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Abstract. We consider the Markov chain on a compact manifold M generated by
a sequence of random diffeomorphisms, i.e. a sequence of independent Diff 2(M)-
valued random variables with common distribution. Random diffeomorphisms
appear for instance when diffusion processes are considered as solutions of stochastic
differential equations. We discuss the global dynamics of Markov chains with
continuous transition densities and construct non-random stable foliations for ran-
dom diffeomorphisms.

1. Introduction
Let /A be a probability measure on the space Diff2 (M) of C2-diffeomorphisms of
a compact Riemannian manifold M. By a sequence of random diffeomorphisms we
mean a sequence Fl,F2,. •• of independent Diff2 (M)-valued random variables with
common distribution /x. Random diffeomorphisms appear for instance when
diffusion processes are considered as solutions of stochastic differential equations,
see [Ku] and [Ki, chapter V]. Probability measures

P(x,D = M{/6Diff2(M):/xer}, T<=M,
give rise to a random walk Xn = FnXn-t. Moreover, since Fn is a random diffeomorph-
ism, we obtain a Markov chain vn = DFnvn-i in the tangent bundle TM. By the
Oseledec multiplicative ergodic theorem (see Theorem 3.1 below, [Os], [Ru], [L]),
if x does not belong to an exceptional set, then for almost every sequence u> =
(f\,fi,- • •) the characteristic exponent

X(x, w, v) = lim - In \\Dfn ° • • • ° Dfv\\
n->oo n

exists for every vector v e TXM. Moreover, there is a filtration

{0} = K, „, c V\x_ „,= ••• = V(\ B) = TXM

such that the characteristic exponent is constant on V\x>u)\ VJ"1^). In general
x(x, w, v) depends non-trivially on w. However, under certain natural assumptions
(see Theorem 3.3 below and [Ki, chapter III]), if x does not belong to an exceptional
set, then *(JC, W, V) almost surely does not depend on ID for all ve TXM and there
exists a non-random DFn- invariant filtration of subspaces

https://doi.org/10.1017/S0143385700004107 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004107


352 M. Brin and Yu. Kifer

such that x(x, co, v) = \j(x) is constant on Ux\L
J~l with probability 1. In the ergodic

case the A/s do not depend on x.
The main purpose of this paper is to construct non-random foliations invariant

under random diffeomorphisms. Denote by F" the composition Fn ° • • • ° F,. Accord-
ing to a version of the stable manifold theorem (see Theorem 4.1 below,
[Ru], [P], [FHY]), if x(x, co, v) = A < 0 for v e V^ -A V k U then the set

{y £ M: lim sup - In (dist (F"(ai)x, F"(co)y)) < A}

is a submanifold tangent to Vjx ^ at x. The main result of this paper is Theorem
4.2 below. It states that, under certain integrability conditions, if the transition
probabilities P(x, •) have continuous densities, then the subbundle V is integrable
for any j with A7 «£ 0. Its integral manifolds WJ

X foliate the supports of probability
measures on M that are invariant under the random walk Xn and ergodic. The
corresponding foliation is invariant under any / e supp (fi). Although any vector
tangent to a leaf W{ is exponentially contracted by DF"(to) with probability 1, the
entire leaf W{ or any non-random part of it may not be contracted by F"(co) (see
Example 4.7). However, for any x, if co does not belong to a set of measure 0, then
there is a neighbourhood of x in WJ

X that is exponentially contracted by F"(co).

Note that if a non-degenerate diffusion process is represented by a sequence of
random diffeomorphisms (or in this case a stochastic flow), then the transition
probabilities do have continuous densities. The main results and auxiliary statements
of this paper hold true if the continuity of the transitional densities is replaced by
the weaker assumption that they are bounded. Moreover, it is sufficient to assume
that the transition probabilities'have bounded densities with respect to a continuous
(non-atomic) measure. The continuity assumption allows us to simplify many proofs
and to make the probabilistic arguments in § 2 self-contained. In § 2 we discuss the
global dynamics of Markov chains with continuous transition densities. Some of
the results of this section are well known for more general Markov chains, e.g.
Harris or recurrent chains (see [Or], [Re, chapter 6]). In § 3 we study the invariant
filtrations in the tangent bundle and prove, in particular, the Holder continuity of
the non-random invariant subbundles V. § 4 contains our main result, the integrabil-
ity of the subbundles V for which \j < 0. In § 5 we prove a general theorem on the
Holder continuity of invariant subbundles for partially non-uniformly hyperbolic
dynamical systems.

This paper was written during the visits of the first author to the Hebrew University
of Jerusalem in June 1985 and 1986 and the visits of the second author to the
University of Maryland in September 1985 and 1986. Both authors were supported
by BSF Israel-USA Grant # 84-00028, and the second author was supported by
NSF Grant # DMS-82-04024 and by DARPA under NIMMP.

2. Markov chains with continuous transition densities
In this section we review the necessary properties of Markov chains with continuous
transition densities. The arguments we give below are very similar to those usually
applied in the classical case of finite Markov chains.
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Let {Xn} be a Markov chain on a compact Riemannian manifold M with transition
probabilities P(x, F), i.e. if Xn = x then Xn+1 e F with probability P(x, F) (cf. [Re]).
From now on we assume that transition probabilities have continuous transition
densities, i.e. there exists a non-negative function p{x, y) continuous in both variables
such that for any measurable subset F<= M and any xe M

x, F) = f
Jr

P{x,T) = p(x,y)dm{y),
Jr

where m is the normalized Riemannian volume in M. Let Pk{x, F) be the probability
of reaching F from x in k steps and let pk(x, y) denote the continuous density of
Pk(x,r),

x,T)=\ pk(x,
Jr

Pk(x,T) = pk(x,y)dm(y).
Jr

2.1. Definition. A Borel probability measure Q on M is called invariant under {Xn},
or simply, invariant if

= (
J
(

M

for any measurable F <= M

The existence of invariant measures for Markov chains with continuous transition
densities is well known. Actually a weaker condition that the measure P(x, •) depends
continuously on x in the weak topology implies the existence of invariant measures.

2.2. LEMMA. If the family of Borel measures P(x, •) depends continuously on x in the
weak topology, then there exists at least one invariant Borel measure.

Proof. Denote by P* the operator in the space of measures which acts by the formula

(p*v)(T) = [ dv(x)p(x,r).
J

Let 77 be an arbitrary Borel probability measure on M and let

vn=-"l (P*)kv-
n k=o

Since the space of probability measures on a compact M is compact in the weak
topology (see [Ro, p. 100]), there is a subsequence nt such that rjn. -»" p and also

P*v«,=- X (P*)kv+wP.

Let P denote the induced action in the space of functions:

{Pg)(x)= f g(y)P(x,dy).
J M

Then for a continuous function g the function Pg is also continuous and

I gdP*Vni=\ PgdVn: > | Pgdp=\ gdP*p.
JM JM ''-00

 JM JM

Therefore, P*rjn: -*
w P*p and hence P*p = p, i.e. p is invariant. •
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The continuity of p(x, y) easily implies that any invariant measure Q has continuous
density q(x). Indeed

= f
Jr

Q(T)= [ P(x,DdQ(x)= f dm(y) [ p(x,y)dQ(x),

so that

q(y)= I p(x,y)dQ(x).
J M

We shall call q an invariant density.
2.3. Definition. A measurable subset F c M is called invariant under {Xn}, or simply,
invariant if

P(x, r) = l

for m-a.e. (m-almost every) xeT.

