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Evaporating sessile droplets are critical to many industrial applications and are also
ubiquitous in nature. Two predominant evaporation models have emerged in the literature,
one-sided and diffusion-limited, with differing assumptions on the evaporation process.
Both models are used widely, and their predictions can differ greatly from each other, but
the physical mechanisms responsible for these differences are not yet well understood.
Here, we develop a lubrication-theory-based model of a thin evaporating sessile droplet,
and compare predictions from both evaporation models to elucidate the origins of the
differences in their predictions. For the one-sided model, we derive expressions for
the droplet lifetime, show that in certain parameter regimes the total evaporation rate
is proportional to the droplet surface area, and demonstrate that the contact line is
always warmer than the bulk of the droplet. Furthermore, we show that differences
in the structures of the evaporation models near the contact line lead to qualitatively
different behaviour of the apparent contact angles and interface temperature profiles. The
fundamental understanding gained from this work is expected to be helpful in determining
which evaporation model is most appropriate for describing experimental observations.

Key words: drops, contact lines, condensation/evaporation

1. Introduction

The drying of sessile liquid droplets has applications in numerous industrial processes
and natural phenomena. While the geometry of a droplet resting on a solid surface
appears simple (figure 1), the coupling of contact-line dynamics to evaporation makes
the problem difficult to study. Industrial applications include inkjet printing (Lohse
2022), lab-on-a-chip devices, spray coating and forensic analysis (Lohse & Zhang 2020).
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Figure 1. Schematic of an axisymmetric liquid droplet with thickness h′(r′, t′) resting on a solid substrate with
constant thickness b′. The solid is heated to a temperature Tb on its bottom face, and the liquid evaporates with
a spatially non-uniform evaporative flux J′. The substrate is assumed to be covered by a thin liquid precursor
film.

In nature, drying sessile droplets allow sweat to cool our bodies, but also lead to complex
phenomena such as the coffee-ring effect (Wilson & D’Ambrosio 2022). Thus the study of
drying droplets is a large, multidisciplinary field that has been approached experimentally,
theoretically and numerically in order to develop fundamental understanding.

When modelling drying droplets, there are two fundamental complications that arise.
The first complication is ameliorating motion of the three-phase contact-line with a no-slip
condition at the solid substrate. There are several approaches to this (de Gennes 1985;
Oron, Davis & Bankoff 1997; Kumar & Charitatos 2022), and in the present work we
will use a precursor-film approach where the solid substrate is covered by a thin liquid
film as depicted in figure 1. This lifts the contact line up from the solid, allowing it
to move while still enforcing no-slip conditions at the liquid–solid interface. The liquid
pressure is modified to account for van der Waals forces that control droplet spreading
and also prevent the precursor film from evaporating. Such films have been observed
experimentally (Popescu et al. 2012) and result in governing equations that are easier to
solve than those obtained from alternative approaches (Savva & Kalliadasis 2011). The
second complication is modelling the evaporation process, which proceeds through two
main steps: liquid first undergoes phase change into vapour and is then transported away
from the liquid–gas interface into the surroundings.

Existing models for evaporation are distinguished largely by which of the two steps is
assumed to be rate limiting. The two predominant evaporation models are the one-sided
model, which assumes that phase change is rate limiting, and the diffusion-limited model,
which assumes that diffusive transport of vapour is rate limiting. Both have been used
widely in previous work, and their predictions can differ greatly from each other, but
fundamental understanding of the physical mechanisms underlying these differences is
largely lacking. We seek to develop this understanding in the present work, so we begin
with an overview of each evaporation model and its use in previous work.

1.1. One-sided evaporation
The one-sided (or non-equilibrium one-sided) evaporation model assumes that evaporation
is rate-limited by the phase change to vapour, and that the liquid is evaporating into its own
saturated vapour. One-sided evaporation is driven by deviations from saturated conditions,
and its description was pioneered by Schrage (1953) using the kinetic theory of gases. The
term ‘one-sided’ is used because the transport problem in the liquid decouples from that
in the gas, and one obtains an analytical expression for the evaporative flux by considering
only transport in the liquid (similar to that of a simple mass-transfer coefficient model)
(Ajaev 2005; Parrish & Kumar 2020). This is typically done in the context of lubrication
theory (thin droplets), yielding an evolution equation without any other assumptions on the
droplet shape. Hence the one-sided model is more amenable to describing droplets with
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Comparison of droplet evaporation models

asymmetric shapes (Charitatos, Pham & Kumar 2021; Issakhani et al. 2023). At its edge,
the droplet merges onto a precursor film of constant thickness that does not evaporate away
due to the inclusion of disjoining pressure.

Predictions from models using one-sided evaporation agree well with experiments on
droplets evaporating in saturated conditions (Sodtke, Ajaev & Stephan 2008), and can fit
experimental data even when the gas phase is not saturated vapour (Murisic & Kondic
2011). This agreement, along with its simplicity, has led to one-sided evaporation being
used in a number of theoretical studies of evaporating droplets as well as films (Burelbach,
Bankoff & Davis 1988; Oron et al. 1997; Ajaev 2005; Cazabat & Guéna 2010; Maki &
Kumar 2011; Karapetsas, Sahu & Matar 2016; Pham & Kumar 2017, 2019; Charitatos &
Kumar 2020; Larsson & Kumar 2022). Note that because the one-sided evaporation model
considers only transport in the liquid, it cannot describe the interactions between multiple
droplets via the vapour phase (e.g. shielding effects) (Masoud, Howell & Stone 2021; Wray
et al. 2021; Wilson & D’Ambrosio 2022).

1.2. Diffusion-limited evaporation
The diffusion-limited evaporation model assumes that diffusive transport of vapour away
from the liquid–gas interface is the rate-limiting step. Furthermore, it assumes that
the liquid is in equilibrium with the vapour directly above it, establishing a relation
between the thermodynamic states of the liquid and the gas (e.g. the Kelvin equation).
Consequently, one must solve transport problems for both the liquid and gas phases that
are coupled by the equilibrium condition and evaporative flux at the liquid–gas interface.
This coupling makes diffusion-limited evaporation more complicated to implement, in
general, than one-sided evaporation.

