently large constant depending only on
ε. Since

∑
n�log log N 1/n 
 log log log N it follows by the pigeonhole principle that

there must exist some i such that with A′ = Ai and N ′ = Ni  log log N we have
∑
n∈A′

1
n
δ,ε 1

and A′ ⊂ ((N ′)1−ε/4, N ′]. It suffices to verify that the assumptions of Proposition
1.1 are satisfied by A′, with c = ε/4. We have already verified the first assumption
(assuming y and N are sufficiently large; note that since N ′  log log N this ensures
that N ′ is also sufficiently large). The second assumption of Proposition 1.1 is
ensured by hypotheses (iii) and (iv).

For the third assumption, note that by hypothesis (i) if n ∈ A′ is divisible by a
prime power q then

q � n1−ε � (N ′)1−ε

as required. Finally the fourth assumption follows from hypothesis (ii) and noting
that for all n ∈ [(N ′)1−ε/4, N ′] we have

log log n = log log N ′ + Oε(1),

and the Oε(1) term is � log log N ′/500, say, provided we take N sufficiently large.
�
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6 T. F. Bloom

To prove Theorem 0.1 we want to apply Proposition 1.2 to B = {p − h/q : p ∈ A}.
To verify the hypotheses we will require the following number-theoretic lemmas. We
were unable to find these exact statements in the literature, so have included proofs
in the following section, but the proofs are all elementary and cover well-trodden
ground.

Lemma 1.3. For any ε > 0 and h ∈ Z\{0} the relative density of primes p such that
n = p − h is divisible by a prime power q > n1−ε is Oh(ε).

Lemma 1.4. For any δ > 0 and h ∈ Z\{0} the relative density of primes p such that
n = p − h has

|ω(n) − log log(n)| � δ log log n

is 0.

Lemma 1.5. For any h ∈ Z\{0}, if 4 � y < z the relative density of primes p such
that n = p − h is not divisible by any primes q ∈ [y, z] is Oh(log y/ log z).

We will now show how these lemmas, combined with Proposition 1.2, imply
Theorem 0.1.

Proof of Theorem 0.1. By assumption there is some δ > 0 and infinitely many N
such that

∑
p∈A∩[1,N ]

1
p

� 4δ log log N.

Let B = {p − h/q : p ∈ A} ⊂ N, so that there must exist infinitely many N such
that

∑
n∈B∩[1,N ]

1
n

� 3δ log log N.

Let ε = cδ where c > 0 is some small absolute constant to be determined later. Let
y be sufficiently large in terms of δ (so that Proposition 1.2 can apply) and w � z
be determined shortly, and let B′ ⊆ B be the set of those n ∈ B such that

(i) if a prime power r divides n then r � n1−ε,

(ii) |ω(n) − log log n| � log log n/1000,

(iii) n is divisible by some prime p1 ∈ [y, w), and

(iv) n is divisible by some prime p2 ∈ [4w, z).
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If B0 is the set of m = p − h which are divisible by some prime power r > m1−2ε

then by Lemma 1.3 we have, for all large X,

|B0 ∩ [1,X]| 
 ε
X

log X
,

and hence, since for all large primes p we have (p − h)1−2ε � (p − h/q)1−ε, the set
B1 of those n ∈ B which fail the first condition satisfies, for all large X,

|B1 ∩ [1,X]| 
 ε
X

log X
,

whence by partial summation, for all large N ,

∑
n∈B1∩[1,N ]

1
n

 ε log log N.

By a similar argument (recalling that q is some fixed constant, and so ω(p − h/q) =
ω(p − h) + O(1) and log log(p − h/q) = log log(p − h) + O(1)), Lemma 1.4 implies
that the sum of reciprocals from those n ∈ B ∩ [1, N ] which fail the second condition
is o(log log N). Similarly, by Lemma 1.5 we can choose w and z (depending only δ)
such that for all large N the sum of reciprocals from those n ∈ B ∩ [1, N ] which fail
either condition (iii) or (iv) is � δ log log N . Therefore, there exist infinitely many
N such that (provided ε is a small enough multiple of δ)

∑
n∈B′∩[1,N ]

1
n

� 2δ log log N.

Fix such an N and let B′′ = B′ ∩ [1, N ]. All of the conditions from Proposition 1.2
are now satisfied for B′′, and hence there exists some S1 ⊆ B′′ and d1 � z such that∑

n∈S1
1/n = 1/d1.

We now apply Proposition 1.2 again to B′′\S1, and continue this process k =
�z�2 many times, producing some disjoint S1, . . . , Sk and associated d1, . . . , dk � z
where

∑
n∈Si

1/n = 1/di for 1 � i � k. Notice that the conditions of Proposition
1.2 remain satisfied for each B′′\ ∪i�j Si for j � k, since

∑
n∈∪i�jSi

1
n

� k 
 z2 < δ log log N,

assuming N is sufficiently large, since z depends on δ only.
By the pigeonhole principle there must exist some d � z and i1, . . . , id such that

dij
= d for 1 � j � d, and hence S = ∪1�j�dSij

satisfies

∑
n∈S

1
n

= d · 1
d

= 1

as required. �
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8 T. F. Bloom

2. Number theoretic ingredients

It remains to prove Lemmas 1.3, 1.4, and 1.5, which we will do in turn.

