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Abstract We construct a spectral sequence converging to the E2-term of the Bousfield–Kan spectral
sequence (BKSS) for a wide variety of homology theories. Using this, the E2-term of the BKSS based
on K(1)-theory for the odd spheres is computed and the unstable K(1)-completion is computed.
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1. Introduction

Given a homology theory E, we can construct the Bousfield–Kan spectral sequence
(BKSS). This spectral sequence computes, for a given space X, the homotopy of an
appropriate completion from E∗(X). Even though we can set this spectral sequence with
great generality, the E2-term turns out to be an Ext group in some non-abelian category.
In practical terms, this description limits our ability to make computations. By requiring
that E be a Landweber exact homology theory, and with some mild assumptions on the
space X, we can relate the E2-term to an Ext group in an abelian category, which in
turn can be calculated as the homology of some sub-complex of the stable cobar com-
plex. Although many theories do not satisfy this property, we were able to construct a
spectral sequence converging to the E2-term of the BKSS. The input to this spectral
sequence can again be calculated as the homology of some unstable cobar complex. In
the case of K(1) and for any space X such that K(1)∗(X) is cofree as a coalgebra, the
main result implies that the unstable coalgebra description of E2 is isomorphic to an
unstable K(1)∗(K(1))-comodule description. As observed by Kuhn [12], this turns out
to be isomorphic to the stable E2-term. With this and the proof of convergence of the
stable Adams spectral sequence, we prove convergence of the unstable analogue to the
unstable K(1)-completion of the odd spheres. Finally, using the tower constructed by
Farjoun [10] and our results, we provide an example of a finite H-space such that either
the inverse limit of this tower is not the K(1)-localization or the map between this tower
and the tower of the BKSS does not have a left inverse.
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684 J. La Luz

Hypothesis 1.1. We assume that all primes are odd and all spectra are multiplicative
Ω-spectra.

Notation 1.2. If A is a ring, then char(A) will denote the characteristic of A and
A(n1, n2, . . . , nk) will denote a free A-module generated by elements in dimensions
n1, n2, . . . , nk. The p-adic integers will be denoted by Z∧

p . If E is an Ω-spectrum, then
E
¯ n denotes the nth space of the Ω-spectrum. The category of topological spaces, the
associated homotopy category and the category of E∗-modules will be denoted by T ,
HO and A, respectively.

2. The construction of the Bousfield–Kan spectral sequence

Let X be a space. We define a functor from E : HO → HO as follows. Define a space
such that

E(X) = Ω∞(E ∧ Σ∞X).

If X = Sn, then E(Sn) = E
¯ n, the nth space in the Ω-spectrum of E. It is easy to see

that if E is a free E∗-module with generators xi, then E(X) =
∏

E
¯ |xi|. For any space X

and for n � 0, we also have

πn(E(X)) ∼= En(X),

where the right-hand side is a reduced E homology.
The composition η : X → Ω∞Σ∞X → E(X) induces the E∗ Hurewicz map. Taking

the homotopy fibre of this map, we get the fibre sequence D(X) → X
η−→ E(X). D is a

functor on HO. We inductively define Dn+1(X) = D(Dn(X)). There is a tower

...

��
D2(X) ��

��

D2(E(X))

D(X) ��

��

D(E(X))

X �� E(X)

which fits into an exact couple that induces a spectral sequence with

Es,t
1 = πt−s(Ds(E(X))) for t − s � 0

and zero otherwise. We call this spectral sequence the Bousfield–Kan spectral sequence.
Next, we give a description of the E2-term.

https://doi.org/10.1017/S0013091505000544 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000544


The Bousfield–Kan spectral sequence for Morava K-theory 685

3. A cosimplicial description of the E2-term

The following definitions will allow us to describe the E2-term as the cohomotopy of
some cosimplicial group.

Definition 3.1. A cosimplicial object X over a category C is a collection of objects
Xi ∈ C, n � 0, such that for each 0 � n there are maps di : Xn → Xn+1 and si : Xn+1 →
Xn with 0 � i � n satisfying the following identities:

djdi = didj−1, i < j,

sjdi =

⎧⎪⎨
⎪⎩

disj−1, i < j,

id, i = j, j + 1,

di−1sj , i > j + 1,

sjsi = si−1sj , i > j.

In our case the category C will be the category A, T or HO.
Given a cosimplicial object X over C and a functor F : C → A, we get a cosimplicial

object over the category of abelian groups. We get a cochain complex (F (X)) with
δn =

∑n
i=0(−1)idi. In the case that C = HO and F = π∗, we call the homology of this

cosimplicial group the cohomotopy of π∗(X) and denote it by π∗π∗X.
The functor E : HO → HO of § 2 induces a cosimplical object over HO. We use the

following definition.

