ON DUALITY IN COMPLEX LINEAR PROGRAMMING

Dedicated to the memory of Hanna Neumann

B. D. CRAVEN and B. MOND

(Received 10 April 1972)

Communicated by M. F. Newman

Introduction

In [3], Levinson proved a duality theorem for linear programming in complex space. Ben-Israel [1] generalized this result to polyhedral convex cones in complex space. In this paper, we give a simple proof of Ben-Israel's result based directly on the duality theorem for linear programming in real space. The explicit relations shown between complex and real linear programs should be useful in actually computing a solution for the complex case. We also give a simple proof of Farkas' theorem, generalized to polyhedral cones in complex space ([1], Theorem 3.5); the proof depends only on the classical form of Farkas' theorem for real space.

Notation and preliminary results

Denote by \mathbb{R}^n (resp. \mathbb{C}^n) *n*-dimensional real (resp. complex) space; denote by $\mathbb{R}^{m \times n}$ (resp. $\mathbb{C}^{m \times n}$) the vector space of all $m \times n$ real (resp. complex) matrices; denote by $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_i \ge 0, 1 \le i \le n\}$ the non-negative orthant of \mathbb{R}^n ; and for $x, y \in \mathbb{R}^n, x \ge y$ denotes $x - y \in \mathbb{R}^n_+$. If A is a matrix, then A^T, \overline{A}, A^H denote its transpose, complex conjugate, conjugate transpose.

In this paper, a cone in \mathbb{R}^n means a closed polyhedral convex cone (in terminology of [1]), defined here as a finite intersection of closed half-spaces in \mathbb{R}^n , each half-space containing 0 in its boundary. Thus S is a cone in \mathbb{R}^n iff there is an integer r and $K \in \mathbb{R}^{r \times n}$ such that

$$S = \{x \in \mathbb{R}^n \colon Kx \ge 0\}.$$

(Since trivially $S + S \subset S$ and $\alpha S \subset S$ for $\alpha \in R_+$, S is a convex cone by usual definition.)

The dual cone S^* is defined as

(2)
$$S^* = \{ y \in R^n \colon x \in S \Rightarrow y^T x \ge 0 \}.$$

Therefore, if S is defined by the matrix K,

$$S^* = \{ y \in R^n \colon Kx \geqq 0 \Rightarrow y^T x \geqq 0 \}$$

Since, by Farkas' theorem [2]

(3)
$$[Kx \ge 0 \Rightarrow y^T x \ge 0] \Leftrightarrow [\exists z \ge 0: y = K^T z],$$

(4)

$$S^* = \{ y \in \mathbb{R}^n : \exists z \ge 0 : y = K^T z \}$$
Since $v \in (S^*)^* \Leftrightarrow [y \in S^* \Rightarrow v^T y \ge 0]$
 $\Leftrightarrow [z \ge 0 \Rightarrow v^T K^T z \ge 0]$ by (4)

(5)
$$(S^*)^* = S$$
.

 $\Leftrightarrow Kv \geq 0$.

Each vector $z \in C^n$ may be written z = x + iy when $x, y \in R^n$; this defines a natural map ρ of C^n onto $R^n \times R^n = R^{2n}$. Define $S \subset C^n$ to be a cone iff ρS is a cone in R^{2n} . (This is not the definition in [1], but is equivalent to it, and its use simplifies the proofs). Thus, by (1),

(6)
$$x + iy \in S \Leftrightarrow [K_1 K_2] \begin{pmatrix} x \\ y \end{pmatrix} \ge 0$$

where K_1 and K_2 are real matrices of appropriate dimensions. Setting

(7)

$$\overline{z} = x - iy \text{ and } K = K_1 + iK_2,$$

 $z \in S \Leftrightarrow K_1(z + \overline{z}) - iK_2(z - \overline{z}) \ge 0$
 $\Leftrightarrow Rz + K\overline{z} \ge 0$
 $\Leftrightarrow \operatorname{Re}(Rz) \ge 0.$

Define S^* as the dual cone of S iff $\rho(S^*) = (\rho S)^*$. Then

(8)
$$u + iv \in S^* \Leftrightarrow \exists w \ge 0 : \binom{K_1^T}{K_2^T} \quad w = \binom{u}{v}$$
$$\Leftrightarrow \exists w \ge 0 : u + iv = K^T w.$$

Note that w is a real non-negative vector.

One version of the duality theorem for real linear programming states that the dual of (P) is (D), where

(P): Minimize $c^T x$ subject to $Hx - b \ge 0$

(D): Maximize $b^T y$ subject to $H^T y = c$ and $y \ge 0$.

Complex duality

We first extend the duality theorem for linear programming to (closed convex polyhedral) cones in real space. Let $S \subset \mathbb{R}^n$ and $T \subset \mathbb{R}^m$ be cones, defined, using (1), by matrices M and K; let $C \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$. Consider the following two problems:

(P1): Minimize $c^T x$ subject to $Ax - b \in T$ and $x \in S$.

(D1): Maximize $b^T y$ subject to $-A^T y + c \in S^*$ and $y \in T^*$.

THEOREM 1. If either (P1) or (D1) has an optimal solution, then both have optimal solutions, and Minimum (P1) = Maximum (D1).

