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Abstract. Let R = k[x1, . . . , xn], where k is a field. The path ideal (of length
t ≥ 2) of a directed graph G is the monomial ideal, denoted by It(G), whose generators
correspond to the directed paths of length t in G. Let Cn be an n-cycle. We show that
R/It(Cn) is Sr if and only if it is Cohen–Macaulay or � n

n−t−1� ≥ r + 3. In addition, we
prove that R/It(Cn) is Gorenstein if and only if n = t or 2t + 1. Also, we determine all
ordinary and symbolic powers of It(Cn) which are Cohen–Macaulay. Finally, we prove
that It(Cn) has a linear resolution if and only if t ≥ n − 2.

2010 Mathematics Subject Classification. 13D02, 13F55, 05C75, 05C38.

1. Introduction. Let G = (V, E) be a finite simple graph with vertex set V =
{x1, . . . , xn} and edge set E. Associated to G is a monomial ideal

I(G) = (xixj : {xi, xj} ∈ E)

in the polynomial ring R = k[x1, . . . , xn] over a field k, called the edge ideal of G.
The path ideal of a graph was first introduced by Conca and De Negri in [4]. Fix

an integer n ≥ t ≥ 2 and let G be a directed graph. A sequence xi1 , . . . , xit of distinct
vertices is called the path of length t if there are t − 1 distinct directed edges e1, . . . , et−1,

where ej is a directed edge from xij to xij+1 . Then the path ideal of G of length t is the
monomial ideal

It(G) = (xi1 · · · xit : xi1 , . . . , xit is the path of length t in G).

Clearly, I2(G) = I(G), thus the path ideal is also called the generalised edge ideal
of G. It is shown in [4] that the Rees algebra R(It(G)) is normal and Cohen–Macaulay
when G is a directed tree. In [12], it is determined when the path ideal of a cycle is
sequentially Cohen–Macaulay. Also, in [11], all trees whose path ideals are unmixed,
Cohen–Macaulay and Gorenstein are characterised.
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In this paper, we study some properties of the path ideals of cycles. Throughout
the paper, we mean by Cn the n-cycle with directed edges e1, . . . , en, where ei is
from xi to xi+1 for i = 1, . . . , n − 1 and en is from xn to x1. Moreover, we have
It(Cn) = (u1, . . . , un), where ui = ∏t−1

v=0 xi+v for all i = 1, . . . , n. Note that here the
indices are considered in �n. In [7], the authors dealt with the case of t = 2 and
determined when R/I2(Cn) satisfies Serre’s condition Sr and sequentially Sr. Also, it
is well known that n = 5 is the only case in which R/I2(Cn) is Gorenstein. Here we
consider all t > 2 and study Gorenstein, Sr and sequentially Sr properties of R/It(Cn)
in general.

This paper is organised as follows. In the next section, we recall several definitions
and terminology which we need later. In Section 2, we show that for t ≥ 3, R/It(Cn)
is Sr if and only if it is Cohen–Macaulay or � n

n−t−1� ≥ r + 3. Actually, we show that
just in these cases, the minimal graded free resolution of the Alexander dual of the
path ideal of a cycle is linear in the first r steps. In Section 3, we prove that for t ≥ 3,
R/It(Cn) is Gorenstein if and only if n = t or 2t + 1. To prove this, we investigate when
the last non-vanishing Betti number of R/It(Cn) is 1. Moreover, we identify the powers
of the path ideal of a cycle which are Cohen–Macaulay. In Section 4, we prove that
It(Cn) has a linear resolution if and only if t ≥ n − 2.

2. Preliminaries. Let � be a simplicial complex, and let F1, . . . , Fq be all the facets
of �. We sometimes write � = 〈F1, . . . , Fq〉. Now we define the simplicial complex
�t(G) to be

�t(G) = 〈{vi1 , . . . , vit} : vi1 , . . . , vit is a path of length t in G〉,
where G is a directed graph. A vertex cover of � is a subset A of V , with the property
that for every facet Fi there is a vertex xj ∈ A such that xj ∈ Fi. A minimal vertex cover
of � is a subset A of V such that A is a vertex cover and no proper subset of A is a
vertex cover of �.