Definition 3.2. A triple (G, µ, η) over the category C is composed of a functor G :
C → C and natural transformations µ : G2 → G and η : 1 → G such that we have the
following commutative diagrams:

G
Gη �� G2

µ

��

G
ηG�� G3

µG

��

Gµ �� G2

µ

��
G

��������

��������

��������

��������
G2

µ �� G

Using the triple (G, µ, η) we can construct a functor G from C to the category of
cosimplicial objects over C as follows: let X ∈ C and define G(X)n = Gn+1(X) and the
maps

di = GiηGn−i : Gn(X) → Gn+1(X) and si = GiµGn−i : Gn+2(X) → Gn+1(X)

with 0 � i � n.
The natural transformation µ : E2 → E, induced by the multiplicative structure

of E, together with the Heurewitz map η, makes the functor (E, µ, η) a triple in the
category HO. This in turn gives us a functor E from HO into cosimplicial objects
over HO.

Theorem 3.3. Let X ∈ T . Then

Es,t
2 (X) ∼= πsπtE(X).

Proof. The proof of this theorem can be found in [9]. �
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4. The category M(G) and an alternative description of the E2-term

There is an alternative description of the E2-term using the dual concept of triple. The
advantage of this description is that it will enable us to describe the E2-term as the
target of a spectral sequence.

Definition 4.1. A cotriple (G, δ, ε) in a category C is a composed of functor G : C → C
and natural transformations δ : G → G2 and ε : G → 1 such that the following diagrams
commute:

G G2Gε�� εG �� G G

δ

��

δ �� G2

Gδ

��
G

��������

��������

��������

��������
δ

��

G2
δG �� G3

Given a cotriple G, a G-coalgebra is an object C ∈ C and a map ψ : C → G(C) such
that the following diagrams commute:

C
ψ ��

��
��

��
��

�

��
��

��
��

� G(C)

ε

��

C
ψ ��

ψ

��

G(C)

Gψ

��
C G(C) δ �� G2(C)

A map f : C → D is a G-coalgebra map if the following diagram commutes:

C
ψ ��

f

��

G(C)

G(f)
��

D
ψ �� G(D)

We denote the category of G-coalgebras over C as C(G). If C ∈ C, then G(C) is a
G-coalgebra with ψ = δ. Given a G-coalgebra (Z, ψ), we can define a triple by setting

µ = G(ε) : G2(Z) → G(Z),

η = ψ : Z → G(Z).

Let M be the category of free E∗-modules. We define a cotriple (G, δ, ε) over M. But
first we impose the following restrictions on E.

Hypothesis 4.2. We make the following assumptions.

(i) E is a multiplicative, associative, homotopy commutative, CW spectrum with unit.

(ii) E∗(E¯ k) is a free E∗-module for all k.

Let M ∈ M and let F be the spectrum such that π∗(F ) = M . Define G(M) =
E∗(Ω∞F ). By [3] we know that this defines a triple over M. With this triple we have

https://doi.org/10.1017/S0013091505000544 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000544


The Bousfield–Kan spectral sequence for Morava K-theory 687

the category of G-coalgebras over M, or M(G). For M ∈ M(G) there is a resolution

G(M)
d0

−→
d1

−→
G2(M)

d0

−→
d1

−→
d2

−→

· · ·

with codegeneracies si that come from the product structure of the spectrum E. We call
this the G-resolution of M . When we talk about the G-resolution of X we mean the
G-resolution of E∗(X). Let G(X) = G(E∗(X)).

Applying HomM(G)(E∗(St),−) to the G-resolution of X and taking the homology
of this complex gives Exts

M(G)(E∗(St), E∗(X)). We write Exts,t
M(G)(E∗(X)) in place of

Exts
M(G)(E∗(St), E∗(X)).

Theorem 4.3. Suppose that E satisfies Hypothesis 4.2 and let X be a simply con-
nected space such that E∗(X) ∈ M. Then

Es,t
2 = Exts,t

M(G)(E∗(X)), t > s � 0.

This is proven in [2]. The authors impose an additional condition on the spectrum E

(the primitives of E∗(E¯ k) inject into E∗(E)). But this condition, by [11], is not really
necessary for the previous theorem.

In practice, the previous characterizations of the E2-term are of little use. The problem
is that it does not provide an explicit way to produce elements. If we assume that E is
a Landweber exact homology theory, like E(n), K and BP , then we can express the
E2-term as the homology of some sub-complex of the stable cobar complex (see [2]).

We would like to study the BKSS based on Morava K-theories. Unfortunately, these
are not Landweber exact. In these cases a more complicated object is needed to extract
information about the E2-term.

5. The f-primitive functors

Let CO be the subcategory of M consisting of (graded) coalgebras without unit. For
n � 0, let RnP be the derived functor of the primitives functor [5]. If f : C → D is a
coalgebra map, we write [f∗]i for RiP (f).