While diffusion-limited evaporation is often implemented without a precursor film,
one can be included. Distinct from one-sided evaporation, the precursor film under
diffusion-limited evaporation has a thickness that decays to a non-zero value inversely
with distance from the droplet contact line (Eggers & Pismen 2010). Note that because
the diffusion-limited evaporation model uses information from both the vapour and liquid
phases, it can be used to describe interactions between multiple droplets via the vapour
phase, unlike the one-sided evaporation model.

If evaporation is slower than the relaxation time of the droplet, then capillary
pressure will bring the droplet to a spherical-cap shape. With a spherical-cap droplet,
diffusion-limited evaporation yields simple expressions for the evaporative flux and
time-evolution of the droplet radius (it is sometimes referred to as the ‘lens’ evaporation
model) (Deegan et al. 2000; Hu & Larson 2002; Stauber et al. 2014; Wilson & D’Ambrosio
2022). These expressions impart a great deal of physical insight that has been leveraged to
develop fundamental understanding. For example, one can fit experimental measurements
of the droplet radius to simple analytical expressions to obtain estimates of the evaporative
flux profile and total evaporation rate (Shahidzadeh-Bonn et al. 2006). Furthermore,
knowledge of the structure of the evaporative flux near the contact line allows one to
understand and derive expressions for apparent contact angles and thermal gradients (and
thus Marangoni flow) in terms of simple physical parameters (Morris 2001; Ristenpart
et al. 2007; Jambon-Puillet et al. 2018).

Diffusion-limited evaporation often well-approximates evaporation rates observed in
simple drying-droplet experiments, so it has been attractive for both experimental and
theoretical studies (usually assuming a spherical-cap droplet) (Poulard, Bénichou &
Cazabat 2003; Hu & Larson 2006; Shahidzadeh-Bonn et al. 2006; Ristenpart et al. 2007;
Sefiane, David & Shanahan 2008; Eggers & Pismen 2010; Larson 2014; Tsoumpas et al.
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2015; Diddens et al. 2017a,b; Karpitschka, Liebig & Riegler 2017; Jambon-Puillet et al.
2018; Pahlavan et al. 2021; Wray et al. 2021; Gelderblom, Diddens & Marin 2022; Thayyil
Raju et al. 2022; Yariv 2023) and has also been used to model drying films (Dey, Doumenc
& Guerrier 2016; Loussert et al. 2017; Sobac, Colinet & Pauchard 2019; Larsson & Kumar
2022).

1.3. Overview of present paper
While both one-sided and diffusion-limited evaporation have been used widely in previous
studies, few have compared them (Sultan, Boudaoud & Ben Amar 2005; Murisic &
Kondic 2011; Moore, Vella & Oliver 2021; Hartmann et al. 2023). Note that while the
physical assumptions made by each model are distinct, it is not always clear which model
is appropriate to use to describe a given experiment (Shahidzadeh-Bonn et al. 2006;
Cazabat & Guéna 2010; Murisic & Kondic 2011). Most notably, Murisic & Kondic (2011)
compared directly one-sided and diffusion-limited evaporation by fitting predictions to
experimental data for evaporating sessile droplets. They found that agreement of each
model with experiment depended on the physical system (e.g. water versus isopropanol
droplets), attributing the differences to inaccurately predicted thermal Marangoni flow.
However, it is difficult to extract understanding of the physical mechanisms underlying
these different predictions because Murisic & Kondic (2011) assume spherical-cap
droplets, do not isolate thermal effects, and fit their model predictions to experimental
data with widely varying droplet lifetimes.

Thus, in this work, we will develop this understanding by considering droplets with
given lifetimes. We will then show how the two different evaporation models give rise
to inaccurately predicted thermal gradients for some physical systems but not others
(as observed by Murisic & Kondic 2011). To better highlight physical mechanisms, we
confine our analysis to the case of isolated droplets with a circular footprint. For the
same reason, we treat each evaporation model separately rather than considering more
complex evaporation models that can transition between these two limiting cases (Sultan
et al. 2005).

First, the mathematical model is presented in § 2. Next, in § 3, we highlight a novel
hybrid spectral finite-difference method that we have developed to solve the governing
equations, and the challenges it overcomes. Because the two models exhibit significant
differences in evaporation behaviour, we discuss the droplet-lifetime-matching procedure
in § 4. Direct comparisons without thermal effects are given in § 5. In § 6, we show that
thermal Marangoni flow is always directed away from the contact line under one-sided
evaporation, in contrast to diffusion-limited evaporation, where it is known that the
direction depends on the liquid/solid thermal conductivity ratio (Ristenpart et al. 2007).
Conclusions are given in § 7.

2. Mathematical model

We consider a thin, axisymmetric droplet of pure solvent as depicted in figure 1. The
droplet height is given by h′(r′, t′), where r′ is the radial coordinate, and t′ is time. The
evaporative flux J′(r′, t′), in general, also varies with space and time.

2.1. Hydrodynamics
The liquid is Newtonian with density ρ, viscosity μ, and surface tension σ ′. The
characteristic vertical and lateral length scales of the droplet are given by H and L,
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respectively. Their ratio, ε = H/L � 1, is assumed small so that lubrication theory may
be leveraged. The liquid motion is subject to no-slip and no-penetration conditions at the
solid substrate, and stress balances at the liquid–gas interface.

We use the scale p∗ = σ0ε
2/H for the pressure p′, v∗

r = ε3σ0/μ for the r velocity v′
r,

v∗
z = εv∗

r for the z velocity v′
z, and t∗ = H/v∗

r ε for the time t′. These scales are derived
from balancing terms in the mass and momentum balances (Larsson & Kumar 2021). The
quantity σ0 is the surface tension at the saturation temperature Ts and is used to scale
σ ′. Finally, for the evaporative flux J′, we use a general scale J∗ (defined in § 2.2) and
non-dimensionalize the temperature T ′ as T = (T ′ − Ts)/(Tb − Ts), where Tb > Ts is the
temperature of the heated substrate. For the remainder of this work, we use dimensionless
variables (indicated without a prime superscript):

r′ = ε−1Hr, z′ = Hz, h′ = Hh, T ′ = (Tb − Ts)T + Ts,

v′
r = v∗

r vr, v′
z = εv∗

r vz, p′ = p∗p, t′ = t∗t, J′ = J∗J.

