ON DUALITY IN COMPLEX LINEAR PROGRAMMING

Dedicated to the memory of Hanna Neumann

B. D. CRAVEN and B. MOND

(Received 10 April 1972)
Communicated by M. F. Newman

Introduction

In [3], Levinson proved a duality theorem for linear programming in complex space. Ben-Israel [1] generalized this result to polyhedral convex cones in complex space. In this paper, we give a simple proof of Ben-Israel's result based directly on the duality theorem for linear programming in real space. The explicit relations shown between complex and real linear programs should be useful in actually computing a solution for the complex case. We also give a simple proof of Farkas' theorem, generalized to polyhedral cones in complex space ([1], Theorem 3.5); the proof depends only on the classical form of Farkas' theorem for real space.

Notation and preliminary results

Denote by R^{n} (resp. C^{n}) n-dimensional real (resp. complex) space; denote by $R^{m \times n}$ (resp. $C^{m \times n}$) the vector space of all $m \times n$ real (resp. complex) matrices; denote by $R_{+}^{n}=\left\{x \in R^{n}: x_{i} \geqq 0,1 \leqq i \leqq n\right\}$ the non-negative orthant of R^{n}; and for $x, y \in R^{n}, x \geqq y$ denotes $x-y \in R_{+}^{n}$. If A is a matrix, then A^{T}, \bar{A}, A^{H} denote its transpose, complex conjugate, conjugate transpose.

In this paper, a cone in R^{n} means a closed polyhedral convex cone (in terminology of [1]), defined here as a finite intersection of closed half-spaces in R^{n}, each half-space containing 0 in its boundary. Thus S is a cone in R^{n} iff there is an integer r and $K \in R^{r \times n}$ such that

$$
\begin{equation*}
S=\left\{x \in R^{n}: K x \geqq 0\right\} . \tag{1}
\end{equation*}
$$

(Since trivially $S+S \subset S$ and $\alpha S \subset S$ for $\alpha \in R_{+}, S$ is a convex cone by usual definition.)

The dual cone S^{*} is defined as

$$
\begin{equation*}
S^{*}=\left\{y \in R^{n}: x \in S \Rightarrow y^{T} x \geqq 0\right\} . \tag{2}
\end{equation*}
$$

Therefore, if S is defined by the matrix K,

$$
S^{*}=\left\{y \in R^{n}: K x \geqq 0 \Rightarrow y^{T} x \geqq 0\right\} .
$$

Since, by Farkas' theorem [2]

$$
\begin{gather*}
{\left[K x \geqq 0 \Rightarrow y^{T} x \geqq 0\right] \Leftrightarrow\left[\exists z \geqq 0: y=K^{T} z\right],} \tag{3}\\
S^{*}=\left\{y \in R^{n}: \exists z \geqq 0: y=K^{T} z\right\}
\end{gather*}
$$

Since $v \in\left(S^{*}\right)^{*} \Leftrightarrow\left[y \in S^{*} \Rightarrow v^{T} y \geqq 0\right]$

$$
\begin{aligned}
& \Leftrightarrow\left[z \geqq 0 \Rightarrow v^{T} K^{T} z \geqq 0\right] \quad \text { by (4) } \\
& \Leftrightarrow K v \geqq 0
\end{aligned}
$$

$$
\begin{equation*}
\left(S^{*}\right)^{*}=S \tag{5}
\end{equation*}
$$

Each vector $z \in C^{n}$ may be written $z=x+i y$ when $x, y \in R^{n}$; this defines a natural map ρ of C^{n} onto $R^{n} \times R^{n}=R^{2 n}$. Define $S \subset C^{n}$ to be a cone iff ρS is a cone in $R^{2 n}$. (This is not the definition in [1], but is equivalent to it, and its use simplifies the proofs). Thus, by (1),

$$
\begin{equation*}
x+i y \in S \Leftrightarrow\left[K_{1} K_{2}\right]\binom{x}{y} \geqq 0 \tag{6}
\end{equation*}
$$

where K_{1} and K_{2} are real matrices of appropriate dimensions.
Setting

$$
\begin{align*}
\bar{z} & =x-i y \text { and } K=K_{1}+i K_{2}, \\
z \in S & \Leftrightarrow K_{1}(z+\bar{z})-i K_{2}(z-\bar{z}) \geqq 0 \\
& \Leftrightarrow R z+K \bar{z} \geqq 0 \tag{7}\\
& \Leftrightarrow \operatorname{Re}(K z) \geqq 0 .
\end{align*}
$$