Definition 5.1. Suppose f : C → C is a coalgebra map. Then

RiPf (C) = coker([f∗]i).

We call these the f -primitive functors.

Lemma 5.2. Let {Cα} be a collection of coalgebras and fα : Cα → Cα be coalgebra
maps. Then

(i) the map RiP (Cα) → RiPfα
(Cα) is onto for all i;

(ii) RiPf (⊗Cα) = ⊕RiPfα(Cα), where f = ⊗fα.
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Proof. Part (i) follows from the definitions. Since RiP takes tensor products to direct
sums and coker(⊕fα) ∼= ⊕ coker(fα), part (ii) follows. �

Definition 5.3. We say that C is f -nice if RiPf (C) = 0 for i > 1.

If f is the zero map, then f -nice is just nice in the sense of [5]. It follows from the
definitions that if C is nice, then it is f -nice for all f .

Suppose char(A) = p and that C is a Hopf algebra over A. Then the pth-power map
(the Frobenius) π is a coalgebra map. Let C(xn) be the coalgebra with a single generator
of degree n and T (x2n) be the coalgebra with generators x2ni for i � 1 and

∆(x2nm) =
∑

i+j=m

(
i + j

i

)
x2ni ⊗ x2nj .

This latter coalgebra is dual to a divided power algebra. We can calculate the π-primitive
functors of the coalgebras C(xn) and T (x2n) of [4]. Let D be a cofree cocommutative
coalgebra.

Lemma 5.4. Suppose A is a ring of characteristic p and C is a Hopf algebra over A.
Then:

(i) RiPπ(C(x2n)) = RiP (C(x2n)) for all i;

(ii) R0Pπ(T (x2n)) = A(x2n), R1Pπ(T (x2n)) = A(x2np) and RiPπ(T (x2n)) = 0 for
i > 0;

(iii) RiPπ(D) = RiP (D) for i > 0.

Proof. Since π(x) = 0 in C(xn), the induced map is zero. This gives the first case.
For the second case, let B(x2n) be the coalgebra of the bipolynomial algebra with

generators {x2nps | s � 0} with xps

2n primitive. The only non-trivial derived functor of
this coalgebra is the zero-derived functor. This is just the module of primitives of B(x2n)
which gives R0P (B(x2n)) = A(2n, 2np, . . . ). There is an injective extension sequence
T (x2n) → B(y2n) → B(z2np). We have the following commutative diagram:

A(2np, 2np2, . . . ) R0P (B(z2np))
∼=−−−−→ R1P (T (x2n))

π

⏐⏐� π

⏐⏐� π

⏐⏐�
A(2np, 2np2, . . . ) R0P (B(z2np))

∼=−−−−→ R1P (T (x2n))

where the horizontal isomorphisms come from the proof of [4, Proposition 3.3(iv), § 3].
The vertical map on the left takes the generator of dimension 2nps to the generator of
dimension 2nps+1. The result follows by taking cokernels.

For (iii), recall that if D is cofree, then RiP (D) = 0 for i > 0. �

Definition 5.5. Suppose that E∗(E¯ n) is a coalgebra for all n. We say E is f -nice if
E∗(E¯ n) is f -nice for all n.
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Suppose that char(E∗) = p and there is a Kunneth isomorphism

E∗

( ∏
E
¯ nα

)
∼= ⊗E∗(E¯ nα

).

Then E∗(E¯ n) is a Hopf algebra for all n and the Frobenius is a well-defined map on
E∗(E¯ n).

We would like to apply the Pf -derived functors to the G-resolution of X. But, d0 may
not commute with f . Fortunately, since for any X we have G(X) ∼=

⊗
n∈Σ E∗(E¯ n), it is

sufficient to require that the following hypothesis is satisfied.

Hypothesis 5.6. d0(f(x)) ∈ Im(f), where d0 : Gn(X) → Gn+1(X) for all n � 0.

From now on we assume that the homology theory E satisfies Hypothesis 5.6. In this
case, f induces a cosimplicial map from the G-resolution of X to itself. With this we can
apply all previous results on the Pf derived functors.

Definition 5.7. Let Rs
qPf (X) be the homology of the following cochain complex:

RqPf (G(X))
→
→ RqPf (G2(X))

→
→
→

· · ·

(the s homology of the q derived functors of the f -primitives applied to the G-resolution
of X).

We are interested in the case where f is the Frobenius. In this case, Hypothesis 5.6
can be rephrased as follows: d0 takes pth powers to pth powers. In this case there is a
condition on the spaces in the Ω-spectrum that will guarantee that Hypothesis 5.6 is
satisfied.