}
(2.1)

Surface tension σ is assumed to vary linearly with the dimensionless interface temperature
TI = T|z=h:

σ = 1 − ε2 Ma TI, (2.2)

where the Marangoni number is Ma = (∂σ ′/∂T ′)(Tb − Ts)/σ0ε
2.

Under the lubrication approximation, the Navier–Stokes equations become

∂2vr

∂z2 = ∂p
∂r

, (2.3)

∂p
∂z

= 0, (2.4)

1
r

∂

∂r
(rvr) + ∂vz

∂z
= 0, (2.5)

with the boundary conditions vr = vz = 0 at z = 0, and

p = −1
r

∂

∂r

(
r

∂h
∂r

)
− Π, (2.6)

∂vr

∂z
= −Ma

∂TI

∂r
, (2.7)

at z = h, where Π is the disjoining pressure.
As stated, the no-slip condition imposed at the substrate does not allow for contact-line

motion. There are several approaches to ameliorating this, and in this work we use a
precursor-film approach because the resulting equations are much easier to solve (Savva
& Kalliadasis 2011; Kumar & Charitatos 2022). It is assumed that the substrate is covered
with a thin precursor film and the liquid pressure is modified with a disjoining pressure
to account for van der Waals interactions. As in previous work (Schwartz 1998; Murisic
& Kondic 2011; Espín & Kumar 2017; Pham & Kumar 2017, 2019; Charitatos & Kumar
2020), we use a two-term disjoining pressure that includes both attractive and repulsive
interactions,

Π(h) = A1

((
A2

h

)3

−
(

A2

h

)2
)

, (2.8)

where A1 is a dimensionless Hamaker constant, and A2 controls the thickness at which the
disjoining pressure vanishes. The constants A1 and A2 also control the scaled equilibrium
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contact angle θeq through the relation (Schwartz 1998)

θeq ≈
√

A1A2. (2.9)

This is related to the lab-frame contact angle θ ′
eq by θ ′

eq ≈ εθeq. The precursor-film
thickness hp is determined by the condition J(hp) = 0, which will be discussed in §§ 2.3.1
and 2.3.2. We have found that using a one-term attractive model for Π (corresponding to
a perfectly wetting liquid) results in smaller apparent contact angles, but does not change
qualitatively the findings presented in this work (Ajaev 2005; Eggers & Pismen 2010; Maki
& Kumar 2011; Karpitschka et al. 2017).

Solving (2.3) and (2.4) subject to boundary conditions (2.6) and (2.7) yields the radial
velocity

vr =
(

1
2

z2 − hz
)

∂p
∂r

− z Ma
∂TI

∂r
. (2.10)

Finally, mass conservation at the interface z = h coupled with the continuity equation (2.5)
gives the kinematic condition governing the film height:

∂h
∂t

= −1
r

∂

∂r

∫ h

0
rvr dz − EJ = 1

3r
∂

∂r

(
rh3 ∂p

∂r

)
+ Ma

2r
∂

∂r

(
rh2 ∂TI

∂r

)
− EJ, (2.11)

where the pressure p is given by (2.6), the evaporative number is E = J∗/ερv∗
r (the ratio

of evaporative and convective fluxes), and specific expressions for the evaporative flux
J will be given in § 2.3. This equation is subject to the symmetric boundary condition
h(r) = h(−r) as well as matching onto the precursor film h → hp as r → ∞.

2.2. Energy transport
The solid substrate is held at a constant dimensionless temperature T = 1 on its bottom
face at z = −b, where b = b′/H is the thickness of the solid substrate. The solid and
liquid have thermal conductivities ks and k�, respectively. Because the droplet is thin, the
temperature is governed by

∂2T

∂z2 = 0 (2.12)

in both phases, and subject to the boundary conditions

T|z=−b = 1, T|z=0− = T|z=0+ , (2.13a,b)

∂T
∂z

∣∣∣∣
z=0−

= κ

b
∂T
∂z

∣∣∣∣
z=0+

, − ∂T
∂z

∣∣∣∣
z=h

= J, (2.14a,b)

where κ = bk�/ks is a scaled thermal conductivity ratio, and we use the evaporative flux
scale J∗ = 
T ′ k�/LmH, where Lm is the latent heat of vaporization.

Solving these equations yields the temperature field

T =
{

1 − κJ
(

1 + z
b

)
, −b ≤ z < 0,

1 − J (z + κ) , 0 ≤ z ≤ h.
(2.15)

Of chief concern is the temperature at the liquid–gas interface,

TI = T|z=h = 1 − J(h + κ), (2.16)

which depends on the evaporative flux J, the film height h, and the conductivity ratio κ .
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2.3. Evaporation
We now present expressions for the evaporative flux J that appears in (2.11) and (2.16) for
both one-sided and diffusion-limited evaporation.

2.3.1. One-sided evaporation
The one-sided evaporation model gives a constitutive relation for the evaporative flux J,
which is (in non-dimensional form) (Burelbach et al. 1988; Ajaev 2005)

KJ = δp + TI, (2.17)

where

K =
k�

√
2πRgT3

s

ρvL2
mαH

, δ = p∗Ts

ρLm 
T
. (2.18a,b)

Here, Rg is the specific gas constant, ρv is the density of the vapour, and α is the
accommodation coefficient. The parameter K gives a measure of kinetic effects and the
volatility of the liquid, and can be interpreted as the inverse of an effective mass-transfer
coefficient (Ajaev 2005; Parrish & Kumar 2020). The parameter δ measures the effect
of changes in local pressure on the phase-change temperature (Ajaev 2005). Substituting
(2.16) into (2.17) yields the one-sided evaporative flux

J = 1 + δp
K + h + κ

, (2.19)

which is an explicit, local function of the film height h.
The precursor-film thickness hp is determined by the condition J = 0 for a flat film.