Define S^{*} as the dual cone of S iff $\rho\left(S^{*}\right)=(\rho S)^{*}$. Then

$$
\begin{align*}
u+i v \in S^{*} & \Leftrightarrow \exists w \geqq 0:\binom{K_{1}^{T}}{K_{2}^{T}} w=\binom{u}{v} \tag{8}\\
& \Leftrightarrow \exists w \geqq 0: u+i v=K^{T} w
\end{align*}
$$

Note that w is a real non-negative vector.
One version of the duality theorem for real linear programming states that the dual of (P) is (D), where
(P): \quad Minimize $c^{T} x$ subject to $H x-b \geqq 0$
(D): \quad Maximize $b^{T} y$ subject to $H^{T} y=c$ and $y \geqq 0$.

Complex duality

We first extend the duality theorem for linear programming to (closed convex polyhedral) cones in real space. Let $S \subset R^{n}$ and $T \subset R^{m}$ be cones, defined, using (1), by matrices M and K; let $C \in R^{n}, b \in R^{m}, A \in R^{m \times n}$. Consider the following two problems:
(P1): \quad Minimize $c^{T} x$ subject to $A x-b \in T$ and $x \in S$.
(D1): Maximize $b^{T} y$ subject to $-A^{T} y+c \in S^{*}$ and $y \in T^{*}$.
Theorem 1. If either ($P 1$) or ($D 1$) has an optimal solution, then both have optimal solutions, and Minimum (P1)=Maximum (D1).

Proof. Using (1), (P1) is equivalent to
($\mathrm{P} 1^{\prime}$): \quad Minimize $c^{T} x$ subject to $K(A x-b) \geqq 0$ and $M x \geqq 0$. Substituting

$$
\binom{A}{M} \text { for } H,\binom{b}{0} \text { for } b \text {, and }\binom{w}{v} \text { for } y, \text { in (P), }
$$

the duality theorem of linear programming shows that the dual of $\left(\mathrm{P}^{\prime}\right)$ is
(D1'): \quad Maximize $b^{T} K^{T} w$ subject to $A^{T} K^{T} w+M^{T} v=c, w \geqq 0, v \geqq 0$.
Since from (4), $y=K^{T} w \in T^{*}$ and $z=M^{T} v \in S^{*}$, (D1') is the same as (D1).
Consider the following two problems in complex space, where $S \subset C^{n}$ and $T \subset C^{m}$ are cones defired by matices M and $K, c \in C^{n}, b \in C^{m}, A \in C^{m \times n}$.
(P2): \quad Minimize $\operatorname{Re} c^{H} z$ subject to $A z-b \in T$ and $z \in S$
(D2): Maximize $\operatorname{Re} b^{H} w$ subject to $-A^{H} w+c \in S^{*}$ and $w \in T^{*}$.
Theorem 2. If either (P2) or (D2) has an optimal solution, then both have optimal solutions, and Minimum (P2) = Maximum (D2).