Lemma 5.8. Let σ : E∗(E¯ m) → E∗(E) be the stabilization map. Suppose ker(σ) is
the set of decomposable elements and xp is primitive if and only if x is primitive. Then
Hypothesis 5.6 is satisfied.

Proof. Let In = QGn(M) for n � 0. Recall that d0 = η∗. Since the stabilization
map σ commutes with differentials, we have

σ(d0(xy)) = d0(σ(xy)) = 0,

and by hypothesis we have d0(xy) ∈ I2
n+1. Now, if x is primitive, π(x) is primitive. Since

d0 is a coalgebra map, d0(xp) is decomposable and primitive. But the only decomposable
primitives are of the form yp for some primitive y. �

6. The (generalized) composite functor spectral sequence

We can define a map σπ : PπE∗(E¯ n) → E∗(E) as follows: let x ∈ PπE∗(E¯ n) and suppose
that x′ is a representative in PE∗(E¯ n). Then σπ(x) = σ(x′). Since σ kills decomposable
elements, σπ is well defined. We impose the following condition.
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Hypothesis 6.1. The map σπ is injective.

Remark 6.2. This is true if the hypotheses of Lemma 5.8 are satisfied.

Theorem 6.3. Suppose that Hypothesis 6.1 is satisfied and let Uπ = PπG. Then Uπ

is the functor of a cotriple on M.

Proof. In [3, § 7], the authors define a cotriple (T, δ, ε) on M using the structure of the
Hopf algebroid (E∗, E∗(E)). The stabilization map induces a map of cotriples G

σ−→ T .
From § 5 we know that if (M, ψ) is a G-coalgebra, then M is an E∗(E)-comodule and
P (M) is a sub-E∗(E)-comodule of M with map Ψ : P (M) → E∗(E). We have an induced
E∗(E)-comodule Pπ(M). Let Ψπ be the induced comodule map, j : P (M) → Pπ(M) be
the projection and i : P (M) → M be the injection. Then we have a commutative diagram:

P (M)

j

��

Ψ

������������������������������������

Ψ ′

��

�

�

�

�

	




�

Pπ(M)

Pπψ

��

Ψπ

��
Uπ(Pπ(M)) �� T (Pπ(M))

Uπ(P (M))

j∗

��

��

i∗

��

T (P (M))

j∗

��

i∗

��
Uπ(M) �� T (M)

where i∗ is an injection, the rightmost j∗ is a surjection and the horizontal maps are
injections by Hypothesis 6.1. Since Ψ is induced from σ, there is a well-defined map
ψπ : Pπ(M) → Uπ(Pπ(M)). If we now let M = G(N) for N ∈ M, we have a map
δπ : Uπ(N) → U2

π(N). We let the composition Uπ(N) → T (N) ε−→ N be επ. Since Uπ → T

is an injection that commutes with the cotriple structure of T , (Uπ, δπ, επ) is a cotriple.
�

With this result we can construct the category of Uπ-coalgebras and state the following
theorem.

Theorem 6.4. Suppose that the homology theory E satisfies Hypotheses 5.6 and 6.1.
There is then a spectral sequence

Ēm,n,t
2 = Extm,t

Uπ
(Rn

0 Pπ(X)) ⇒ En+m,t
2 (X)

(converging to the E2-term of the BKSS based on E-theory).
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Proof. Fix a t � 0. We form, for n, m � 0, the double complex concentrated at
degree t:

Dm,n,t = Dm,n(X)t = Un
π PπGm+1(X)t.

For each fixed n we have

D∗,n,t = D∗,n(X)t = Un
π Pπ(G(X)t),

where the maps are induced by the G-resolution of X. Next we fix m. We have

Dm,∗,t = Dm,∗(X)t = Uπ(PπGm+1(X))t.

This is just the Pπ-complex for PπGm(X). Fixing m and taking homology we get

Ēm,n,t
1 = Extm,t

Uπ
(Uπ(Gm(X))) =

{
Gm(X)t if n = 0,

0 otherwise.

Taking homology again we have Em,t
2 (X). If we fix n and take homology, we find that

Ēm,n,t
1 = Um

π Rn
0 Pπ(X)t,

and taking homology again we find the following:

Ēm,n,t
2 = Extm,t

Uπ
(Rn

0 Pπ(X)).

�

This tells us that knowledge of the functors Rm
0 Pπ(X) is sufficient to give us the E2-

term of the BKSS based on E. We now need information about these objects. We have
the following theorem, which gives us a way to approach these objects.

Theorem 6.5. Suppose that the homology theory E satisfies Hypotheses 5.6 and 6.1.
There is then a spectral sequence

Ei,j
2 = Rj

i Pπ(X) ⇒ Ri+jPπ(E∗(X)).

Proof. Consider the following double complex:

Di,j = PπSj+1Gi+1(X).

Fixing i first, we have
Di,∗ = PπS̃(Gi+1(X)).

