A BOUND FOR THE MODULI OF THE ZEROS OF POLYNOMIALS

BY
Q. I. RAHMAN

The following theorem is due to Walsh [2]. For another proof see [1].
Theorem A. All the zeros of the polynomial $p(z)=a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}+z^{n}$ lie on the disk

$$
\left|z+\frac{1}{2} a_{n-1}\right| \leq \frac{1}{2}\left|a_{n-1}\right|+M,
$$

where $M=\sum_{j=2}^{n}\left|a_{n-j}\right|^{1 / j}$.
We prove
Theorem 1. All the zeros of the polynomial $p(z)=a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}+z^{n}$ lie on the disk

$$
D:\left|z+\frac{1}{2} a_{n-1}\right| \leq \frac{1}{2}\left|a_{n-1}\right|+\alpha M,
$$

where
(i) $\alpha=0$ if $p(z)$ is of the form $a_{n-1} z^{n-1}+z^{n}$ and
(ii) $\alpha=\max _{2 \leq j \leq n}\left(M^{-1}\left|a_{n-j}\right|^{1 / j}\right)^{(j-1) / j}$ if $p(z)$ is not of the form $a_{n-1} z^{n-1}+z^{n}$.

Proof. The part of the theorem dealing with polynomials of the form $a_{n-1} z^{n-1}$ $+z^{n}$ is evident. So let us suppose that the coefficients $a_{0}, a_{1}, \ldots, a_{n-2}$ are not all zero. This implies that α is a positive number not exceeding 1 . Now if
then

$$
\left|z+\frac{1}{2} a_{n-1}\right|>\frac{1}{2}\left|a_{n-1}\right|+\alpha M
$$

$$
|z|>\alpha M \geq \alpha^{-1 /(j-1)}\left|a_{n-j}\right|^{1 / j} \text { for } j=2,3, \ldots, n-2
$$

Hence for z lying outside the disk D and $j=2,3, \ldots, n-2$
and

$$
\left|a_{n-j}\right||z|^{n-j}<\alpha\left|a_{n-j}\right|^{1 / j}|z|^{n-1}
$$

$$
\begin{aligned}
\left|\frac{1}{2} a_{n-1} z^{n-1}+\sum_{j=2}^{n} a_{n-j} z^{n-j}\right| & <\left(\frac{1}{2}\left|a_{n-1}\right|+\alpha M\right)|z|^{n-1} \\
& <\left|z+\frac{1}{2} a_{n-1}\right||z|^{n-1} \\
& =\left|z^{n}+\frac{1}{2} a_{n-1} z^{n-1}\right| .
\end{aligned}
$$

Consequently, if $z \notin D$, then

$$
\begin{aligned}
|p(z)| & =\left|z^{n}+a_{n-1} z^{n-1}+\sum_{j=2}^{n} a_{n-j} z^{n-j}\right| \\
& \geq\left|z^{n}+\frac{1}{2} a_{n-1} z^{n-1}\right|-\left|\frac{1}{2} a_{n-1} z^{n-1}+\sum_{j=2}^{n} a_{n-j} z^{n-j}\right| \\
& >0
\end{aligned}
$$

i.e. $p(z)$ cannot vanish.

References

1. H. E. Bell, Gershgorin's theorem and the zeros of polynomials, Amer. Math. Monthly, 72 (1965), 292-295.
2. J. L. Walsh, An inequality for the roots of an algebraic equation, Ann. of Math. 25 (1924), 285-286.

Université de Montréal,
Montréal, Québec