Proof. (P2) can be written as a problem in real space as follows; denoting real and imaginary parts by the suffixes r and i :
(P^{\prime}): \quad Minimize $\quad c_{r}^{T} z_{r}+c_{i}^{T} z_{i}$

$$
\begin{aligned}
\text { Subject to } & \binom{A_{r} z_{r}-A_{i} z_{i}-b_{r}}{A_{i} z_{r}+A_{r} z_{i}-b_{t}} \in \rho T \\
& \binom{z_{r}}{z_{i}} \in \rho S .
\end{aligned}
$$

By Theorem 1, its dual is
(P^{\prime}): \quad Maximize $b_{r}^{T} w_{1}+b_{i}^{T} w_{2}$.

$$
\text { Subject to }\left(-\binom{A_{r}^{T} A_{i}^{T}}{-A_{i}^{T} A_{r}^{T}}\binom{w_{1}}{w_{2}}+\binom{c_{r}}{c_{i}}\right) \in(\rho S)^{*}
$$

$$
\binom{w_{1}}{w_{2}} \in(\rho T)^{*}
$$

where w_{1} and w_{2} denote the two real vectors involved.
Setting $w=w_{1}+i w_{2}$, i.e., $w_{r}=w_{1}$ and $w_{i}=w_{2}$, and noting that $(\rho S)^{*}$ $=\rho\left(S^{*}\right)$, it is seen that (D2 ${ }^{\prime}$) is identical with (D2).

Generalized Farkas Theorem

Theorem 3. Let $S \subset R^{n}$ be a (closed polyhedral convex) cone, $b \in R^{n}$, $A \in R^{m \times n}$. Then

$$
\left[A x \in S \Rightarrow b^{T} x \geqq 0\right] \Leftrightarrow\left[\exists u \in S^{*}: A^{T} u=b\right]
$$

Proof. Define S, using (1), by a matrix K. Then

$$
\begin{aligned}
{\left[A x \in S \Rightarrow b^{T} x \geqq 0\right] } & \Leftrightarrow\left[K A x \geqq 0 \Rightarrow b^{T} x \geqq 0\right] \\
& \Leftrightarrow\left[\exists z \geqq 0: b=(K A)^{T} z\right] \quad \text { by (3) } \\
& \Leftrightarrow\left[\exists z \geqq 0: b=A^{T}\left(K^{T} z\right)\right] \\
& \Leftrightarrow\left[\exists u=K^{T} z \in S^{*}: A^{T} u=b\right] \quad \text { by (4). }
\end{aligned}
$$

Theorem 4. Let $S \subset C^{n}$ be a (closed polyhedral convex) cone, $b \in C^{n}$, $A \in C^{m \times n}$. Then

$$
\left[A z \in S \Rightarrow \operatorname{Re} b^{H} z \geqq 0\right] \Leftrightarrow\left[\exists w \in S^{*}: A^{H} w=b\right]
$$

Proof.

$$
A z \in S \Rightarrow \operatorname{Re} b^{H_{z}} \geqq 0
$$

iff

$$
\begin{gathered}
\left(\begin{array}{rr}
A_{r} & -A_{i} \\
A_{i} & A_{r}
\end{array}\right) \quad\binom{z_{r}}{z_{i}} \in \rho S \Rightarrow\binom{b_{r}}{b_{i}}^{T} \quad\binom{z_{r}}{z_{i}} \geqq 0 \\
\exists\binom{u}{v} \in(\rho S)^{*}=\rho\left(S^{*}\right):\left(\begin{array}{cc}
A_{r}^{T} & A_{i}^{T} \\
-A_{i}^{T} & A_{r}^{T}
\end{array}\right)\binom{u}{v}=\binom{b_{r}}{b_{i}}
\end{gathered}
$$

by Theorem 3,
iff

$$
\exists w=u+i v \in S^{*}: A^{H_{w}}=b
$$

References

[1] A. Ben-Israel, 'Linear equations and inequalities on finite dimensional, real or complex, spaces a unified theory', J. Math. Anal. Appl. 27 (1969), 367-389.
[2] J. Farkas, 'Über die Theorie der einfachen Ungleichungen’, J. Reine angew. Math. 124 (1902), 1-14.
[3] N. Levinson, 'Linear programming in complex space', J. Math. Anal. Appl. 14 (1966), 44-62.
University of Melbourne
Melbourne, Australia.
La Trobe University
Bundoora, Vic. Australia.