This is just the functor Pπ applied to the S-resolution for Gi+1(X).
Now fixing j, we have

D∗,j = PπSj+1G(X).

This map is induced by the G-resolution of M . Fixing i again and taking homology, we
have

Ei,j
1 =

{
Ri+1Pπ(Gj+1(X)) if i = j,

0 otherwise.
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Taking homology again we have Rj
i Pπ(X). Let us now fix j. We get

Ei,j
1 =

{
PπSj+1(E∗(X)) if i = 0,

0 otherwise.

Homology again gives RjPπ(E∗(X)). �

Corollary 6.6. Suppose that the homology theory E satisfies Hypotheses 5.6 and 6.1.
Suppose also that E is π-nice. There is then a long exact sequence

· · · → Rk
0Pπ(X) → RkPπ(E∗(X)) → Rk−1

1 Pπ(X) → Rk+1
0 Pπ(X) → · · · .

Proof. Since E∗(E¯ k) is nice, and since Gr(X) is just a tensor product of these Hopf
algebras, for k > 1, we have Rj

kPπ(X) = 0. We get a spectral sequence with just two
rows. This becomes a long exact sequence. �

Theorem 6.7. Suppose that RqPπ(E∗(X)) = 0 for q � n:

(i) R0
0Pπ(X) ∼= Pπ(E∗(X)),

(ii) Rq
0Pπ(X) ∼= Rq+2

1 Pπ(X) for q � n,

(iii) R1
0Pπ(X) injects into R1Pπ(E∗(X)) and, if E∗(X) is cofree, then R1

0Pπ(X) is trivial.

Proof. This follows from Corollary 6.6. �

Remark 6.8. If f is the zero map, then Pf = P , and Hypothesis 6.1 is merely the
requirement that σ is injective on the primitives. This is satisfied by all p-local Landweber
theories. Also, Hypothesis 5.6 is not necessary if E is Landweber.

7. The Morava K-theory case

We want to apply the previous results to K(n). But first we need to make sure that
Hypotheses 5.6 and 6.1 are satisfied. By Lemma 5.8 and Remark 6.2 it is sufficient that
ker(σ) is the set of decomposable elements and that the only primitives are x and the pth
powers of x where x is primitive.

Lemma 7.1. If E = K(n), then ker(σ) is the set of decomposable elements and xp is
primitive if and only if x is primitive. Also K(n) is π-nice.

Proof. By [14], Γn,m = K(n)∗(K(n)
m

) has generators aI ◦ bj0
(0) ◦ bJ ◦ eε

1 with ε = 0, 1,
ik = 0, 1, 0 � jk < pn, j0 < pn − 1. These elements stabilize to τ IbJ . So σ is injective
on the indecomposables. Using the Hopf algebra structure computed in [14] one can
conclude that xp is primitive if and only if x is primitive.

To prove that K(n) is π-nice is sufficient to prove that each K(n)∗(K(n)
k
) is nice.

By [14] we know that K(n)∗(K(n)
k
) is a tensor product of exterior, truncated and

polynomial Hopf algebras. The exterior algebra only contributes zero-derived functors,
the (primitively generated) polynomial algebra is a tensor product of coalgebras of the
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type T (x2n) (see [4]) and this has primitive dimension 1. So the only unknown is the
truncated algebra. But by [14, Theorem 2.1] this is just a divided power algebra mod p

and this is cofree. �

Remark 7.2. Hypothesis 6.1 is not satisfied by E(1) mod p. The element

v1b
p−1
(0) ◦ bn

(1) ◦ e1 − bn
(1) ◦ e1 ◦[v1] ∈ E(1)∗(E¯

(1)2n+1)

is non-zero unstably but it is in ker(σ). This does not happen in K(1) because we have
the extra relation v1b

p−1
(0) ◦ bn

(1) ◦ e1 = bn
(1) ◦ e1 ◦[v1].

8. Applications to K(1)

We apply all the previous results to K(1). In this case we can say much more.

Corollary 8.1. Suppose that RiPπ(K(1)∗(X)) = 0 for i � n. Then, for i � n + 1,

Ri
0Pπ(X) = 0.

Proof. Suppose i > n + 1 and Ri
0Pπ(X) 	= 0 and we have a generator x. Since we

can get new generators from x by multiplying by vk
1 , we consider R1Pπ(Gi+2(X)) ⊗ Zp.

By the universal coefficients theorem and Lemma 7.1, we know that the only part con-
tributing first-derived functors is the polynomial part. This is of the form ⊗α∈ΛT (x2nα)
for some index set Λ. The generator x2nα

is of the form a0 ◦ bJα with dimension
2(1 +

∑
jiαpi) with j0 < p − 1 and nα = 1 +

∑
jip

i. Since R1P (T (x2nα)) = Zp(2nαp),
we have generators of degree 2p(1 +

∑
jiαpi). Now let us look at generators for

R0Pπ(Gi+1(X)) ⊗ Zp = Pπ(Gi+1(X)) ⊗ Zp.