2.4. Definition. An invariant measure Q is ergodic if for any invariant set F, either
Q(T) = 0 or Q(T) = 1. We will refer to the density of Q as an invariant ergodic density.

For an invariant measure Q with density q we write

Aq = {xeM:q(x)>0}.

The open set Aq is invariant since

= I dm(y) f
J M\Aq Ji

0=Q(M\Aq)=\ dm(y)\ q(x)p(x,y) dm(x)

dm(y) q(x)p(x,y)dm(x),
J M\Aq J Aq

and therefore p(x, y) = 0 if x e Aq and y 6 M\Aq. Hence P(x, Aq) = 1 when x £ Aq.
Moreover, by the continuity of p(x, y),

P(x, Aq) = \ for any xe Aq, (2.1)

where Aq is the closure of Aq.

2.5. PROPOSITION. Let q be an invariant ergodic density. Then there exists an integer
T called the period of the Markov chain for which:

(i) Aq is the union of disjoint open sets A'q, 0 < i < T - l , such that ifxeA'q and
p(x,y)>0, then y e A'q, where j = (i +1) mod T, and

Q(A'q)=\

(ii) for every compact subset K <= A'q there are N = N(K) and S = S(K)> 0 such
that pNT(x,y)> 8 for any xe A'q andyeK.

We shall need the following auxiliary facts.

2.6. LEMMA. Let p'(x, y)>0 and pJ(y, z)> 0 for some x, y, ze M and integers i,j.
Thenpi+J(x,z)>0.
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Proof. Recall that the functions pk(x,y) are continuous and that

pi+J(x,z)= I pi(x,v)pJ(v,z)dm{v),
J M

the integrand being positive in a neighborhood of v = y. •

2.7. LEMMA. For any xe Aq and any j e A ,

n(x,y) = mf{n:p"(x,y)>0}

is finite and the function n(x, y) is upper semicontinuous in (x, y).

Proof. For xeAq let

U(x) = {y: n(x,y)«x>}.

The set U(x) is clearly open, non-empty and contained in Aq. By Lemma 2.6, U(x)
is invariant. Hence, by the ergodicity of q, U(x) = Aq and n(x, y) is finite for any
xe Aq, y e Aq. \f pk(x,y)>Q then, by the continuity of p, pk(x, y)>0 for any (x, y)
close enough to (x, >»), and hence n(x, _y) < M(X, y). D

Proof of Proposition 2.5. For x e A, let

By Lemma 2.6, i+ j e 7(x) for any i,je I(x), i.e. /(x) is an additive semigroup and
a simple number theory argument shows that for some big enough i0 the elements
of /(x) greater than i0 form an arithmetic progression with difference T(x) equal
to the greatest common divisor of /(x). Let yeAq. By Lemma 2.7, there exist k and
n such that p'c(x,>0>0 and p"(y,x)>0, and hence k + ne I(y). It follows from
Lemma 2.6 that I(x)=> k+n + I(y). Therefore, T(x) divides T(y). By the symmetry,
T(x) = T(y). Hence T(x) is a constant which we denote by T.

Fix xoe Aq and set AJ, = {y: pkT+'(x0, y)>0 for some k}, i = 0 , 1 , . . . , T— 1. By
Lemma 2.7, Uto" A^ = A,. Every A'q is open since it is the union of open sets.
Furthermore, the sets A'q are disjoint. Indeed, let yeA'qr< A'q. Then pkT+'(x0, y) > 0
and p'T+J(x0,y)>0 for some k and /. By Lemma 2.7, there is an n such that
p"(y, xo)>0. It follows from Lemma 2.6 that both n + kT+i and n + lT+j are
divisible by T, and hence i—j is divisible by T. Thus i=j. If pkT+'(xo,x)>0 and
p(x,y)>0 then, by Lemma 2.6, pkT+i+\xo,y)>0. It follows from above that the
sets A'q are cyclically permuted by the Markov chain and so Q(A'q) = l/T which
concludes the proof of (i).

By Lemma 2.7, for any x, y e A\ there is an n such that p"{x, y)>0 and, by (i),
all such M'S are multiples of T. Recall that /(x0) contains an arithmetic progression
{T(i(x0) + fc)}"=0. Fix a compact subset K<= A'q. By Lemma 2.7, there exists N0(K)
such that if xeA'q and yeK then pk(x, xo)>0 and p'(x0,>')>0 for some fc,/<
N0(K). Therefore, the set {n: p"(x,y)>0} contains an arithmetic progression
{T(i(x, y) + k)}?=0, where i(x, y) < i(xo) + 2No(K)/ T+1. Let N be the integral part
of i(xo) + 27Vo(X)/T+l and 8 = mmx&A>q^K pNT(x,y). Since pNT(x,y) is con-
tinuous in (x, y), it follows that 5>0 , which proves (ii). •
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We have 

Mk(y) = max p T(x,y), Mk(y) = min p T(x,y). 

M f c + 1 ( y ) = max pT{x,z)pkr{z,y)dm{z) 
xeA' J A' 

==max pT(x, z)Mk(y) dm(z)<Mk(y). 
xtsA'q J A'q 

Similarly 

Mk+l(y)>Mk(y). 

Therefore there exist the following limits 

M ( y ) = lim M k ( y ) > M ( y ) = lim Mk(y). 

For x, z € A'q let 

B+ = {veAq: pT(x, v)-pT(z, v)>0} 

and 

B_ = {veAq: pr(x, v)-pT(z, v)<0}. 

Since 

pr(x, v) dm(v) = pr(z, v) dm(v) = 1, 
J A; J A; 

I (pT(x,v)-pT(z,v))dm{v) = - \ (pT(x,v)-pT(z,v))dm(v). (2.2) 
J B + J B_ 

pik+i)T(x,y)-pik+1)T(z,y) = [ i(pr(x,v)-pT(z,v))pkr(v,y)dm(v) 

s Mk(y) I (pr(x, v)-pT(z, v)) dm(v) 
J B + 

+ Mk(y) I (pT(x,v)-pT(z,v))dm(v) 
J B 

= (Mk(y)-Mk(y))\ (p*(x,v)-pT(z,v))dm(v). (2.3) 

we have 

Thus 

As is well known, Proposition 2.5(ii) implies the following convergence of transition 
densities (cf. [ D , p . 197]). 

2.8. PROPOSITION. Under the assumptions of Proposition 2.5, for any compact subset 
K<^Aq with m(K)>0, there exist y(K),0<y(K)<l, and C(K)>0 such that for 
any x G Β'q, yeK and any positive integer k 

\pkNUl)T{x,y)-Tq{y)\^C(K){y(K))k. 

Proof. To simplify the notation set T = N(K)T. Define 
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By Proposition 2.5(ii),

I pT(x, v) dm(v) s 1 - S(K) • m((A'q\B+) n K)

and

pr(z, v)dm{v)>S(K)- m(B+r>K).
JB+

Therefore, the last integral in (2.3) does not exceed l-S(K)m(K). Since x and z
were arbitrary, we see that

Mk+I(y) - Mk+l(y) < (1 - 8(K)m(K))(Mk(y) - Mk{y)).