With the pressure given by (2.6), (2.19) reduces to finding the roots of a cubic polynomial:

0 = 1 + δp = 1 − δ Π(hp) ⇒ 0 = h3
p + δA1A2

2hp − δA1A3
2. (2.20)

The discriminant of this polynomial is negative, thus the single real root is

hp = 2A2

√
δA1

3
sinh

[
1
3

asinh

(
3
2

√
3

δA1

)]
, (2.21)

where sinh is the hyperbolic sine function, and asinh is its inverse. This relation is used
to determine the precursor-film thickness in the initial condition to the numerical method
described in § 3 when using one-sided evaporation.

2.3.2. Diffusion-limited evaporation
Under diffusion-limited evaporation, the evaporative flux J is determined by the diffusive
flux of vapour at the liquid–gas interface z = h. It has been shown that in many scenarios,
transient effects as well as convection are negligible in the gas phase (Larson 2014), so
the transport problem reduces to pseudo-steady-state diffusion. The droplet interface is
assumed to be in thermodynamic equilibrium, allowing us to relate the thermodynamic
states of the liquid and gas phases.

Figure 2 depicts the problem for the dimensionless gas-phase concentration cg above the
droplet. We use the vertical coordinate z∗ = z′/L since there is no apparent vertical scale
(unlike inside the droplet), and cg is defined on the semi-infinite domain z∗ ∈ (εh, ∞)

and r ∈ (0, ∞). Because the droplet is thin and εh � 1, we can neglect the droplet height
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z∗

lim cg = 0
z∗ → ∞

0

lim cg = 0
r → ∞

r

Droplet

∇2cg = 0

cg = eZp
 – c∞

Figure 2. Schematic of the vapour concentration cg problem in the semi-infinite domain r ∈ (0, ∞) and z∗ ∈
(0, ∞). The thin liquid droplet (and precursor film) is in thermodynamic equilibrium with the vapour phase,
so we use the Kelvin equation to describe cg at z∗ = 0.

and instead use the constant domain z∗ ∈ (0, ∞) (shown formally in Appendix A). It is
assumed that the vapour is at an ambient concentration c∞ far from the droplet, so we
non-dimensionalize c′

g as cg = (c′
g − c′∞)/cs, where cs is the concentration of saturated

vapour. We then have cg → 0 as r → ∞ or z∗ → ∞, as shown in figure 2.
The governing equation for cg is

0 = ∇2cg = ∂2cg

∂z∗2 + 1
r

∂

∂r

(
r

∂cg

∂r

)
. (2.22)

For boundary conditions in r, we have the symmetric condition cg(r) = cg(−r), which
implies that ∂cg/∂r and ∂3cg/∂r3 vanish at r = 0. We also enforce matching to the ambient
concentration cg → 0 as r → ∞. In z∗, we match to the ambient concentration as z∗ → ∞
and then enforce thermodynamic equilibrium with the liquid droplet at z∗ = 0. For this, we
use the Kelvin equation, which accounts for the effect of interface curvature and disjoining
pressure on thermodynamic equilibrium (Eggers & Pismen 2010):

cg
∣∣
z∗=0 = eZp − c∞, (2.23)

where c∞ = c′∞/cs < 1, Z = Mp∗/ρR∗
gT is an effective compressibility factor, M is the

molecular weight of the liquid, and R∗
g is the universal gas constant. If Z = 0, then we

obtain cg|z∗=0 = 1 − c∞, or in dimensional terms, c′
g|z∗=0 = cs, which is consistent with

the classical diffusion-limited evaporation model. However, note that the term Zp in (2.23)
is never negligible in the precursor film due to large disjoining pressures (see (2.6) and
(2.8)) that prevent the film from evaporating away. Later, we will adjust the values of c∞
and Z to match the droplet lifetime with that from one-sided evaporation.

To obtain the evaporative flux J, we employ Fick’s law so that

J = −J∗
D

J∗
∂cg

∂z∗

∣∣∣∣
z∗=0

, (2.24)

where J∗
D = csDε/H is the evaporative-flux scale arising from diffusion (opposed to J∗

from energetic considerations), and D is the diffusivity of the vapour. For the purpose of
this work, we assume the ratio J∗

D/J∗ to be near unity and neglect it, but in practice it
may be absorbed into the evaporative number E without loss of generality. A noteworthy
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Parameter Definition Physical meaning Typical values

Ma (∂σ ′/∂T ′)(Tb − Ts)/σ0ε
2 Marangoni forces/surface-tension forces 10−3–10−1

E J∗μ/ρσ0ε
4 Evaporative flux/convective flux 10−4–10−1

κ b′k�/Hks Liquid conductivity/solid conductivity 0–1

Table 1. Important dimensionless parameters and typical values.

result is the analytical solution for J developed by Eggers & Pismen (2010); considering a
problem analogous to that shown in figure 2, they showed that (in the current notation)

J(r) = −
∫ ∞

0
K(r, r′)

∂cg|z∗=0

∂r′ dr′, (2.25)

where the kernel K involves the complete elliptic integrals of the first and second kind. As
will be discussed in § 3, we have found numerical solution of (2.22) and (2.24) to be more
stable in our nonlinear simulations, but the analytical results encapsulated in (2.25) offer
valuable insight into the behaviour of cg and J, and will be leveraged in § 3. Furthermore,
(2.25) demonstrates that J is a global function of h – distinct from the local function of h
obtained under one-sided evaporation (2.19).