This has generators a(0) ◦ bK ◦ eε
1 and b(0) ◦ bK ◦ eε

1 of degree 2(1 +
∑

k�0 kip
i) + ε with

k0 < p − 1 in both cases. By Theorem 6.7(i) the dimensions of the generators have to
agree. So ε = 0. But the generators of the first case were divisible by p and neither of
the other two are. �

In fact this result implies the following theorem.

Theorem 8.2. Let X be an H-space and suppose that K(1)∗(X) is cofree. Then

Es,t
2 (X) ∼= Exts,t

Uπ
(Pπ(K(1)∗(X))).

Proof. Since K(1)∗(X) is cofree, by 8.1 we know that we have only zero-derived
functors of Pπ, and so the spectral sequence of Theorem 6.4 collapses and the result
follows. �

Corollary 8.3. Suppose that K(1)∗(X) is cofree. Then

E2(X) ∼= ES
2 (Σ∞X),

where the object on the right is the E2-term of the stable Adams spectral sequence.
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Proof. The category Uπ is just the category of unstable K(1)∗(K(1))-comodules.
By [12], there are no unstable K(n)∗(K(n))-comodules. Since we have a collapse to
the zero line of the spectral sequence of Theorem 6.4, then the two E2-terms have to
agree. �

Remark 8.4. From the previous corollary, the E2-terms of the stable spectral sequence
for the sphere and the unstable spectral sequence for the odd sphere agree. This does
not happen with the even sphere. By Lemma 5.4, R1Pπ(S2n) is a K(1)∗-module with a
generator in dimension 4n. This leads to a long exact sequence:

· · · → Exts,t
Uπ

(S2n) → Exts,t
M(G)(S

2n) → Exts−1,t
Uπ

(S4n) → · · · ,

where the last map on the left has bidegree (2, 0).

We now develop a way of computing ExtUπ (M) for all K(n). With this we can calculate
specific elements in the K(n)-based spectral sequence.

9. Calculation of Uπ(M) for Morava K-theories

Our knowledge of ExtUπ (M) depends on Un
π (M) and the differentials.

From [15] we know that

K(n)∗(K(n)) = Λ[τ0, . . . , τn−1] ⊗ K(n)∗ ⊗BP∗

BP∗(BP )

(vntp
n

i − vpi

n ti)
.

As in [3], we use the basis consisting of hn instead of tn. Since the τk comes from the
dual of the Steenrod algebra, this implies that the canonical anti-isomorphism is given
by

τk +
k∑

i=0

tp
i

k−ic(τi) = 0

or τk = c(τk) mod decomposables. Let βk = c(τk). Then the exterior part of Γn is gener-
ated by βi with 0 � i � n − 1.

Notation 9.1. We define

<i =

{
< for i = 0,

� for i = 1.

Theorem 9.2. Let Γn = K(n)∗(K(n)) and M be a K(n)∗-module. Then the following
conditions apply.

(i) Uπ(M) = spanK(n)∗{βIhJ ⊗ m ∈ Γn ⊗ M | l(I) + 2l(J) <i0 |m|}.

(ii) Uπ(M) injects into the stable cobar complex.

https://doi.org/10.1017/S0013091505000544 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000544


The Bousfield–Kan spectral sequence for Morava K-theory 695

(iii) Suppose that M is an unstable Γ -comodule, with coaction Ψ : M → Uπ(M). The
differential is then given by

d([γ1 | · · · | γn]m) = [1 | γ1 | · · · | γn]m +
n∑

j=1

(−1)j [γ1 | · · · | γ′
j | γ′′

j | · · · | γn]

+ (−1)n+1
∑

[γ1 | · · · | γ′n]m′,

where Ψ(γj) =
∑

γ′ ⊗ γ′′ and Ψ(m) =
∑

γ′ ⊗ m′.

Proof. The primitive elements in K(n)∗(K(n)
m

) are

(i) exterior: [vk
n] ◦ aI ◦ bj0

0 ◦ bJ ◦ e1 with i0 = 1 or j0 = 1;

(ii) truncated: [vk
n] ◦ aI ◦ bj0

0 ◦ bJ with I 	= I(1) and i0 = 1 or j0 = 1;

(iii) polynomial: ([vk
n] ◦ aI(1) ◦ bj0

0 ◦ bJ)∗pk

, k � 1.