Hence

M(y) = M(y) = lim pkT(x,y)

k-»oo

and

\M{y)-p'"{x,y)\<C(K) • (y(K))k,
where C(K) = maxpT(x,y) and y(K) = 1 -S(K) • m(K). By the invariance of q
and by Proposition 2.5(i),

q(y)=\ q(z)pk\z,y)dm(z)=\ q{z)pl"(z,y) dm(z)
J A , jA'q

>\ q(z)M(y)dm(z)=^-M(y). •

2.9. THEOREM. 77iere exwf only finitely many different probability invariant ergodic
measures Ql, Q2,..., Qr with densities qx, q2,..., qr, the corresponding sets
Aqi,..., Aqr being disjoint. For any invariant probability measure Q

Q=l Q(Aqi)Qh

We will need the following lemmas.

2.10. LEMMA. For any invariant density q

m(A )>(max p(x, y))~\
I,JEJK

Proof. By (2.1), if xe Aq then

L p(x, y)dm{y) = \,

and the lemma follows. D

2.11. LEMMA. Let Q be an invariant probability measure with density q and Be Aq

be an invariant subset with 0< Q(B) < 1.
Then there exist normalized invariant measures Qt and Q2 with densities qx and q2

such that Aqi n Aq2 = 0 , Aqx u Aq2 = Aq and
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Proof. By the invariance of Q and B,

Q(B) = I dQ(x) P(x, B) = | dQ(x) P(x, B)
J M J Aq

= [ dQ{x) P(x, B)+ ( dQ(x) P(x, B)
JB JAq\B

= Q(B)+\ dQ(x)P(x,B).
JA,\B

Hence P(x, B) = 0 for Q-a.e. xe Aq\B, and since Q and m are equivalent on
Aq, P(x, B) = 0 for m-a.e. x e Aq\B. Therefore, by the invariance of
Aq, P(x, Aq\B) = 1 for m-a.e. x e Aq\B, i.e. the set Aq\B is invariant. Now let Qi
be the normalized restriction of Q to B and Q2 be the normalized restriction of Q
to A,j\J3. It is easy to see that both measures Qi and Q2 are invariant and mutually
singular. Being invariant, Qy and Q2 have continuous densities q} and q2. The
corresponding sets Aqi and A,,, obviously have the desired properties. •
Proof of Theorem 2.9. Let Q^ and Q2 be two invariant ergodic measures with densities
qy and q2 and let x e Aqi n A?2. Then P(x, A?1 n A,2) = 1 by (2.1), and Aqi n A,,2 is
an open non-empty invariant set. Since Qt{Aqi n A,2)>0, then, by the ergodicity,
Qi(Aqx

 n ^ ) = 1 , ' = 15 2. Therefore, ^! = <?2 by Proposition 2.8. Now the first state-
ment of the theorem follows from Lemma 2.10. The second statement follows
immediately from Lemmas 2.10 and 2.11. •

The following result implies that the union of the supports of ergodic invariant
measures A = {J\=l Aq. (see Theorem 2.9) attracts the Markov chain Xn.

2.12. THEOREM. Let qx,... ,qrbe the densities of the ergodic invariant measures and
A?,, Afc, • • •, A,r be the corresponding sets. Then

N(x, a) = inf I n: Xn{co)e ( J A,, = A, X0(w) = x| <oo

with probability 1. Moreover EeSN(x'"' < oo for some S > 0.

Proof. If x s A then N(x,o) = 0. If XG A\A then N(x,m) = l. Let now xeM\A
and set

U(x) = {y: pk(x,y)>0 for some fc>0}.

The set U(x) is open and invariant. Assume that U(x) n A = 0. Then U(x) n A = 0
and hence U(x) r\ A = 0. Since U(x) is also invariant, Lemma 2.2 implies that
there exists an invariant measure supported by t/(x). This contradicts Theorem 2.9.
Therefore U(x) n A^0 and for each xe M

k(x) = inf {fc: pk(x, y) > 0 for some y e A} < oo.

Clearly fc(x) is upper semicontinuous and

K = sup k(x)<oo.

Since A is invariant, P K (x, A) > 5 for some 5 > 0 and every xe M. It follows that
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PK+1(x, A)>8. We have

P{N(x,a>)> n(K + l)} = P{Xn(K+l)e M\A}

= [ PK+\x, dz.) [ • • • [ PK+\x, dzn)
JM\A J M\A J M\A1M\A J M\A J M\A

=£(1-5)".

This last inequality together with the Borel-Cantelli lemma implies the statement
of the theorem. •

3. Invariant filtrations for random diffeomorphisms
For the convenience of the reader we formulate here a version of the Oseledec
multiplicative ergodic theorem for random diffeomorphisms.

Let M be a compact Riemannian manifold, F, , F2,... be a sequence of indepen-
dent random C2-diffeomorphisms with a common probability distribution /A in
Diff2 (M) and Xo be a random variable independent of all Fn with values in M and
distribution Q. Then Xn = Fn ° Fn_, «...<> FJXQ is a Markov chain on M with
transition probabilities

P(x, D = /*({/€ Diff2 (M): /x e H)

for any xe M and any Borel FcM. Set

(fl, ^(Diff^f/*

and let 6 be the shift transformation in ft

For xe M and w = ( / i , / 2 , . . . ) e ^ define r : (Mxil)-*(Mxft) by the formula

T(x,io) = (flX, 6a>).

Suppose Q is invariant under {Xn} in the sense of Definition 2.1, then the measure
(Qx v) is T-invariant. Indeed, for any measurable A<^ M and <&<= Q we have

Diff2(M)

= Q x v({(x, a) = (x, (/,, «')):/,x e A, w'e <&})

/1)=^(4>) f

f =^(*) f P(x, A) dQ(x) = *(
M J M

We shall use the following abbreviation

F"(w) = Fn(«u) o F ^ ^ u ) o • • • o F,((u).

3.1. THEOREM (see [Os], [Ru], [Le]). Suppose that

^\n+\\Dxf\\dn(f)dQ(x)«x>, (3.1)

where \\Dxf\\ is the norm of the differential at x and ln+ a = max (In a, 0). Then there
is a subset A of full Q x v measure in M x ft such that for every (x, co) e A there exists
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a filtration of linear subspaces

0= K,«) c Vl,o» c • ' - c V(
K

X,(U)= TXM

and a sequence of real numbers called characteristic exponents

-co< Xi(x, (o) < xi(x, (o) < • • • <xK(x,co)<oo

with the properties

(i) lim-ln||DxFn(a>)||=xK(x,«);
n^ao n

(ii) ifveV^^Vl-^ then

lim -\n\\DxF
n{<o)v\\= Xi(x, a>);

n^oo n

(iii) the functions K = K(X, co), dt = dt(x, co) = dim V[xio)-dim V'(x^w) and Xi =
Xt(x, w), i = 1, 2 , . . . , K, are r-invariant;

(iv) the subspaces V[x><o) depend measurably on (x, <o) and are DF-invariant

DxFiaWi^^V^^y,

(v) (/ie asymptotic behaviour of the exterior power is described by the following
formula:

l i m - l n | | ( D x F " ( W r | | = £ d,(x, <o)Xi(x, co) + /• ^ (x , « ) ,

where I + Y. di(x,w) = rand0<l<dj(x,cj).