The precursor-film thickness hp is determined by J = 0, which is equivalent to
(∂cg/∂z∗)|z∗=0 = 0 by (2.24). For a flat film at steady state (e.g. a precursor film), (2.22)
implies that cg depends linearly on z∗. Since cg vanishes far from the film, and since the
first derivative of cg vanishes at the film surface, cg = 0 everywhere for a flat film at steady
state. Equation (2.23) then yields the cubic equation

0 = h3
p + ZA1A2

2
− ln c∞

hp − ZA1A3
2

− ln c∞
, (2.26)

which is equivalent to (2.20) with δ replaced by Z/(− ln c∞) (note that c∞ < 1). Thus
through the same method employed to obtain (2.21), we obtain

hp = 2A2

√
ZA1

−3 ln c∞
sinh

[
1
3

asinh

(
3
2

√
−3 ln c∞

ZA1

)]
. (2.27)

This relation is used to determine the precursor-film thickness in the initial condition to
the numerical method described in § 3 when using diffusion-limited evaporation.

2.4. Parameter values
The effects of the key dimensionless groups shown in table 1 will be investigated in
§§ 5 and 6. The remaining parameters – A1 and A2 for the disjoining pressure, δ and K
for one-sided evaporation, and Z and c∞ for diffusion-limited evaporation – are fixed
for the remainder of this work. The constants A1 = 102 and A2 = 10−3 are chosen
close to those used in previous work (Pham & Kumar 2017; Charitatos et al. 2021)
and give a scaled equilibrium contact angle θeq ≈ 18◦ (see (2.9)). Following Murisic &
Kondic (2011), we choose K = 10 and δ = 10−3 (determined by fitting predictions to
experimental measurements of evaporating water droplets), giving hp ≈ 3.9 × 10−4. As
will be discussed in § 4, we choose Z = 7.69 × 10−5 and c∞ = 9.26 × 10−1 to match the
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total evaporation time as well as hp under diffusion-limited evaporation. Note that at this
small value of Z, the vapour concentration is very nearly constant over the droplet surface
as discussed in § 2.3.2.

3. Numerical method

Equations (2.11) and (2.22) are solved numerically from the initial condition

h(t = 0, r) =

⎧⎪⎨
⎪⎩hp + (

h0 − hp
) (

1 −
(

r
R0

)2
)

, r ≤ R0,

hp, r > R0,

(3.1)

which represents an initially parabolic droplet with height h0 and radius R0. In this work,
we fix h0 = 2 and R0 = 1 since the droplet relaxes rapidly to an equilibrium shape before
significant evaporation occurs. Even though the initial condition has discontinuous slope,
it is smoothed out quickly in the simulations. For (2.11) (excepting the evaporative flux J),
we use a second-order centred finite-difference method (Diez & Kondic 2002). To compute
J under each evaporation model, we use the methods described in §§ 3.1 and 3.2.

3.1. One-sided evaporative flux
Under one-sided evaporation, J given by (2.19) is an explicit, local function of the liquid
thickness h and is thus easily computed alongside the finite-difference method used to
solve (2.11). There are no additional numerics required.

3.2. Diffusion-limited evaporative flux
Under diffusion-limited evaporation, J is obtained from the solution of (2.22) and is thus
an implicit, global function of h (see (2.25)). When approached numerically, commonly
(2.22) is solved with a finite-element method (Diddens 2017; Diddens et al. 2017a;
Pahlavan et al. 2021; Thayyil Raju et al. 2022), but many analytical simplifications have
been developed. Eggers & Pismen (2010) derived (2.25), which removes the necessity
of solving a partial differential equation (PDE) at each time step. However, the kernel
K is ill-conditioned and singular at r′ = r, so computation of the integral is numerically
complex and prone to error that can induce instability in the time-stepping algorithm. An
alternative is to assume that the droplet is a spherical cap, in which case the evaporative
flux is given by

J = 2
π

1 − c∞√
R2 − r2

, (3.2)

which removes any numerical complications when computing the evaporative flux (note
that a similar approximation can also used for non-thin droplets) (Wilson & D’Ambrosio
2022). Equation (3.2) is simple and useful for gaining physical insight, so we will reference
it when discussing our results. However, we seek to develop understanding for more
general droplet shapes, so to compute J in our nonlinear simulations, we solve (2.22) using
the novel hybrid spectral finite-difference method detailed below.

Since the value of h is required in the equilibrium boundary condition for cg (2.23), it is
convenient to choose the same discretization for r for both (2.11) and (2.22) (second-order
centred finite differences). This necessitates a finite r domain despite the boundary
conditions for (2.22) as r → ∞. It has been shown that, away from the contact line, h
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decays to the precursor-film thickness as 1/r (Eggers & Pismen 2010), so an r domain
that is significantly larger than the droplet radius is required to resolve the evaporative flux
properly. We choose r ∈ (0, 100) because scaling relations (Eggers & Pismen 2010), as
well as numerical results from our simulations, show that this is adequate to resolve the
evaporative flux within numerical tolerances.

We must also discretize (2.22) in the z∗ domain. It is possible to similarly choose a finite
distance (Diddens 2017; Loussert et al. 2017) and solve in a truncated z∗ domain by finite
elements or finite differences. However, unlike the r domain, the proper distance in the z∗
domain is unclear. Furthermore, we are not restrained by boundary data as in the r domain,
so it is possible to use a different discretization that is capable of resolving semi-infinite
domains. Thus we use a spectral method in z∗ with Laguerre basis functions on the
domain z∗ ∈ (0, ∞). The Laguerre functions (Boyd 2001) Ln(z∗) are a modification of
the Laguerre polynomials (Abramowitz & Stegun 1964) �n(z∗) to a semi-infinite domain:

Ln(z∗) = exp(−z∗/2) �n(z∗). (3.3)

We choose these basis functions over other candidates because they decay exponentially,
which matches the exponential decay of cg shown by Eggers & Pismen (2010).

This hybrid spectral finite-difference method represents the gas-phase concentration as
the expansion

cg(r, z∗, t) ≈
M−1∑
n=0

an(r, t) Ln(z∗), (3.4)

where the coefficients an depend on r and t. Inserting this into (2.22) and applying
orthogonality of the Laguerre functions gives the PDE

a′′
n + 1

r
∂

∂r

(
r

∂an

∂r

)
= 0, (3.5)

for each n, where a′′
n(a1, . . . , an) gives the coefficients of the second z∗ derivative of cg.