Now supppose that � is a simplicial complex of dimension d − 1. Let fi = fi(�)
denote the number of faces of dimension i. Sequence f (�) = (f0, f1, . . . , fd−1) is called
the f -vector of �. Letting f−1 = 1, the h-vector h(�) = (h0, h1, . . . , hd) of � is defined
by the formula

d∑
i=0

fi−1(t − 1)d−i =
d∑

i=0

hitd−i.

Moreover, we have the following well-known theorem.

THEOREM 2.1 [14, Theorem 5.4.6]. Let � be a simplicial complex. If h(�) =
(h0, h1, . . . , hd) and f (�) = (f0, f1, . . . , fd−1) are f -vector and h-vector of �, respectively,
then

hj =
j∑

i=0

(−1)ifj−i−1

(
d − j + i

i

)
,

where d = dim(k[�]).

We say that a pure (d − 1)-dimensional simplicial complex � is strongly connected
if for any two facets F and G, there exists a sequence of facets F = F0, F1, . . . , Fm = G
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such that |Fi−1 ∩ Fi| = d − 1 for all i = 1, . . . , m. The Alexander dual of � is the
simplicial complex

�∨ = {Fc : F /∈ �}.

Let I be a squarefree monomial ideal. The squarefree Alexander dual of I =
(x1,1 · · · x1,s1 , . . . , xt,1 · · · xt,st ) is the ideal

I∨ = (x1,1, . . . , x1,s1 ) ∩ · · · ∩ (xt,1, . . . , xt,st ).

Suppose I is a homogeneous ideal of R whose all generators have degree d. Then
I has a d-linear resolution (or simply linear resolution) if for all i ≥ 0, βi,j(I) = 0 for all
j �= i + d.

If I is a graded ideal of R, then we write I〈j〉 for the ideal generated by all
homogeneous polynomials of degree j belonging to I . We say that a graded ideal
I ⊂ R is component-wise linear if I〈j〉 has a linear resolution for all j.

3. Serre’s condition Sr and the path ideals of Cn . In this section, we show that
R/It(Cn) is Sr if and only if it is Cohen–Macaulay or � n

n−t−1� ≥ r + 3. Recall that
a finitely generated graded module M over the Noetherian-graded k-algebra S is
said to satisfy the Serre’s condition Sr if depth MP ≥min(r, dim MP) for all P ∈ Spec(S).

The following is the main theorem of this section.

THEOREM 3.1. Let 3 ≤ t ≤ n and r ≥ 2. Then R/It(Cn) is Sr if and only if it is
Cohen–Macaulay or � n

n−t−1� ≥ r + 3.

To prove the theorem, we need some facts which are mentioned in the sequel. In
[15, Corollary 3.7], Yanagawa (with Terai) showed that a simplicial complex is Sr if
and only if the minimal free resolution of its Alexander dual is linear in the first r steps,
where r ≥ 2. We will use this fact to determine when R/It(Cn) is Sr. Also, we need some
facts about a special kind of simplicial complexes, which we will use in the proof of the
main theorem of this section.

A generalised tree is defined inductively as follows:
(i) A simplex is a generalised tree.

(ii) If � is a generalised tree with the vertex set V , so is � ∪ cox0 F for any F ∈ �

and for any new vertex x0, where cox0 F is the simplex on the vertex set F ∪ {x0}.
LEMMA 3.2 [1, Lemma 2]. For any simplicial complex � which is not a simplex, the

Stanley–Reisner ring K[�] of � has a 2-linear resolution if and only if � is a generalised
tree.

A pure d-dimensional strongly connected generalised tree is called a d-tree. This
notion can also be characterised inductively as follows:
(i) A d-simplex is a d-tree.
(ii) If � is a d-tree, so is � ∪ cox0 F for any F ∈ � with |F | = d and any new vertex x0.

Now we prove Theorem 3.1.