3.2. COROLLARY (see c.f. [FHY, Proposition 1], [P, Theorem 1.1.1]). Let (x, u ) e A
and set xn = F"(oo)x, &>„ = dn<o, A = Xt(x, to), /u, = Xi+i(^, w), A < /A. Then for any a > 0
(here is a function C(n) = C(x, io,a,n)>l such that for all n, k > 0

(i) ||DXnFfc(«„)«|| s C(n) e(A+o)k||i;|| /or any ue V ^ , ^ , ;
(ii) ||DXnFlc(wn)w|| & C - 1 (n) e(M~a)k|| w||/oranyw/rom the orthogonal complement

(VlXn,u,n))
±"ofV{Xnii0n)inTXnM;

(iii) the angle between DXnF
k(con)V'{Xna>n) and DXrjF

k(a)n)( V\Xn >a,n))
x is greater than

C-\n)e~ak-
(iv) the function C(x, co, a, n) can be chosen to depend measurably on (x, co, a) and

tosatisfyC(n)<C{0)ean.

The following result produces a non-random DF-invariant filtration.

3.3. THEOREM [Ki]. Suppose Q is ergodic (see Definition 2.4) and

IIDJ-'H) dQ(x) d/*(/)<oo. (3.2)

Then for Q-a.e. xe M there exists a measurable filtration of (non-random) subspaces

0 = L°c=Lxc= • • • <=L'X=TXM

and a sequence of (non-random) numbers

-oo < A, < • • • < A, <oo
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such that

(i) l im-ln| |DxF"(w)| | = A, Qxv-a.e.;
n-»cc n

(ii) ifveVMJ-1 then

lim-ln||DxF"(w)u||=A, Qxv-a.e.

(iii) the subspaces L'x depend measurably on x and are DF-invariant

DxF(co)Lj
x = Lj

FMx Q x v-a.e.

In [C] a similar result was proved under stronger assumptions.
The next result establishes a relation between the random nitration given by

Theorem 3.1 and the non-random filtration given by Theorem 3.3. The functions Xt
are clearly T- invariant, and hence constant for an ergodic Q. Therefore, there exist
1 < i, < i2 < • • • < i, < K such that \j = ^ (x, a>) Qx v-a.e. The next statement follows
immediately from Theorems 3.1 and 3.3.

3.4. COROLLARY [Ki]. (i) LJ
X^ V'{x ^ Qx v-a.e. and filtration L is the maximal non-

random subfiltration of filtration V in the sense that for Q-a.e. x e M and any v e TXM

v({(oen:veVi^:1
)\Li}) = 0

(ii) Let (fim, vm) be the direct product of m= dim M copies of (fl, v), then

n = l

for Q x vm-almost every (x, w, , w 2 , . . . , &>m).

Let r > 0 be the injectivity radius of M. If dist (x,y)< r, denote by P(x, y): TXM -»
TyM the parallel translation from x to y along the unique shortest geodesic connect-
ing x and y. For any points x,yeM and tangent vectors v 6 TXM, w e TyM define

Ml+ 11 HI if dist(x,,y)>r
dist (v, w) = •

'•\v-P(y,x)w\\ if dist (x, y) < r.

For Ex <=: TXM and Ey c TVM define

dist (Ex, E) = max min dist(u, w). (3.3)
u e Ex wtEy

If Dx: TXM -* TXM and Dj,: TyM -» T^M are linear maps, define

J- , ^ ^ x fllDx|| + ||O,|| if max (dist (x, y), dist (x, y)) > r
dist (Dx, Dv) = 1 (3.4)

11| Dx-P(j?, x )°D y °P(x , y)|| otherwise.

3.5. Definition. Let A<=M. A family {Ex}, xe A, of subspaces Ex^ TXM is called
Holder continuous in x with exponent a , 0 < a < l , and constant Ch > 0, if for any
x,yeA

dist (£x,ig<C,,(dist(x, >>))".
For a diffeomorphism f:M^M and for a number a, 0 < a < 1 define

dist(Dx/,Dy/)
. = sup||Dx/|| + sup - - - . (3.5)x,y

https://doi.org/10.1017/S0143385700004107 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004107


362 M. Brin and Yu. Kifer

3.6. LEMMA. Let

I b (3.6)

Then
(i) for any 5 > 0 and v-a.e. (oeil there exists Cs(co) such that ||DFn(&»)||o- —

Cs(a>)ea", n = l , 2 , . . . ;
(ii) for v-a.e. u> eil there exists C(w) such that

f [ | | D F j ( o J ) | | C T < C ( t o ) e
2 b " , n = l , 2 , . . . . (3.7)

i = l

Proo/ Let fin = /n{/: ln+ HD/H,, > 5/i}. Then

oo> f ln+||Zy|Ud/*(/)> I 5n(Mn-Mn+1) = 5 X Mn
J n=O n=l

and (i) follows from the Borel-Cantelli lemma.
To prove (ii) note that, by the ergodic theorem, for v-a.e. coed

- In fl WDFMW. * \ In \\Df\\~df*(f)*t>. D

3.7. THEOREM. Let fx, satisfy (3.2) and (3.6), let Q be an ergodic invariant measure
with the corresponding set Aq, and let the transition probabilities P(x, F) have continuous
densities p(x, y). Then the subbundles Lj

x,j = 1 , 2 , . . . , I, from Theorem 3.3 are defined
and Holder continuous on Aq.

Proof. By ergodicity, the characteristic exponents X\, • • •. X« a r e constants on a
subset A c A of full Q x ^-measure in Mxil. Fix I ' <K and set a = (Xi+\~xi)l^-
Consider the following sets

A^ = {(x, w ) e A : C(x, a>, a, 0) < N, C(a>) < N},

AN(o)) = {xeM: (x,a))eAN),

where C is the function introduced in Corollary 3.2. Note that (Qx J/)(AJ V)-» 1 as
N -»oo.

3.8. LEMMA. For any N>0 there exist CN, aN>0 such that

dist(VJx>w), v;y , ( u ) )<CN(dist(x,>'))a~

for any (x, co), (y, (o)e\N, i.e. V\xa>) is Holder continuous in x on AN.

Proof. It follows from Corollary 3.2 and Lemma 3.6(ii) that the assumptions of
Corollary 5.3 are satisfied for I'-a.e. sequence of diffeomorphisms w = {/, , / 2 , . . . } e
n , ^ e s u p p (fj.). Therefore the subspace V{x w) = Ex is Holder continuous in x on
the set AN(w) with exponent and constant depending only on *, + a = A, xi+i-a = /x,
a=K*,+i -X,) , and N. •

We will now show that L'x is Holder continuous in x on a subset of M of large
Q-measure. To do that we fix e > 0 and choose N so that

(Qxv)(AN)>l-e.
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Then

(Qx vm){(x, « , , . . . , com): (x, (on)i AN for some «}< me,

where m = dim M. Therefore

« ? x vm){{x, « , , . . . , u)m): (x, w J e A N , n = l , 2 , . . . , m } > l - me.

Hence, by Corollary 3.4(ii) and Lemma 3.8, there is a set AE <= M xilm such that
m

(i) Pi V/x „ , = L{ for any (x, tol,..., wm) e AE;
n = l

(ii) the subspaces V'(x „ (, n = 1,2,... , m, are uniformly Holder continuous in x;
(iii) ( £ > x ^ ) ( A s ) > l - m e .

By ergodicity, dim L'x is constant <?-a.e., denote it by d. By the Fubini theorem,
there is an m-tuple (co°, co°, • • •, co°m) and a subset r \ <= M, Q ( r j > 1 - me, such that
the subspaces Vxn = V'>x ^i,, w = 1 , . . . , m, are uniformly Holder continuous in x on
Fe, their intersection is L'x and dim Lj

x = d for any x e Ff.