This PDE can be discretized further in r with the same finite-difference method, and solved
for an alongside (2.11). The evaporative flux is then obtained from the relation

J(r, t) = −
M−1∑
n=0

a′
n(r, t), (3.6)

which follows from the identity Ln(0) = 1. Here, a′
n are the coefficients of the first z∗

derivative of cg.
The end result of this numerical method is the reduction of (2.22) to an NM × NM

banded system of equations with bandwidth 4M, where M is the number of Laguerre
functions, and N is the number of finite-difference cells, that is solved efficiently by
standard banded-system solvers. This requires computational time and memory similar to
a full finite-difference/element method, but is capable of resolving the entire semi-infinite
domain with spectral accuracy in z∗. To the best of our knowledge, this is the first
numerical method to employ Laguerre functions in the context of evaporation. See the
supplementary material available at https://doi.org/10.1017/jfm.2023.873 for a detailed
discussion of implementing this method.

For accuracy, we must have high resolution near the droplet contact line. However, this
level of resolution is not necessary far from the droplet. Thus, near the droplet, we use
cells with constant width, but those far from the droplet become wider. Formally, the cells
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Figure 3. (a) Example of the vapour concentration cg above the droplet (located at z∗ = 0). (b) Plots of the
vapour concentration cg at fixed r. Straight dashed lines are provided for reference to show that cg decays
exponentially (ln cg ∼ z∗) for sufficiently large z∗.

at a radius less than a critical radius, r < rc, have constant width, and each cell beyond rc
is a factor c wider than the previous one. For a given number of nodes N, the number of
nodes inside the critical radius Ni is given by

Ni = −α + 1
ln c

W(αcN+α ln c), (3.7)

where α = crc/(c − 1)(d − rc), d is the size of the r domain, and W is the principal branch
of the Lambert-W function (Corless et al. 1996). In this work, we use rc = 2, c = 1.05,
d = 100 and N = 4000 nodes, giving Ni ≈ 3807. This approach covers the entire domain
r ∈ (0, 100) with only minor cell stretching, while placing over 95 % of the cells near or
inside the droplet (r < 2).

This hybrid spectral finite-difference method also allows computation of the vapour field
cg above the droplet, whereas direct expressions for J such as (2.25) and (3.2) provide no
information about cg. Figure 3 shows cg above a droplet with radius R ≈ 1.4 (located at
z∗ = 0) where we present z∗ on a logarithmic scale to show that the vapour concentration
cg decays exponentially. Vapour is concentrated near the droplet at z∗ = 0 and approaches
the scaled ambient value cg = 0 as z∗ → ∞ or r → ∞. Note that establishing this
vapour field is critical to the diffusion-limited evaporation model; processes such as
convection can interfere and cause the diffusion-limited model to become inaccurate
(Shahidzadeh-Bonn et al. 2006). As will be discussed in § 5, one-sided evaporation may
offer a more accurate description in such a scenario.

4. Evaporation time matching

In this section, we develop expressions for the droplet lifetime under diffusion-limited
and one-sided evaporation. By equating these expressions, we obtain relations between
parameters that ensure a consistent droplet lifetime between the two evaporation models.

To begin, we integrate (2.11) over the droplet radius to obtain

d
dt

∫ R

0
rh dr = −E

∫ R

0
rJ dr. (4.1)

Note that this equation is simply conservation of volume, balancing the change in droplet
volume with the total evaporation rate. For simplicity, we assume in this derivation that

976 A25-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

87
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.873


Comparison of droplet evaporation models

the droplet shape is given by the lubrication limit of a spherical cap,

h(r, t) = R(t)
2

tan θa

(
1 −

(
r

R(t)

)2
)

, (4.2)

where θa is the apparent contact angle (assumed constant). While technically this is a
parabola, we will refer to it as a spherical-cap shape for simplicity. We then have the
volume change

d
dt

∫ R

0
rh dr = 3

8
R2 tan θa

dR
dt

. (4.3)

Under diffusion-limited evaporation with a spherical-cap droplet, we have

Jtot =
∫ R

0
rJ dr = 2(1 − c∞)

π

∫ R

0

r√
R2 − r2

dr = 2
π

R(1 − c∞), (4.4)

where we substituted (3.2) for J. It is known that the total evaporation rate for
diffusion-limited evaporation is proportional to the droplet radius (Shahidzadeh-Bonn
et al. 2006; Wilson & D’Ambrosio 2022); here, we see that the constant of proportionality
is 2(1 − c∞)/π in (4.4). Inserting (4.3) and (4.4) into (4.1) and integrating gives the
relation

R(t) =
√

Cd

(
t(d)
0 − t

)
, (4.5)

where Cd = 32E(1 − c∞)/3π tan θa, and t(d)
0 is the droplet lifetime for diffusion-limited

evaporation (R(t(d)
0 ) = 0). With an initial radius Ri = R(t = 0), we can solve for t(d)

0 :

t(d)
0 = R2

i
Cd

= 3π

32
R2

i tan θa

E(1 − c∞)
. (4.6)

When dimensionalized (accounting for the factor J∗
D/J∗ discussed in § 2.3.2), this

expression is equivalent to that shown in Wilson & D’Ambrosio (2022).
Under one-sided evaporation, with (4.2) for h, we have the total evaporation rate

Jtot =
∫ R

0
rJ dr =

∫ R

0

r
K + h + κ

dr = R
tan θa

ln
(

1 + R tan θa

2 (K + κ)

)
, (4.7)

where we have neglected the pressure contribution δp in (2.19) for J. In addition to
allowing us to make analytical progress, this is a physically reasonable approximation
since p ∼ 1 in the bulk of the droplet due to our use of a capillary scale, and with δ � 1
as described in § 2.4, the term δp � 1 is negligible in the bulk of the droplet. Substituting
(4.3) and (4.7) into (4.1) and integrating gives the relation

li((1 + Γ )2) − li (1 + Γ ) − ln 2 = 2E
3(K + κ)2 (t(o)

0 − t), (4.8)

where li is the logarithmic integral function (Abramowitz & Stegun 1964), Γ =
R tan θa/2(K + κ), and t(o)

0 is the droplet lifetime under one-sided evaporation. While this
expression is complicated and implicit in the droplet radius R, it will be shown in § 5 that
with Γ � 1, it reduces to a linear dependence R ∼ t(o)

0 − t. We note that if additional
assumptions are made, then an expression for the droplet lifetime under one-sided

976 A25-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

87
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.873


C. Larsson and S. Kumar

evaporation can be obtained using the method of matched asymptotic expansions ((4.2)
in Savva, Rednikov & Colinet 2017).