The cases (i) and (ii) are also indecomposable. In case (iii) the only element that is
indecomposable is when k = 1. All of the cases suspend to βIhJ ⊗ vk

nim. We have, for
all cases,

l(I) + 2j0 + 2l(J) − kqn = m

or

l(I) + 2l(J) � l(I) + 2j0 + 2l(I) = m + kqn = |vk
nim|,

where qn = |vn|. The inequality on the left-hand side is strict if j0 = 1 and is an equality
if i0 = j0 = 1. This proves (i).

Part (ii) follows immediately from (i). Part (iii) follows from the fact that we know
the differential in the stable cobar. Since Uπ(M) injects, the result follows. �

At last we see why we chose the derived functors of the π-primitives instead of just the
usual derived functors of the primitives: these do not inject into the stable object (the
pth powers of [vk] ◦ a(0) ◦ bj0

(0) ◦ bI are killed by σ).
Let us find some elements in E2(S2n+1; K(1)). In this case we have β0 = c(τ0) = τ0.

The only elements in Γ = K(1)∗(K(1)) that are primitive are hpk
1 , k > 0, and τ0. But,

by [15], in Γ we have h1v
p
1 = hp

1v1, so we have only to consider h1 and τ0. We therefore
see that, for M = K(1)∗(S2n+1), n > 0, E2 is generated by h1 and τ0.

From now on the element [γ1 | · · · | γn]i2n+1 will be represented in homology by
γ1 · · · γni2n+1 or, if it is clear on which sphere we are working, i2n+1 = 1 and γ1 · · · γn,
with the convention that deg(γ1 · · · γn) = 2n + 1 +

∑
deg(γi). Since for K(1) the right

action and the left actions commute, we immediately have

E0,t
1 (S2n+1) =

{
Zp if t = 2n + 1 + kq, k ∈ Z generated by vk

1 ,

0 otherwise.

The filtration-r elements τ r
0 and vk

1h1τ
r−1
0 are non-trivial.
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10. Composition pairings in the K(1) spectral sequence

By [7], there is also composition pairing in the spectral sequence for t− s � 1 and r � 2:

Es,m+t
r (X) ⊗ Es′,t′

r (Sm) ◦−→ Es+s′,t+t′

r (X).

Given the natural map i : X → X∧
E , where X∧

E is the completion, there is a commuta-
tive diagram:

πt+mX ⊗ πt′Sm ∗ ��

i∗⊗i∗
��

πt+t′X

i∗
��

πt+mX∧
E ⊗ πt′(Sm)∧

E
◦ �� πt+t′X∧

E

Lemma 10.1. The composition corresponds (up to sign) to the Yoneda product in
the category Uπ:

Exts
Uπ

(K(1)∗(St+2m+1), K(1)∗(S2n+1)) ⊗ Exts′

Uπ
(K(1)∗(St′

), K(1)∗(S2m+1))

→ Exts
Uπ

(K(1)∗(St+2m+1), K(1)∗(S2n+1)) ⊗ Exts′

Uπ
(K(1)∗(St+t′

), K(1)∗(St+2m+1))

→ Exts+s′

Uπ
(K(1)∗(St+t′

), K(1)∗(S2n+1)).

Proof. This follows from [7]. �

We use this result to study compositions by τ0. The proofs of the next two results are
analogous to the proof of the stable statements.

Claim 10.2. For k > 0, τk
0 	= 0.

As in the stable case, we have an element representing multiplication by p in homotopy.

Lemma 10.3. Suppose that the spectral sequences for X and S2n+1 converge. Suppose
also that x ∈ E2 survives to E∞ and represents α ∈ π∗(X). Then a(0) ◦ x represents
pα ∈ π∗(X).

Form this it follows that we have infinite towers, for k ∈ Z, in dimensions t − s =
2n + 1 + kq, generated by vk

1τ s
0 , and towers in dimension t − s = 2n + kq generated by

vk
1τ s

0h1. The only thing missing is knowledge about the differentials.

11. Convergence of the stable Adams spectral sequence

The next result will give us the missing piece. We define ν(k) as k = apν(k) with p � a.

Theorem 11.1. The stable Adams spectral sequence based on K(1) of the sphere
converges for t − s > 0 and vk

1 supports a dν(k)+2 differential.

Proof. Since the only place in which the E2-term has classes is in dimensions t − s =
kq − 1, kq with k ∈ Z, it is sufficient to worry about those dimensions. By [13] we know
that the E(1) spectral sequence for the sphere converges and π∗(S∧

E(1)) has a Zpν(k)+1

generated by αk = d1(vk
1 )/pν(k)+1 in dimension kq − 1. We have a map of ring spectra
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j : E(1) → K(1), which induces a map between the spectral sequence of these spectra
and sends αk to vk−1

1 h1. Since Es,t
r = 0 for any t − s = kq − 2, the element

vk−1
1 h1 ∈ lim←−

s

πkq−1(K(1)
s
)

and since there is an onto map to πkq−1(S∧
K(1)) we have

vk−1
1 h1 ∈ πkq−1(S∧

K(1)).