3.9. LEMMA. For any X E F £ there exists r = r(x) > 0 such that V is Holder continuous
with some constant and exponent on Fe fl B(r, x), where B(r, x)cz M is the ball of
radius r centred at x.

Proof We first use a coordinate chart at x to identify a small neighbourhood U of
x in M with a small neighbourhood in Rm. This allows us to identify any subspace
of TyM, yeU, with the corresponding subspace of TXM. Denote by V^n the
orthogonal complement of

y e r e H U, n = 1, 2 , . . . , m. It is easy to see that the subspace V^„ depends Holder
continuously on y e r e since Vy<n does. For every n = 1, 2 , . . . , m fix a basis eni(x), i =
1,2, . . . , £„ , of V£n. Denote by en/(y) the orthogonal projection of eni(x) onto
Vyt „, _y e r e n U. Then the subspace Vy_„ is the space of solutions of the following
linear system:

where (,) denotes the standard inner product in W". Recall that Vy = P|™=1 Vyn and
hence the subspace L'y is the set of solutions of the system of linear equations

<v,eni(y)) = 0, i=l,...,kn,n = \,...,m. (3.7)

The coefficients of this system are Holder continuous functions of y e FE D t/. Since
dim LJ

y = d, the dimension of the space of solutions of (3.7) is d. In particular, there
is a subset of m — d equations which is equivalent to the whole system (3.7) at x
and a non-zero (m-d)-minov of that subsystem at x. If r(x) is small enough, the
corresponding minor is uniformly bounded away from 0 for yeB(r, x ) f i r e and
the corresponding subsystem is equivalent to (3.7). Any scheme of solving m — d
linear equations applied consistently to different y e B(r, x) D r e will produce a basis
of L'y depending Holder continuously on y. This implies the Holder continuity of
L' on B(r,x)firE. •
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Let F c re be a closed subset with

Q ( 0 > l - 2 m e .

Cover F by finitely many balls -B(r(x,)/2, xt), i = 1, 2 , . . . , TV,, where r(xy) are from
Lemma 3.9. By Lemma 3.9, the subspace L'x is Holder continuous on each intersection
re n B(r(Xj), Xj). Let Cj be the worst constant and a be the worst exponent. If
x, yeT and dist (x, y)<\ min, r(x<), then x and y lie in one of the balls, and therefore

For a bigger constant C2 we have
dist (Li, LJy) < C2(dist (JC, y))a for any x j e T .

We will now use the invariance of V under the random diffeomorphisms to show
that U is Holder continuous on Aq. Since the invariant density q is positive on Aq

and since Q(r )> l -2me, we can choose e so small that the volume of T is big
enough:

m(T)> m(Aq)(l-(3pm{Aq)r
i),

where p = max p(x, y). Then for any x e Aq

-iPUA,\D = J p(x,y)dm(y)<p-m{Aq\r)<i

On the other hand, by (2.1), P(x, Aq) = 1 and therefore P(x, T) > f. Denote by
the set of diffeomorphisms / such that supx ||Dxf\\ < C and for any z, we M and
any subspaces Sz <= TZM, S^ c T^M

dist (DJ~lSz, Dwf~lSw) < C(dist (Sz, S J + dist (z, w)).
Choose C3 so that /x(^(C3))>§. Then for any x,yeAq there is a diffeomorphism
fxy=fe&(C3) such that fxJy&T. Therefore if LJ

X and LJ
y are defined, then for

f=fxy we have
dist (I/x, L'y) s C3(dist (L}x, L}y) + dist (fx,fy))

s C3(C2+ l)(dist {fx,fy))a < C3(C2+ l)C?(dist (x, y))a,

Hence the distribution 1/ is Holder continuous in x with constant Ch = C3
+a(C2+1)

and exponent a on the set of full Q- measure in Aq where it is defined. By the
uniform continuity, LJ

X can be defined for any X E A , S O that V is Holder continuous
and invariant under any fe supp (jx). •

We extend by continuity the subbundles LJ, 1 < J < / , to the set Aq and in what
follows use the same notations for the extended subbundles. Since L is DF-invariant,
the statement of Corollary 3.4 holds for any xeAq.

3.10. COROLLARY. Using the notations of Corollary 3.4, ifxeAq then L{CL V'{X m)

v-a.e. and there exists a subset Cl™ of full vm-measure in Clm such that(~)™=l V'{'x w }= Ux

for any ( w , , w 2 , . . . , &>m)efl™.

4. Invariant foliations for random diffeomorphisms
In this section we prove that if A, = xtj < 0, then the subbundle I! is integrable, see
Theorem 4.2 below. Its integral manifolds WJ

X are contracted in a certain probabilistic
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sense and form a foliation Wj invariant under any diffeomorphism from the support
of /*. Throughout this section we assume that M is compact.

The version of the stable manifold theorem for a sequence of random diffeomorph-
isms F, , F 2 , . . . , Fn,... formulated below follows immediately from Theorem 5.1
in [Ru] and Theorem 5.1 in [Ru 1]. We keep the notations of Theorem 3.1 introduced
at the beginning of § 3.

4.1. THE STABLE MANIFOLD THEOREM (see also [P], [FHY]). Let (3.6) be satisfied
and let (x,co)eA and £ < 0 satisfy xAx, <o)< f <Xi+i(x, &>)• Then there exist 8 =
8(x, co) > 0 and R = R{x, co, £) > 0 such that

(i) Wfxut) = {y: dist (x,y)< 8 and dist (F"(co)x, Fn(co)y) < Re(" dist (x, y) for
all n>0} is a C1 -submanifold tangent to V[x>u) at x and diffeomorphic with the unit
ball in V;x><u);

(ii) (y, co)eAfor any ye Wfx<ai) and the tangent space TyWfxoj) is V{ytW);
(Hi) for any y,ze W(x<a>), dist {F"{co)y, F"(co)z) < Re(n dist (y, z) for all n >0 ;
(iv) the functions R~l(F"(co)x, 0"co, £) and 8(Fn(co)x, 6"co) may decrease only

subexponentially in n;
(v) denote by W the connected component of Fx(co)x in the intersection of

F^^Wfx^) with the ball of radius SiF^^x, 6<o) centred at F,(w)x; then

The main result of this section is the following theorem.

4.2. THEOREM. Let /j, satisfy (3.2) and (3.6), let Q be an ergodic invariant measure
with the corresponding set Aq, andlet the transition probabilities P(x, F) have continuous
densities p(x, y). Suppose A, = \i, < 0.

Then the subbundle {L{} is integrable in the following sense. There exists a foliation
Wj of Aq into C' complete submanifolds W'x without boundary such that the tangent
space TxW

j
x is L'x for any point xeAq. The foliation WJ is invariant under any

diffeomorphism f from the support of /x. For any x e Aq and v-almost every u> there
exists a neighbourhood W'x>e(a>) of x in W'x such that

lim sup - In diam (F"(co) WJ
X? e((u)) s A;.

n-*oo n

Proof. We first give an outline of the argument. For a n x e A , and a typical sequence
co of diffeomorphisms /„ e supp (fj.) we will construct a special sequence of norms
HI HI,,. The non-uniformly hyperbolic sequence of matrices DXnfn+1, xn =fnxn_u xo =
x, will be uniformly hyperbolic if the norms ||| |||n are used. Then, after establishing
certain properties of the norms ||| |||n, we will use them to prove that any piecewise
smooth curve, tangent to V and passing through x, is exponentially contracted by
the sequence of diffeomorphisms {/„}, see Lemma 4.5 below. This geometric property
will imply the integrability of V.