By equating t(d)
0 from (4.6) and t(o)

0 from (4.8), we obtain an expression for c∞ in terms
of parameters from the one-sided evaporation model:

1
1 − c∞

= 4
π

tan θa

Γ 2
i

[li((1 + Γi)
2) − li(1 + Γi) − ln 2], (4.9)

where Γi = Ri tan θa/2(K + κ). Note that this assumes a spherical-cap droplet and
constant θa. Furthermore, c∞ from (4.9) depends on the initial radius of the droplet Ri
since the two evaporation models have different dependencies on the droplet radius, (4.4)
and (4.7). Relation (4.9) thus serves as starting point for time matching, where given K,
Ri and an approximate θa (e.g. from numerical results), an initial estimate for c∞ can be
obtained. The parameter Z (see (2.23)) is then obtained from the relation

Z = −δ ln c∞ (4.10)

that ensures (2.21) and (2.27) yield the same precursor-film thickness hp.
As discussed in § 2.4, all results presented use K = 10 and δ = 10−3, which were

found by Murisic & Kondic (2011) to well-approximate evaporating water droplets. Using
E = 10−2, these parameters result in an evaporation time t(o)

0 ≈ 630 in the nonlinear
simulations with one-sided evaporation. From (4.9) and (4.10), we then obtain c∞ ≈
9.38 × 10−1 and Z ≈ 6.4 × 10−5 for diffusion-limited evaporation. While close, these
parameters do not give exactly the same evaporation time due to the assumptions used to
obtain (4.9) and (4.10). Thus we iteratively adjust c∞ and Z from the initial guess provided
by (4.9) and (4.10) until we obtain t(d)

0 ≈ t(o)
0 ≈ 630; we found that c∞ = 9.26 × 10−3 with

Z ≈ 7.69 × 10−5 achieves this. Remarkably, the value of c∞ predicted by (4.9) was within
1 % of the value required for time-matching in the full nonlinear simulations.

Because we are concerned with comparing one-sided and diffusion-limited evaporation,
and not the specific behaviour of a single model, we do not present the effects of varying
K, δ, Z or c∞ in this work. They do not change qualitatively the comparisons presented in
§§ 5 and 6, and many studies have investigated each model in isolation (see the discussion
in § 1). However, we will investigate the effect of varying E in § 5 because it accentuates
the models’ fundamental differences.

5. Comparison of droplet radius and contact angle

In this section, we make direct comparisons between predictions of the droplet radius and
contact angle under one-sided and diffusion-limited evaporation. We begin by discussing
the main qualitative features of predictions from each evaporation model. Figure 4(a)
shows an example of the droplet height evolution under diffusion-limited evaporation; the
droplet spreads out rapidly from the initial radius R0 = 1 (not shown) and then begins to
retract as evaporation proceeds. The droplet profile under one-sided evaporation is similar,
qualitatively. Figure 4(b) shows the evaporative flux J halfway through the droplet lifetime,
t = t0/2, for both one-sided and diffusion-limited evaporation. Note that the one-sided
evaporative flux (red line) is nearly constant throughout the droplet and decays rapidly
to J = 0 at the contact line. The diffusion-limited evaporative flux (black line) varies
more throughout the droplet, resembling the spherical cap solution given by (3.2) (though
not singular due to the precursor film). It increases rapidly near the contact line before
decaying to J = 0 in the precursor film.
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0 0.5 1.0 1.5 2.0

0.2

0.4

h J
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t↑

(a) (b)
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0.1

0.2

0.3

0.4
Diffusion-limited

One-sided

Figure 4. (a) Droplet shape sampled at intervals of t0/5 under diffusion-limited evaporation, starting from
t = t0/10, where t0 is the droplet lifetime. The arrow points in the direction of increasing time. The evolution
is qualitatively similar under one-sided evaporation. (b) The evaporative flux J for both evaporation models at
t = t0/2. Note that the droplet radius is larger under diffusion-limited evaporation, despite the same t0, due to
different dependencies on the droplet radius (see (4.4) and (4.7)).

The diffusion-limited evaporative flux shown in figure 4(b) (black line) is similar to
what has been reported in previous studies. Note, however, that qualitatively different
profiles can be obtained, such as a nearly constant profile for droplets resting on hydrogels
(Boulogne, Ingremeau & Stone 2016). For one-sided evaporation, the qualitative shape
of the evaporative flux (red line) changes depending on the value of the parameter K in
(2.19). When K � h, the evaporative flux is insensitive to the droplet profile, and J ≈ K−1

is nearly constant throughout the droplet. However, if K ∼ h or K � h, then J will increase
as the droplet thins near the contact line, and the one-sided evaporative flux will resemble
qualitatively the diffusion-limited evaporative flux (see Ajaev 2005; Pham & Kumar 2017).
Thus the evaporative flux is not always nearly constant under one-sided evaporation. In this
work, we focus on the case where K � h since this is the parameter regime investigated by
Murisic & Kondic (2011) and also allows an insightful analytical simplification that will
be discussed in § 5.1. Furthermore, the value of K does not affect the qualitative behaviour
of the temperature profiles that we investigate in § 6.