Proof of Theorem 3.1. Let q := � n
n−t−1� − 1.
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‘Only if ’ Suppose that R/It(Cn) is Sr so that It(Cn) is unmixed. Suppose R/It(Cn)
is not Cohen–Macaulay. So t + 2 ≤ n ≤ � 3t

2 � + 1 by [12, Theorem 3.1 and Corollary
3.6]. Also, let � n

n−t−1� < r + 3. Thus, 2 ≤ q − 1 ≤ r, and hence R/It(Cn) is Sq−1. Note
that the minimal generators of (It(Cn))∨ have degree 2 (see [12, proof of Theorem 3.1]).
For simplicity, we denote (It(Cn))∨ by It(Cn)∨. So the minimal graded free resolution
of It(Cn)∨ is 2-linear in the first q − 1 steps. Thus, βq−2,j(It(Cn)∨) = 0 for all j �= q. Let
α := n − t − 1 and W := {α, 2α, . . . , qα, n}. Let � be the Stanley–Reisner simplicial
complex of It(Cn)∨ so that I� = It(Cn)∨. Thus, F ⊆ V = {x1, . . . , xn} is a face of � if
and only if it does not contain any vertex covers of �t(Cn). So �W is a (q + 1)-cycle over
W , since just any two consecutive vertices in W do not yield a vertex cover of �t(Cn).
Hence, dimkH̃1(�W ; k) = 1. So, by Hochster’s formula (see [9, Theorem 8.1.1]), we
have βq−2,q+1(It(Cn)∨) �= 0, which is a contradiction. Thus, � n

n−t−1� ≥ r + 3 or R/It(Cn)
is Cohen–Macaulay.

‘If ’ If R/It(Cn) is Cohen–Macaulay, then it is also Sr. By [12, Corollary 3.6], one
may assume that n ≥ t + 2. Now, suppose that � n

n−t−1� ≥ r + 3. Then q − 2 ≥ r. We
show that R/It(Cn) is Sq−2, and hence it is also Sr. Note that by an easy computation,
one can see that t ≥ (n − 1)( r+1

r+2 ). So n ≤ � 3t
2 � + 1, since r ≥ 2. Therefore, It(Cn) is

unmixed by [12, Theorem 3.1], and It(Cn)∨ is generated by elements of degree 2. Also,
note that the minimal graded free resolution of R/It(Cn) is of the form

0 → R(−n) → R(−t − 1)n → R(−t)n → R → R/It(Cn) → 0,

by [2, Proposition 3.3], and hence pd(R/It(Cn)) =reg(It(Cn)∨) = 3. On the other
hand, we have q − 3 ≤ pd(It(Cn)∨). Thus, it suffices to show that βq−3,j(It(Cn)∨) = 0
for all j �= q − 1. To prove this, it is enough to show that βq−3,q(It(Cn)∨) = 0, since
reg(It(Cn)∨) = 3. Let � be the Stanley–Reisner simplicial complex of It(Cn)∨. Then
dim(�) = n − t − 1. Let U ⊆ V = {x1, . . . , xn} with |U| = q. By Hochster’s formula,
it suffices to show that dimK H̃1(�U ; k) = 0. Suppose that U = {xi1 , . . . , xiq} such
that i1 < · · · < iq. Let yj be the number of vertices between xij and xij+1 on Cn (in the
direction of Cn) for all j = 1, . . . , q − 1, and yq be the number of vertices between xiq
and xi1 . Then there exists an integer l such that 1 ≤ l ≤ q and yl ≥ n − t − 1. So there
exists a subset X of V which consists of exactly t + 1 consecutive vertices and U ⊆ X .
Thus, it is easy to see that �X is a (n − t − 1)-tree. Therefore, I�X has a 2-linear
resolution by Lemma 3.2. So by Hochster’s formula, we have dimkH̃1(�U ; k) = 0,
since �U ⊆ �X . The desired result now follows. �

A graded R-module M is called sequentially Sr (over k) if there exists a
finite filtration of graded R-modules 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M such that each
Mi/Mi−1 is Sr, and the Krull dimensions of the quotients are increasing, i.e.

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

THEOREM 3.3 [7, Corollary 2.7]. Let I be a squarefree monomial ideal in R =
k[x1, . . . , xn]. Then R/I is Sr if and only if R/I is sequentially Sr and I is unmixed.