Fix x e Aq and co e O = (Diff2 (M) f , co = {/„}, such that L{ c y ^ w), cf. Corollary
3.10, (x, co)eA (see Theorem 3.1), and the numbers ^ ( x , o))<^.+ 1(x, co) are typical
values (recall that, by ergodicity, the exponents are constant Q x i^-a.e.). Let <pn:N->
M be the exponential map at xn =f"x,f =/„ ° • • • °f, restricted to a neighbourhood
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Jf'c Rm = TXnM of the origin, m = dim M. By the compactness of M, we may choose
Jf so small that all <pn's are one-to-one with uniformly bounded first and second
derivatives of q>n and <p~'.Set/n = <p~x ° fn° q>n_x: N ->Um and introduce the following
notations:

Tn = Djn+u Es
0=D<p»\Vlw)), E"O = (ES

O)\

Es
n+1 = TnE

s
n = D<p~U v;y+lx> 8 . + , u ) ) , Eu

n+l = TnE"n,
'rk y -|-- c>/c T-fc c-5 rr/( 'rk I r U

where n, fc > 0, T° = id, 5° = id, t/° = id. Set

and fix a > 0 such that

where a is the Holder exponent of U. By Corollary 3.2 there is a function C{n)
such that for all n, k > 0

| |S*wl£C(n)e(A+a)Vll, ^e^'-. (4-2)
Ht/^-IIsC-1^)^-^^"!!, «"e£^, (4.3)

| | i / | |<C(n)H, ||p"||<C(/i)||t;||, (4.4)

where t) = Ds + D > s 6 ^ , i ) " e £ ; ,

l<C(n)<C(0)c™. (4.5)

The following sequence of norms is usually called the Lyapunov metric or the metric
adjusted to the dynamical system:

\\\vs\\\n= I e-ix+2a)k\\Sk
nv'\\, vseE*n, M > 0 , (4.6)

k = 0

\\\vu\l= 1 e{»-2a)k\\(Uk
n_ky>V

u\\, v"eEu
n, « > 0 , (4.7)

(c=O

III«III- = III«1I- + III«"II|S f o r o = « I + i;", vseEs
n, v" e E"n. (4.8)

4.3. LEMMA [BN], The sequence of norms {\\\ \\\n} satisfies

(i) | | |Snp' | | |B + 1se*+ 2l | i , l | n , vseEs
n,

(ii) |||C/^"||U+1>e--2a!||t;"|JU, vueE"n,

(in) $\\v\\ s |||i;|||n < C, e2a"||«||, wftere C, = 2C2(0)/(l - e"").

Proof. We have

|||Sn«'|||B+1 = I e^+2a)"||5fc
n+1SnI;

s||se
A+2a I e ^ ^ ^ ^ ' l l S r ' ^ H < e

A+2a|||i;|||n,
fc = 0 fc = 0

and hence (i) holds. Similarly

and hence (ii) holds.
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To prove (iii) we first note that the zero terms in the right-hand sides of (4.6) and
(4.7) are ||us|| and \\v"\\. Therefore \\\vs\\\n > ||us|| and \\\v"\\\n > \\vu\\. This implies the
left inequality in (iii) since

To prove the right inequality observe that, by (4.2) and (4.5),

l l l w l l l n ^ I e C ( n ) e \ \ v \ \ ^
k=o l-e

Similarly, by (4.3) and (4.5),

I l l - i n n t^ ~ ~ \ - - • - / - || " || — 1

jt=o i e
By the last two estimates, (4.6) and (4.7),

D

Denote by distn and lengthn the distance in Rm and the length of curves induced
by the norm ||| |||n. Then, by Lemma 4.3(iii)

id is t (y ,z)<dis t n (7 ,z)sC1e2 a ndis t (> ' ,z) (4.9)

for any points y, z e Um, and

\ length (o-) < lengthn (a) s d e2a" length (a-) (4.10)

for any piecewise smooth curve a. For any matrix T and any vector v we have, by
Lemma 4.3(iii)

and hence

|||Tt)|||n+1<2C1e2"("+1)||rM||l;|L. (4.11)

Let ye Jf be such that <pn(y)e Aq. Set

Since V is Holder continuous with exponent a and constant Ch, the distributions
Lj

n are uniformly Holder continuous with the same exponent a and constant Ch.

4.4. LEMMA. Let<pn(y)e Aqandletve LJn{y) and denote by vs and v" the components
of v that are parallel to Es

n and E" respectively, v = Vs + vu. Then

IMIU
for some constant C4.

Proof. Denote by ux the component of v perpendicular to £„. Since LJ
n(0)<= E5

n

and lin is Holder continuous, by (4.9)

|| |t)i |<C2(dist(y,0))Q||i;| |s2C2(distn(y,0))"||u||
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for a constant C2. Therefore by (4.4) and (4.5)

Hence, by Lemma 4.3(iii),

1\\V\\

Denote by / " the composition / „ • / „ . , « • • -o/ , .

4.5. LEMMA. Lef w iw addition satisfy Lemma 3.6(i) and /ef /? be such that

A+2a<j3<min( -6a /a , -3a /c r ) , (4.12)

where a is the Holder exponent of V and a satisfies (4.1). Then there exists e > 0 such
that for any piecewise smooth curve y : [ 0 , 1 ] - » * V w M y ( 0 ) = 0, l e n g t h ( y ) < e a n d
y ( 0 e LJ

o(y(0), te[0,1], the following holds:
(i) fn(y(t)) effort e [0,1], n>0 ,
(ii) length* (/" o r ) < e3" length,, (y), n >0,

(iii) length ( /"°y)<2C 1 e / 3 n length (y), n>0 .

Proof. We first prove (i) and (ii) by induction in n. For n=0 , (i) and (ii) are
obviously true. Suppose (i) and (ii) hold for some positive integer n. Set yn(?) =
/" (y(0) , te[0,1], and denote by Tn(t) the differential Dyn(t)fn+l. Let C4 be an
upper bound for the first and second derivatives of /„. We have for any te [0,1]

\\\TM)yAt)\\\n+i^\\\(TM)-Tn)Ut)\\\n+i + \\\Tnyn(t)\\\n+l. (4.13)

By (4.11) and (4.10)

<2C, e2a<"+1)| |D/n+im2 length,, (yj)"-|||%,(r)|||B. (4.14)
Denote by ys

n(t) and y"(t) the components of yn(0 parallel to Es
n and E"n respec-

tively. Then
ll|TB7n(r)|||B+1s|||rny

I
n(0|IUi + |||rn7^(0|||n+,. (4-15)

It follows from (4.11) and Lemma 4.4 that

<2C, e
2 a ( n + 1 ) C 4 e

3 a "
By Lemma 4.3(i),

eA+2i|yn(/)|||n.