2.1. Friability of shifted primes

There has been a great deal of work on shifted primes with only small prime
divisors. Often the focus is on an existence result, finding the smallest possible δ > 0
such that there exist infinitely many shifted primes p − 1 with no prime divisors
> pδ. We refer to [9] for recent progress on this and references to earlier work. Our
focus is a little different: we are content with a very high friability threshold, but
we need to show that almost all shifted primes are this friable. For the regime of
friability that we are interested even the original elementary methods of Erdős [5]
suffice

Proof of Lemma 1.3. This is only a slight generalization of [5, Lemma 4]. It suffices
to show that, for all ε > 0 and large N , the number of p � N such that p − h is
divisible by some prime power q with q > N1−ε is


h ε
N

log N
.

We first note that trivially for any q the number of p � N such that p − h is divisible
by q is certainly Oh(N/q), and hence the count of those p − h divisible by some
non-prime prime power q > N1−ε is


h N
∑
k�2

∑
N1−ε�mk�N

1
mk


 N ε 
 ε
N

log N

for all large N . It remains to bound the count of those p � N such that p − h is
divisible by some prime q > N1−ε. Such p − h we can write uniquely (assuming N is
large enough depending on h) as p − h = qa for some a � 2N ε and q > N1−ε prime.
A simple application of Selberg’s sieve (for example [8, Theorem 3.12]) yields that,
for any fixed a � 1 and h �= 0 the number of primes q � x such that aq + h is also
prime is


h
a

φ(a)
x

(log x)2
.

Since q � N/a + Oh(1), the number of p � N such that p − h = qa is


 1
φ(a)

N

(log N)2
.

Summing over all a � 2N ε the total count is


h
N

(log N)2
∑

a�2Nε

1
φ(a)


 ε
N

log N

as required, using the fact that
∑

a�M 1/φ(a) 
 log M . �
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2.2. Number of prime divisors of shifted primes

We need to know that ω(n) ∼ log log n for almost all n ∈ {p − h : p prime}. This
is in fact the typical behaviour of ω(n) for a generic integer n, and we expect the
same behaviour when restricting n to the random-like sequence of shifted primes.
Indeed, just like ω(n) itself, ω(p − h) satisfies an Erdős–Kac theorem, that is,
ω(p − h) behaves like a normal distribution with mean log log(p − h) and stan-
dard deviation

√
log log(p − h). This was established by Halberstam [7], although

a simple variance bound suffices for our application here.

Proof of Lemma 1.4. It suffices to show that, for all δ > 0 and large N , if A is the
set of p � N such that |ω(p − h) − log log(p − h)| > δ log log(p − h), then

|A| 
 N

(log N)(log log N)
.

Let A1 = A ∩ [1, N1/2] and A2 = A\A1. We can trivially bound |A1| 
 N1/2, and
for p ∈ A2 we have log log(p − h) = log log N + O(1), whence for large enough N if
p ∈ A2 we have

|ω(p − h) − log log N | >
δ

2
log log N.

By [7, Theorem 3], however, we have
∑
p�N

|ω(p − h) − log log N |2 
 π(N) log log N,

and hence

|A2| (log log N)2 
δ π(N) log log N,

and the result now follows from Chebyshev’s estimate π(N) 
 N/ log N . �

2.3. Shifted primes with small divisors

For Lemma 1.5 we need to show that there are few shifted primes remaining
after we remove all multiples of primes p ∈ [y, z], which is a classic upper bound
sieve problem. Since the information we require is very weak even the simplest sieve
suffices: the following is proved as [8, Theorem 1.1].

Lemma 2.1 Sieve of Eratosthenes-Legendre. Let A be a finite set of integers and P
a finite set of primes. Let z � 2 and P (z) =

∏
p∈P
p<z

p. For any d � 1 let Ad = {n ∈
A : d | n}. Suppose that f(d) is a multiplicative function and X > 1 is such that for
all d | P (z) we have

|Ad| = f(d)X + Rd.

Then

#{n ∈ A : (n, P (z)) = 1} 
 X
∏
p∈P
p<z

(1 − f(p)) +
∑

d|P (z)

|Rd| .
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10 T. F. Bloom

For the required sieve input we will use the following classic result on the distri-
bution of primes within arithmetic progressions (which is proved, for example, as
[10, Corollary 11.21]). Recall that π(N ; d, h) is the number of primes p � N such
that p ≡ h (mod d).

Theorem 2.2 Siegel–Walfisz. There is a constant c > 0 such that, for all sufficiently
large N , for all h ∈ Z and 1 � d � log N with (|h| , d) = 1 we have

π(N ; d, h) =
li(N)
φ(d)

+ O(N exp(−c
√

log N)).

Proof of Lemma 1.5. Fix 4 � y � z and let P =
∏

y�q�z
q�h

q (where q is restricted to

primes). It suffices to show that, for all large N ,

#{p − h � N : (p − h, P ) = 1} 
h
log y

log z
li(N).

We will apply Lemma 2.1 with A = {p − h : p � N},
P = {p ∈ [y, z] : p � h},

f(d) = 1/φ(d), and X = li(N), noting that by Theorem 2.2 whenever (d, h) = 1
and d � log N

|Ad| = π(N ; d, h) =
li(N)
φ(q)

+ O(x exp(−c
√

log x)).

It follows that

#{p − h � N : (p − h, P ) = 1} 
 li(N)
∏

y�q�z
q�h

(
1 − 1

q − 1

)
+ 2zN exp(−c

√
log N).

The conclusion now follows provided we choose N large enough so that z 
√
log log N , say, and using Mertens’ estimate that

∏
p�w

(1 − 1/p) � 1
log w

.

�
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