This implies that 1 � ord(vk−1
1 h1) � pν(k)+1. Since multiplication by τ0 represents mul-

tiplication by p, the tower over vk−1
1 h1 has to be killed at filtration less than or equal

to ν(k) + 2. So vk
1 supports a dr differential, where r � ν(k) + 2.

We prove ν(k) + 2 = r by induction on dn. For k = 1, we have, by the previous para-
graph, d2(v1) = τ0h1 and, using the derivation rule, we have d2(vk

1τw
0 ) = kvk−1

1 τw+1
0 h1.

Suppose now that

dm(vkpm−2

1 τw
0 ) = kvkpm−2−1

1 τw+m−1
0 h1 for m < n.

By the induction hypothesis we know that dn−1(v
pn−2

1 ) = pvpn−2−1
1 τn−2

0 h1 = 0. So the
smallest differential in which vpn−2

1 is non-zero is dn = dν(n−2)+2. The general result
follows from using the derivation rule. �

Corollary 11.2. The BKSS based on K(1) for the sphere converges completely and,
for m � 1, the completion in the sense of [1] is given by

πm((S2n+1)∧) =

⎧⎪⎨
⎪⎩

Zpν(k)+1 for m = 2n + kq, k ∈ Z − {0},

Z∧
p for m = 2n + 1, 2n,

0 otherwise.

Proof. The differentials on vk
1 for k � 0 can be deduced by the stable differentials.

For k � 0, [7] says that dr is a derivation for r > 1. We have the following formulae:

0 = dr(1) = dr(vk
1v−k

1 ) = dr(vk
1 )v−k

1 + vk
1dr(v−k

1 )

or dr(v−k
1 ) = −v−2k

1 dr(vk
1 ). Since we have a vanishing line, by [8, § IX] we know that the

spectral sequence converges completely. �

12. Some remarks on the general K(n) spectral sequence

Although we have not been able to prove that the Ri
0Pπ(X) vanish when the groups

RiPπ(K(n)∗(X)) vanish for n > 1, we have the following theorem.

Theorem 12.1. The zero line of the spectral sequence of Theorem 6.4 for K(n) injects
into the stable Adams spectral sequence.
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Proof. The spectral sequence of Theorem 6.4 has an edge homomorphism:

Extm,t
Uπ

(PπK(n)∗(X)) = Ēm,0,t
2 → Em,t

2 (X).

Since this construction commutes with stabilization, we have a commutative diagram:

Extm,t
Uπ

(PπK(n)∗(X)) −−−−→ Extm,t
M(G)(K(n)∗(X)) Em,t

2 (X)

∼=
⏐⏐� σ

⏐⏐� σ

⏐⏐�
Extm,t′

Γn
(K(n)∗(X))

∼=−−−−→ Extm,t′

Γn
(K(n)∗(Σ∞X)) Em,t′

2 (Σ∞X)

where Γn = K(n)∗(K(n)). �

13. The K(1)-completion of S2n+1 and its relation to the work of Farjoun

In [10], Farjoun defines a tower {Yn(X)} under X as follows. Let E(X) be the functor
defined in § 2 and let Y1(X) = E(X). Define

Yn(X) = fb
[
Yn−1(X) → E

(
Yn−1(X)

X

)]
,

where fb denotes the homotopy fibre. The null homotopy from X into the cofibre gives
a map X → Yn(X). Let Y∞(X) = lim←−Yn(X). Farjoun puts forward the following two
questions.

Question 13.1. Let X be an H-space of finite type. Is the natural map XE → Y∞ a
homotopy equivalence?

Question 13.2. When does the natural map of towers {Yn(X)}n∈N → {Dn(X)}n∈N

have a left inverse?

Although we cannot answer Question 13.1 in the affirmative or get necessary conditions
to answer Question 13.2, we can deduce the following from our work.

Lemma 13.3. Let E = K(1). Then Questions 13.1 and 13.2 cannot be true at the
same time for X = S2n+1.

Proof. Suppose that if X is an H-space of finite type, this implies that the natural
map XE → Y∞ is a homotopy equivalence and the map of towers from Question 13.2
has a left inverse. We then have an injective map

π∗(S2n+1
K(1) ) → π∗(K(1)∧(S2n+1)).

The K(1)-localization of the odd spheres was calculated in [6]. We have

πi(S2n+1
K(1) ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Zpν(k)+1 for i = 2n + qk, 2n − 1 + kq, k ∈ Z − {0},

Z∧
p for i = 2n, 2n − 1,

Z∧
p ⊕ Z∧

p for i = 2n − 1,

0 otherwise.
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Comparing this with the result of Corollary 11.2, we see that the map cannot be
injective. �
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