THEOREM 3.4. Let 3 ≤ t ≤ n. Then we have:
(a) For r ≥ 3, R/It(Cn) is Sr if and only if it is sequentially Sr.
(b) Let n = qt + α, where α = 0 or 2 ≤ α ≤ t − 1. Then R/It(Cn) is S2 if and only if

it is sequentially S2.
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Proof. (a) By Theorem 3.3, it suffices to show that if R/It(Cn) is sequentially Sr,
then It(Cn) is unmixed. It was shown in [12, proof of Theorem 4.1] that when It(Cn)
is not unmixed, It(Cn)∨ is not component-wise linear in the first three steps. So by [7,
Theorem 3.2], R/It(Cn) is not sequentially Sr.

(b) By a similar argument as in part (a), we get the result. �
REMARK 3.5. In Theorem 3.4 part (b), α could not be 1. For example, let n = 10

and t = 3. Then one can see by CoCoA that R/I3(C10) is sequentially S2 (over �), but
not S2, by Theorem 3.1.

4. Gorenstein path ideals of Cn and Cohen–Macaulayness of powers of It(Cn) . In
this section, we determine when R/It(Cn) is Gorenstein. Also, we deal with all ordinary
and symbolic powers of It(Cn) which are Cohen–Macaulay.

The next theorem shows the relation between Cohen–Macaulay and Gorenstein
properties of R/I , where I is a homogeneous ideal in R.

THEOREM 4.1 [14, Corollary 4.3.5]. If R is a polynomial ring over field k, then a
homogeneous ideal I of R is Gorenstein if and only if R/I is Cohen–Macaulay and the
last Betti number in the minimal graded resolution of R/I is equal to 1.

Also, we need the following theorem, which gives a formula for computing the
Betti numbers of the Stanley–Reisner rings with linear resolutions.

THEOREM 4.2 [8, Corollary 3.2]. Let � be a (d − 1)-dimensional simplicial complex.
Suppose that the Stanley–Reisner ring R/I� has an m-linear free resolution. If h(�) =
(h0, . . . , hd) is the h-vector of �, then

(−1)i+1βi(I�) =
m+i∑
l=0

(−1)lhm+i−l

(
n − d

l

)

for each 0 ≤ i ≤ p, where p = pd(I�).

Now we prove the main theorem of this section.

THEOREM 4.3. Let t ≥ 3. Then R/It(Cn) is Gorenstein if and only if n = t or 2t + 1.

Proof. By [12, Corollary 3.6], we show that if n = t or 2t + 1, then R/It(Cn) is
Gorenstein, but R/It(Ct+1) is not, since we know that if R/It(Cn) is Gorenstein, then it
is Cohen–Macaulay. By Theorem 4.1, it is enough to show that the last non-vanishing
Betti number of R/It(Cn) is 1 for n = t or 2t + 1, but it is greater than 1 for n = t + 1.
Obviously, if n = t, then 0 → R(−t) → R → R/It(Cn) → 0 is the minimal graded free
resolution of R/It(Cn). If n = 2t + 1, then by [2, Proposition 3.3], the minimal graded
free resolution of R/It(Cn) is of the form

0 → R(−n) → R(−t − 1)n → R(−t)n → R → R/It(Cn) → 0.

Hence, when n = t or 2t + 1, the last non-vanishing Betti numbers are equal to 1.
Now, suppose that n = t + 1. We have dim(R/In−1(Cn)) = n − 2. Since R/In−1(Cn) is
Cohen–Macaulay, we have pd(R/In−1(Cn)) = n − dim(R/In−1(Cn)) by the Auslander–
Buchsbaum formula. So pd(R/In−1(Cn)) = 2, and hence pd(In−1(Cn)) = 1. Now we
should compute β1(In−1(Cn)). Note that by [5, Theorem 3], R/In−1(Cn) has an (n − 1)-
linear resolution, since In−1(Cn) = I(Kn)∨ and R/I(Kn) is Cohen–Macaulay. Let �
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be the Stanley–Reisner simplicial complex of In−1(Cn). So we have dim(�) = n − 3.
Therefore, by Theorem 4.2, we have

β1(In−1(Cn)) =
n∑

l=0

(−1)l+2hn−l(�)
(

2
l

)

=
2∑

l=0

(−1)l+2hn−l(�)
(

2
l

)