Set 5 = a in Lemma 3.6(i). We now put together (4.13)-(4.16) and use the inductive
assumption to obtain
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where C5 is a constant and Ca(<o) is from Lemma 3.6. By our choice of a and @
(cf. (4.1) and (4.12)), it follows from the last estimate that for small enough e > 0

This implies (ii) with n replaced by n +1 since

length n+1(yn+,) = f |||Tn(r)yn(f)||Ui dt.
Jo

Statement (i) follows from (ii) if e is less than half the radius of the biggest ball
centred at the origin and contained in N. Statement (iii) follows immediately from
(ii) and (4.10). •

We are ready now to prove the integrability of V. Let xeAq. Then, by Corollary
3.10, there is a subset H™ of full ^"-measure in D.m such that

H V'^^^Li forany (« , , a>2,..., a j j e f l ? . (4.17)

Since Q is ergodic we may assume that the characteristics exponents are constant
for all w,'s. Fix such a collection (w , , . . . , (om) and a number a > 0 satisfying (4.1)
with A =Xij, /•<• =*., + !• Choose /3<\+3a satisfying (4.12) and set £= A +4a < /x.
By Theorem 4.1, there are local stable manifolds Wfxa,nh n = 1 , . . . , m. Denote by
W'xc the set of points lying on piecewise C'-curves y: [0,1]-* M such that y(0) =
x, y(t) e I/y(0» 0 - ' - l , and length (y) < e. If e is small enough, we can lift such a
curve y to the neighbourhood N<=Rm = TXM, apply Lemma 4.5 and obtain that

length (F"(w) ° y)<2C,Cg e^" length (y), (4.18)

where C6 is an upper bound for the norm of the differential of the exponential map
restricted to Jf and for the inverse. Assume now that e is less than the sizes 8(x, u>n)
of the local stable manifolds WfX)(Un), n = 1, 2 , . . . , m. Then by Theorem 4.1 and (4.18)

We use a coordinate chart at x to identify a small neighbourhood of the origin in
IRm. Recall that dim L{ = d. Let y,ze W'xc<= W,y^z. Then the unit vector r) =
(z — y)/\\z — y\\ is close to Vj'x ^ } for every n. Therefore 17 is close to L'x and does
not belong to the orthogonal complement L'x of Li. Let Py denote the (m — d)-plane
parallel to Ux and passing through y e U, Px = I / / . For a tangent vector w E UX at
x let Px>w be the (m-d + l)-plane {tw + z: teU, ze Px}. If U is small enough, then
for any yePxwD U the intersection LJ

yf]PXtW is one-dimensional and there is a
unique vector vw(y) e L'y D Pxw whose projection onto the f-axis in Pxw is w. Clearly
«„,(•) is a continuous vector field on t/nPx v l , which depends continuously on w.
Consider now the differential equation y = vw(y) in LTl Px<n,. We claim that for a
small enough U there is a unique integral curve y = gw(t) passing through x. To
see that, note that any such curve is tangent to V and therefore lies in W. Suppose
there are two different integral curves y = g , (0 , ' = 1, 2, g,(0) = 0, gi(f0) ^ g2(t0). Let
77- denote the orthogonal projection onto L'x. Then Tr(gl(t)) = 7r(g2(t))= tw; i.e.
g,(/) —g2(0£ i-i1, which is a contradiction.
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0 = ln \f(x)\dx> \n\f'(x)\dx, 

with equality if and only if | / ' | = const. Assume now that / does not preserve the 

Since vw depends continuously on w, the uniqueness of g„ implies that it depends 
continuously on w. If w, and w2 are not collinear, then the integral curves g„, and 
g„2 lie in different planes and hence gWl(t) Τ  g„2(t) for any t>0. Therefore, if U is 
small enough, then the restriction τ of  the map w ^ g l v ( l ) to ΦΥΟ U is a homeo-
morphism. Since no two points from WJ

X£ have the same projection on L{, for a 
small e and properly chosen U the image of τ  is W { e and the plane L'x is clearly 
tangent to the image at x. Let σ e WJ

xS, £<e. Then the above argument shows that 
for 8 < s - e the set W'vS is a C°-submanifold that coincides locally near σ with 
WJ

X e and is tangent to L'y at y. It follows that W{_ e is a cf-dimensional C 1 -
submanifold tangent to V. 

Let W-i denote the set of points lying on piecewise Ρ'-curves passing through x 
and tangent to L'. It follows from above that each set W'x is a complete submanifold 
of Aq which depends continuously on x in the Ρ'-topology. Clearly the sets  WJ

X 

partition Aq. Since Lj is invariant under any diffeomorphism / from the support 
of measure /J,, we have that f(WJ

X)= WJ

FX, and hence the foliation W' with leaves 
W{ is also invariant under any such diffeomorphism. This finishes the proof of 
integrability of V. 

Let xe Aq. Then the set {o>: Z/ X c y[J

x ψ ) } = ο υ has full ^-measure by Corollary 
3.10. If coeflx and e(x, w) = e(w) is small enough, then, by Lemma 4.5, the set 
Wjx,t(u) is contained in the local stable manifold Wfx<ol). Hence, by Theorem 4.1 

lim sup — In diam (F"((o)WJ

x E ( o ) ) ) < Â . 

This finishes the proof of Theorem 4.2. • 

Since < 0 and therefore, by Corollary 3.4, any vector tangent to Lj is exponentially 
contracted by DF"((o) with probability 1, one may wonder whether the size e(x, ψ) 
of the 'stable' manifold WJ

X can be chosen independently of w and whether the 
global integral manifolds WJ

X are exponentially contracted by F"(w) with probability 
1. An obvious sufficient condition for this to be true is given in Remark 4.6. However, 
as Example 4.7 shows, in general the answer to both questions is negative. 

4.6. Remark. Let A, < 0 and assume that 

l i m - I n | |DF"(f t ) ) |L J | |<A<0 v-a.e., 

where A < A J + 1 . Then for a.e. w all vectors are uniformly contracted by DF"((o) and 
hence any global integral manifold WJ

X is exponentially contracted by F"{w) with 
asymptotic rate A. 

4.7. Example. Let / be a diffeomorphism of the circle S1 which we view as the 
interval [0, 1] with the ends identified. Then 1 = length ( / ( [0 , 1]))=Φ\f(x)\ dx. By 
the Jensen inequality, 
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Lebesgue measure, i.e. | / ' | is not constant. Then

ln|/'(x)|dx<0. (4.19)J:)0

Let 0n, n = 1, 2 , . . . , be a sequence of independent random variables uniformly
distributed on [0,1] and consider the sequence of independent random diffeomorph-
isms Fnx = / (x ) + 0n(mod 1), « = 1, 2 , . . . . Then for each x the transition probability
P(x, •) of the Markov chain Xn = FnXn_, is the Lebesgue measure m, and hence m
is invariant under Xn. Set F" = Fn °- • -° F, andlet^ = ̂ (x, a>) denote the characteris-
tic exponent. Since m is obviously ergodic, the ergodic theorem implies that

^(x, &>) = hm — In \(F (w)) (x)| = hm — 2, >n |FJc(F x)|

= [\n\f(y)\dy
Jo

for a.e. to. The last integral is negative by (4.19), and hence A"<0. It follows from
Theorem 4.2 that for any xeS1 and a.e. sequence of diffeomorphisms a> there is a
neighbourhood Wx e of size e = e(x, w) that is exponentially contracted by F"(a>).
Suppose that e(x, « ) > e o > 0 for some x and v-a.e. cu. Then e(F,x, 0w)>aeo for
a.e. w, where a =min |/' |. Therefore, by the definition of F1; e(x, w)>ae0 for a.e.
(x, a)). Hence there exist finitely many points x , , . . . , xk such that their ae0 neigh-
bourhoods cover S1 and e(xi,w)zae0 for i»-a.e. u>. It follows that there is an OJ
such that F"(w) contracts the whole circle exponentially. This is a contradiction.
Hence the size of the local stable manifold is really random in this case. •

4.8. Remark Recall that stochastic flows generated by stochastic differential
equations can be represented as compositions of independent identically distributed
random diffeomorphisms. In this case the integrability condition (3.6), which was
used in the proofs of Theorems 3.7 and 4.2, follows from Sobolev's embedding
theorems provided the coefficients of stochastic differential equations are smooth
enough. Moreover, even if the coefficients are not smooth enough, the main auxiliary
statement, Corollary 5.3, can be obtained by using Gronwall's inequality and
arguments similar to Totoki's proof of the multidimensional-time generalization of
Kolmogorov's criteria for the path continuity of stochastic processes (see[E, p. 302]).