PROOF. Using (1), (P1) is equivalent to

(P1'): Minimize $c^T x$ subject to $K(Ax-b) \ge 0$ and $Mx \ge 0$. Substituting

$$\begin{pmatrix} A \\ M \end{pmatrix}$$
 for H , $\begin{pmatrix} b \\ 0 \end{pmatrix}$ for b , and $\begin{pmatrix} w \\ v \end{pmatrix}$ for y , in (P),

the duality theorem of linear programming shows that the dual of (P1') is

(D1'): Maximize $b^T K^T w$ subject to $A^T K^T w + M^T v = c, w \ge 0, v \ge 0$.

Since from (4), $y = K^T w \in T^*$ and $z = M^T v \in S^*$, (D1') is the same as (D1). Consider the following two problems in complex space, where $S \subset C^n$ and

 $T \subset C^m$ are cones defined by matrices M and K, $c \in C^n$, $b \in C^m$, $A \in C^{m \times n}$. (P2): Minimize Re $c^H z$ subject to $Az - b \in T$ and $z \in S$

(D2): Maximize Re $b^H w$ subject to $-A^H w + c \in S^*$ and $w \in T^*$.

THEOREM 2. If either (P2) or (D2) has an optimal solution, then both have optimal solutions, and Minimum (P2) = Maximum (D2).

PROOF. (P2) can be written as a problem in real space as follows; denoting real and imaginary parts by the suffixes r and i:

(P2'): Minimize $c_r^T z_r + c_i^T z_i$

Subject to
$$\begin{pmatrix} A_r z_r - A_i z_i - b_r \\ A_i z_r + A_r z_i - b_i \end{pmatrix} \in \rho T$$

 $\begin{pmatrix} z_r \\ z_i \end{pmatrix} \in \rho S.$

By Theorem 1, its dual is

(P2'): Maximize
$$b_r^T w_1 + b_i^T w_2$$
.

Subject to
$$\left(-\begin{pmatrix} A_r^T A_i^T \\ -A_i^T A_r^T \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} + \begin{pmatrix} c_r \\ c_i \end{pmatrix}\right) \in (\rho S)^*$$

On duality in complex linear programming

$$\binom{w_1}{w_2} \in (\rho T)^*;$$

where w_1 and w_2 denote the two real vectors involved.

Setting $w = w_1 + iw_2$, i.e., $w_r = w_1$ and $w_i = w_2$, and noting that $(\rho S)^* = \rho(S^*)$, it is seen that (D2') is identical with (D2).

Generalized Farkas Theorem

THEOREM 3. Let $S \subset \mathbb{R}^n$ be a (closed polyhedral convex) cone, $b \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$. Then

$$[Ax \in S \Rightarrow b^T x \ge 0] \Leftrightarrow [\exists u \in S^* \colon A^T u = b].$$

PROOF. Define S, using (1), by a matrix K. Then

$$\begin{bmatrix} Ax \in S \Rightarrow b^T x \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} KAx \ge 0 \Rightarrow b^T x \ge 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} \exists z \ge 0 : b = (KA)^T z \end{bmatrix} \quad \text{by (3)}$$

$$\Leftrightarrow \begin{bmatrix} \exists z \ge 0 : b = A^T (K^T z) \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} \exists u = K^T z \in S^* : A^T u = b \end{bmatrix} \quad \text{by (4)}.$$

THEOREM 4. Let $S \subset C^n$ be a (closed polyhedral convex) cone, $b \in C^n$, $A \in C^{m \times n}$. Then

$$[Az \in S \Rightarrow \operatorname{Re} b^{H}z \ge 0] \Leftrightarrow [\exists w \in S^* \colon A^{H}w = b].$$
$$Az \in S \Rightarrow \operatorname{Re} b^{H}z \ge 0$$

PROOF.

iff
$$\begin{pmatrix} A_r & -A_i \\ A_i & A_r \end{pmatrix} \begin{pmatrix} z_r \\ z_i \end{pmatrix} \in \rho S \Rightarrow \begin{pmatrix} b_r \\ b_i \end{pmatrix}^T \begin{pmatrix} z_r \\ z_i \end{pmatrix} \ge 0$$

iff
$$\exists \begin{pmatrix} u \\ v \end{pmatrix} \in (\rho S)^* = \rho(S^*): \begin{pmatrix} A_r^T & A_i^T \\ -A_i^T & A_r^T \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} b_r \\ b_i \end{pmatrix}$$

by Theorem 3,

iff $\exists w = u + iv \in S^*$: $A^H w = b$.

References

- A. Ben-Israel, 'Linear equations and inequalities on finite dimensional, real or complex, spaces a unified theory', J. Math. Anal. Appl. 27 (1969), 367-389.
- [2] J. Farkas, 'Über die Theorie der einfachen Ungleichungen', J. Reine angew. Math. 124 (1902), 1–14.

[3] N. Levinson, 'Linear programming in complex space', J. Math. Anal. Appl. 14 (1966), 44-62.

University of Melbourne

Melbourne, Australia.

La Trobe University

Bundoora, Vic. Australia.

175

[4]