= hn−2(�),

since hn(�) = hn−1(�) = 0. Now, by Theorem 2.1, we compute hn−2(�):

hn−2(�) =
n−2∑
i=0

(−1)ifn−i−3(�)
(

i
i

)

=
n−2∑
i=0

(−1)ifn−i−3(�)

=
n−2∑
i=0

(−1)i
(

n
n − i − 2

)

= n − 1,

since fj(�) = ( n
j+1

)
for all j = 0, . . . , n − 3. Thus, β1(In−1(Cn)) = n − 1 > 1, as

desired. �
We end this section by a result on the symbolic powers of It(Cn). Let us first recall

that a matroid is a collection of subsets of a finite set, called independent sets, with the
following properties:

(i) The empty set is independent.
(ii) Every subset of an independent set is independent.

(iii) If F and G are two independent sets and F has more elements than G, then there
exists an element in F which is not in G that when added to G still gives an independent
set.

Clearly, we may consider a matroid as a simplicial complex.

By I (m)
� , we denote the mth symbolic power of the Stanley–Reisner ideal of a

simplicial complex �. Note that it is well known that Cohen–Macaulayness of I2
� is

equivalent to Cohen–Macaulayness of I (2)
� and I2

� = I (2)
� . Now we use this fact together

with Theorem 4.3 and [12, Corollary 3.6] to deduce the following.

THEOREM 4.4. Let t ≥ 3 and I := It(Cn). Then we have:
(a) If t = n, then Im = I (m) is Cohen–Macaulay for all m ≥ 1.
(b) If t = n−1

2 , then Im (resp. I (m)) is Cohen–Macaulay if and only if m ≤ 2.
(c) If t = n − 1, then I (m) is Cohen–Macaulay for all m ≥ 1, but Im is Cohen–

Macaulay if and only if m = 1.
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(d) If t is none of the above cases, then none of the powers of I is Cohen–Macaulay.

Proof. (a) and (d) are clear.
(b) Suppose that t = n−1

2 . Let m ≥ 3 and � be the Stanley–Reisner simplicial
complex of I . Since � is not a complete intersection, Im is not Cohen–Macaulay by
[13, Theorem 1.2]. Now set F = {x1, x2, . . . , xt−2, xt, xt+1, xt+2, . . . , x2t−2} and G =
{x1, x2, . . . , xt−1, xt+1, xt+2, . . . , x2t−1}. Note that F and G are faces of �, since they do
not contain any t consecutive vertices of Cn. Also, we have 2t − 3 = |F | < |G| = 2t − 2
and if any of the elements of G \ F is added to F , then the new set does not belong to �.
So � is not a matroid. Thus, I (m) is not Cohen–Macaulay by [13, Theorem 1.1]. Now,
let m = 2. By [12, Lemma 3.2], we have dim(R/I) = 2t − 2 and hence I is a Gorenstein
Stanley–Reisner ideal of co-dimension 3. Thus, I2 = I (2) is Cohen–Macaulay by [10,
Corollary 5.3].

(c) Let t = n − 1 and � be the Stanley–Reisner simplicial complex of I . It is easy
to see that � is a matroid. Therefore, I (m) is Cohen–Macaulay for all m ≥ 1, by [13,
Theorem 1.1]. For m ≥ 3, Im is not Cohen–Macaulay because I is not a complete
intersection. Since � is not Gorenstein and I (2) is Cohen–Macaulay, I2 is not Cohen–
Macaulay by [10, Lemma 2.2].

�

5. Path ideals and linear resolutions. In this section, we identify when the path
ideals of cycles have a linear resolution. First, let us introduce the notion of properly
connected simplicial complexes which was defined for hypergraphs by Hà and Van
Tuyl [6].

DEFINITION 5.1. Let � be a pure simplicial complex where every facet has
dimension d. A Chain of length m in � is a sequence of facets (F0, . . . , Fm) such that
(1) F0, . . . , Fm are all distinct facets of �, and
(2) Fi ∩ Fi+1 �= ∅, for all i = 0, . . . , m − 1.