5. Appendix: Holder continuity of invariant subbundles
5.1. Definition. Let A be a (not necessarily complete) metric space, H be a (separ-
able, complete) Hilbert space and {Ex}, xe A, be a family of subspaces, Exa H.
The family {Ex} is called Holder continuous in x with exponent a , 0 < a < l , and
constant L, L > 0, if for any x, ye A

def

dist (Ex, Ey) = sup inf dist (v, w) < L • (dist (x, y))a.

Let X be a metric space, d i am(X)<l , / f be a Hilbert space and {7]-(x)},/ =
0 , 1 , . . . , xe X, be a sequence of families of bounded linear operators 7](x): H -» H.

https://doi.org/10.1017/S0143385700004107 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004107


372 M Brin and Yu. Kifer 

Set 
T n ( x ) = r „ ( x ) o . . - o r 1 ( x ) . 

5.2. Theorem. ForC>\ and A < jx let A C A m < = X be the {maybe empty) set ofpoints 
x for which there exists a splitting 

H = EX®EX

X 

such that for any positive integer n 

\\T"{x)v\\<Ce*"\\v\\ ifveEx, 

| | T " ( x ) w | | > C - 1 eM"||w|| ifweEx

x. 

Suppose there is a > max (A, 0) and 0 < B < 1 such that 

\\Tn(x)-T"(y)\\^ea"(dist(x,y)f 

for any positive integer n and any x, y e X. 
Then the family {Ex} is Holder continuous in x on Ac,\yli with exponent 

((A - / i ) / ( A - a ) ) B and constant 3 C 2 e"k. 

Proof Set 

K"x = {veH: \\T"(x)v\\^2Cex"\\v\\}. 

Let v e K", v = vK + vx, where vK e Ex, vx e Ex

x. By the triangle inequality 

|| T"(x)v\\ = || Tn(x)(vx + vx)\\ > || T"{x)vx\\ - ||T"(x)v"|| > C" 1 e""|MI - CeA"||t>||. 

Therefore 
\\vx\\ =£ Ce-""(|| T"(x)v\\ + CeA"||«||) < 3 C 2 e ( A ~ M ) " H 

and 
dist(u, Ex)s3C2 eix-»)n\\v\\. (5.1) 

Fix a, > max (a, A) and set 
y = ( A - a , ) / / 3 . 

Let x, y e A c ,A, m - Since -y < 0, there is a unique non-negative integer n = n(x, y) such 
that 

ey(n+',)<dist(x,y)seyn. (5.2) 
For any w e £ A 

| | r ( x ) w | | 5 = | | T " ( y ) w | | + | | r ' , ( x ) - r " ( j ) | | ||w|| 

< CeA"||w|| + e a n (d is t (x, y))*31| w|| 

< ( C e A n + e a n e^")|| w|| < 2CV"|| w||. 

Hence weK" and £ A c K x . By symmetry, Ex <= x ; . It follows from (5.1) and (5.2) 
that 

d i s t ( £ A , E A ) < 3 C 2 e ( A - M ) " < 3 C 2 e M - A ( d i s t ( x , y ) ) ( A - / i ) / r 

= 3 C 2 e " - A ( d i s t ( x , y ) ) ( ( A - * ) / < A - a ' ) ) A • 

5.3. C o r o l l a r y . Let M be a Riemannian manifold with injectivity radius r > 0 and 
let if}, i = 1, 2 , . . . , be a sequence of differentiate maps f: M -» M suc/i f/iaf f/ie 
differentials Df satisfy 

ft M ^ C e - " , « = 1 , 2 , . . . , (5.3) 
i= 1 

wfcere a, C \ > 0 , 0 < o - < 1. Set f" =fn°fn-i°- • '"fi- F i x c > 0 A < M let 
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Ac A M be the (maybe empty) set of points x for which there exists a splitting

TXM = EX®EX
X

such that for any positive integer n

\\Dxrv\\<CeK"\\v\\ ifveEx,

||Dxf
nw|| >C"'eM"||w|| ifweEx

x.

Then the family {Ex} is Holder continuous in x on AC,A,M with constant 3C2 e'l~k and
exponent a = ((\-fji)/(\-b))a, where b = ln (2C\) + 2a -a In r-H |A |.

Proof. We will need the following lemma.

5.4. LEMMA. Forn>l

dist (DJ\ Dyf
n) < e^dist (x, y)Y. (5.4)

Proof. Assume that dist (f"x,f"y) > r for some n >0. Then, by (3.5),

r<dist (/"*,/»< f[
1 = 1

-< — 1 _ — anand hence, by (5.3), dist (x,>0> rC, ean. Therefore, by (3.4), (3.5), (5.3) and by
the choice of b, for any m > n we have

dist (Dxf
m,Dyf

m) <2 ft ||D/;||(r<2C!e
am<emfc(dist(x->>)r,

; = i

where we used the inequality dist {DJm, Dyf
m)<\\Dxf

m\\ + \\Dyf
m\\.

Hence it suffices to prove (5.4) when dist (f'x,f'y) < r for all i = 0 , 1 , . . . , « . Note

that (5.4) follows from (5.3) and the inequality

H) (5.5)

which we now prove by induction. For n = 1 (5.5) follows from (3.5). Assume now
that (5.5) holds true for n = k. For n = k+\ using (3.4), (3.5) and the inductive
assumption we have:

fk+lx)Dfkyfk+, o P{fkx,fky) o P(fky,fkx) ° Dy/fc « P(x, y)\\

DJk - P(fk+ly,fk+lx) o Df>yfk+l o P(fkx,fky) o DJk\\

\\P(fk+ly,fk+lx) o D/ N/k + 1 o P(fkxjky) o DJk

k + l k l
 1 o P(fkx,fky) o P(fky,fkx)« Dy/ k c P(x, y

fc / n + I | | • dist(Dx/\ Dy/k)

i = l
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since

k x f k y hdist (fkx,fky)<h HD/ilU. D
i = l

Fix any points x j e AC,A,M and set

T,(x) = DJ\ T,(y) = Pif'yj'x) ° £>,/' ° P(x, y).

Identify the tangent spaces 7/c
xM by any sequence of isometries with H = TXM and

consider the discrete set X = LC=o (/"* u / " j ) w i t n t n e following distance function:
dist' (f'x,f'y) = dist (f'x,f'y) if this distance is not greater than r, and the distance
is r in all other cases. By Theorem 5.2 and Lemma 5.4,

dist (Ei, Ek
y)< 3C2 e""A(dist (x, >>))"• D
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