Two facets F and F ′ are connected if there exists a chain (F0, . . . , Fm), where F = F0

and F ′ = Fm. The chain connecting F to F ′ is a proper chain if |Fi ∩ Fi+1| = |Fi+1| − 1
for all i = 0, . . . , n − 1. The (proper) chain is an (proper) irredundant chain of length n
if no proper subsequence is a (proper) chain from F to F ′. The distance between two
facets F and F ′ in � is then given by

dist�(F, F ′) = min{l : (F = F0, . . . , Fl = F ′) is a proper irredundant chain};
if no such chain exists, then set dist�(F, F ′) = ∞. We say that � is properly connected
if

dist�(F, F ′) = (d + 1) − |F ∩ F ′|
for any two facets F, F ′ ∈ � with the property that F ∩ F ′ �= ∅. Otherwise, we say that
� is not properly connected.
The diameter of � is

diam(�) = max{dist�(F, F ′) : F, F ′ ∈ �},
where the diameter is infinite if there exist two facets not connected by any proper
chain.

https://doi.org/10.1017/S0017089514000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000111


14 DARIUSH KIANI, SARA SAEEDI MADANI AND NAOKI TERAI

LEMMA 5.2. Let 2 ≤ t ≤ n/2. Then �t(Cn) is properly connected and
diam(�t(Cn)) = �n/2�.

Proof. It is straightforward by definitions. �
LEMMA 5.3. It(Cn)∨ = I�n−t(Cn).

Proof. It is easy to see that �t(Cn) = �n−t(Cn). So (I�n−t(Cn))∨ = I(�n−t(Cn))∨ =
I(�n−t(Cn)) = I(�t(Cn)) = It(Cn), where the second equality holds by [9, Lemma
1.5.3]. �

THEOREM 5.4 [14, Theorem 5.4.8]. Let � be a simplicial complex of dimension d
and k an infinite field. If k[�] is Cohen–Macaulay, then hi(�) ≥ 0 for all i = 0, . . . , d + 1,
where hi(�) is the ith component of the h-vector of �.

Now we are ready to prove the main theorem of this section.

THEOREM 5.5. Let t ≥ 2. Then It(Cn) has a linear resolution if and only if t ≥ n − 2.

Proof. ‘If ’ If t = n, then the result is clear. We know that In−1(Cn) = I(Kn)∨ and
In−2(Cn) = I(Cc

n)∨. On the other hand, R/I(Kn) and R/I(Cc
n) are Cohen–Macaulay.

Thus, by [5, Theorem 3], It(Cn) has a linear resolution if t ≥ n − 2.

‘Only If ’ If 2 ≤ t ≤ n − 3, then we show that It(Cn) does not have a linear
resolution. First, suppose that 2 ≤ t ≤ n/2. In this case if It(Cn) has a linear resolution
then obviously it has linear first syzygies. On the other hand, by Lemma 5.2, �t(Cn)
is properly connected. So by [6, Theorem 7.4] we get �n/2� ≤ t, hence t = �n/2�.
Now, suppose that �n/2� ≤ t ≤ n − 3, and let t′ := n − t. Then 3 ≤ t′ ≤ n − �n/2�.
In this case we show that R/I�t′ (Cn) is not Cohen–Macaulay, then by Lemma 5.3,
R/It(Cn)∨ is not Cohen–Macaulay and It(Cn) does not have a linear resolution. Note
that fi(�t′(Cn)) = n

(t′−1
i

)
for all i = 0, . . . , t′ − 1. So,

hj(�t′(Cn)) =
j∑

i=0

(−1)ifj−i−1

(
t′ − j + i

i

)

= n
j−1∑
i=0

(−1)i
(

t′ − 1
j − i − 1

)(
t′ − j + i

i

)
+ (−1)j

(
t′

j

)
,

by Theorem 2.1. Now we compute h3(�t′(Cn)):

h3(�t′(Cn)) = n
2∑

i=0

(−1)i
(

t′ − 1
2 − i

)(
t′ − 3 + i

i

)
−

(
t′

3

)
= −

(
t′

3

)
< 0,

since t′ ≥ 3. Therefore, if k is an infinite field, we obtain that R/I�t′ (Cn) is not Cohen–
Macaulay by Theorem 5.4. When k is finite, we consider k[�] ⊗k k(x) ∼= k(x)[�] in
which x is an indeterminate. Then by [3, Theorem 2.1.10] we get the result.

�
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