Figure 5 shows the droplet radius R and apparent contact angle θa versus time for
both evaporation models. Under diffusion-limited evaporation (black lines), the droplet
radius (figure 5a) is well-approximated by (4.5) (dashed line) which shows the expected
scaling R ∼ √

t0 − t, and the apparent contact angle (figure 5b) remains nearly constant
throughout most of the droplet lifetime. This behaviour of the radius and contact angle has
been observed in previous experimental studies (Shahidzadeh-Bonn et al. 2006; Sefiane
et al. 2008). However, under one-sided evaporation (red lines), the radius shrinks almost
linearly with time (figure 5a), and the apparent contact angle decreases noticeably over
time (figure 5b), which is qualitatively distinct from the behaviour under diffusion-limited
evaporation. Note that in the analysis below, we will disregard the initial spreading phase
(giving the initial increase in R and decrease in θa) as well as the end of the droplet lifetime
where the droplet is small enough so that the bulk is no longer distinct from the contact-line
region (resulting in another decrease in θa).
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Diffusion-limited
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θa

Figure 5. (a) Radius R and (b) apparent contact angle θa over time for both evaporation models. Analytical
approximations given by (4.5) (black) and (5.3) (red) are plotted as dashed lines in (a). Note that they do not
capture the initial spreading phase of the droplet. The apparent contact angle θa is computed from the maximum
slope of the liquid–gas interface.

5.1. Comparison of droplet radius
We now compare the two evaporation models to understand the differences in the
predictions of the droplet radius. Turning first to diffusion-limited evaporation, the droplet
radius shown in figure 5(a) (black lines) is well-approximated by (4.5) because the droplet
shape is well-approximated by a spherical cap. Note that this results in (4.4) for the total
evaporative flux Jtot ∼ R which scales with the droplet circumference. This result holds
regardless of the parameters c∞ and Z as long as the droplet shape is well-approximated
by a spherical cap. For other situations, such as those where gravity is important, this
approximation may not hold. Note that the nonlinear simulations are not restricted to the
case of spherical-cap droplets.

Now focusing on one-sided evaporation and assuming a spherical-cap shape (4.2), we
may rewrite J given by (2.19) in terms of Γ (neglecting the pressure contribution because
it is unimportant in the bulk):

J = (K + κ)−1

1 + Γ

(
1 −

( r
R

)2
) . (5.1)

In the limit that Γ = R tan θa/2(K + κ) � 1, this reduces to the constant evaporative flux
J ≈ (K + κ)−1. The total evaporative flux then becomes

Jtot =
∫ R

0
rJ dr ≈ R2

2(K + κ)
. (5.2)

The condition Γ � 1 states that the droplet shape does not influence the evaporative flux,
hence giving a nearly constant J throughout the bulk. In contrast to the simple analytical
relations that one obtains for diffusion-limited evaporation (4.4), (5.2) is valid only in
parameter regimes where Γ � 1.

With R ∼ 1, θa ≈ 23◦ and K + κ = 10, we have Γ � 1 for results presented in this
work – as evidenced by the nearly constant one-sided evaporative flux in figure 4(b).
Substituting (5.2) into (4.1) results in a linear scaling for the droplet radius under one-sided
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Capillary flow

Precursor f ilm

p = –Π(hp) < 0

EJBulk

tan θa

θa

ξ

R(t)
p 

Figure 6. Schematic of droplet contact-line region. Evaporation competes with capillary flow to establish the
apparent contact angle θa. The coordinate ξ is a scaled distance from the droplet contact line given by (5.4).
The bulk pressure is given by (5.5).

evaporation:

R(t) = 4E
3 tan θa(K + κ)

(t(o)
0 − t). (5.3)

Note that this assumes a constant apparent contact angle θa, and despite θa varying as
shown in figure 5(b), well-approximates the radius evolution shown in figure 5(a) (red
lines). Equivalently, (5.3) can be obtained by simplifying (4.8) in the limit Γ � 1. We
note that a similar linear relationship can be derived for non-thin droplets undergoing
constant evaporation (Masoud & Felske 2009).

In experimental studies of drying droplets, it has been observed that Jtot is proportional
to the surface area (∼R2) in some systems (such as forced convection over the droplet)
(Shahidzadeh-Bonn et al. 2006), and diffusion-limited evaporation fails to capture the
evolution because it predicts Jtot proportional to the circumference of the droplet (Jtot ∼ R
as shown in (4.4)). In such a scenario, one-sided evaporation may be able to capture the
droplet evolution since it predicts Jtot ∼ R2 when Γ � 1; by treating the value of K in
relations (5.2) and (5.3) as a fitting parameter, one can adjust the evaporation rate to fit
experimental data.

5.2. Comparison of droplet contact angle
We now discuss trends in the apparent contact angle θa and elucidate fundamental
differences in the structure of the two evaporation models near the droplet contact line.
Figure 5(b) shows that after the initial spreading phase, θa remains nearly constant
under diffusion-limited evaporation (black line) but decreases steadily under one-sided
evaporation (red line). To understand this difference, we must look more closely at the
dynamics near the droplet contact line that give rise to θa. Figure 6 shows a scaled-up
view of the droplet contact line, where capillary effects tend to spread the droplet
while evaporation tends to contract it. Eggers & Pismen (2010) showed that under
diffusion-limited evaporation, the size of the contact-line region w scales as w ∼ R1/3,
so ξ depicted in figure 6 is a scaled distance away from the contact line such that ξ ∼ 1 in
the contact-line region:

ξ ∼ R − r
R1/3 . (5.4)

The driving force for spreading arises from the difference in capillary pressure in the
bulk and disjoining pressure in the precursor film. For a spherical-cap droplet, substituting
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(4.2) into (2.6) (and neglecting disjoining pressure in the bulk) gives

p ≈ −1
r

∂

∂r

(
r

∂h
∂r

)
= 2 tan θa

R(t)
. (5.5)

While the pressure in the precursor film p = −Π(hp) remains constant and negative, the
bulk pressure scales as p ∼ R−1, which grows as the droplet shrinks. Thus the driving
force for spreading becomes larger as the droplet evaporates, which tends to decrease θa
over time.

Opposing this capillary spreading is evaporation, where a non-uniform evaporative
flux that is focused at the contact line will tend to increase θa. Under diffusion-limited
evaporation (assuming a spherical cap for simplicity), we can use (3.2) and (5.4) to show
that near the contact line

J ∼ 1√
R2 − r2

∼ 1√
R(R − r)

∼ 1
R2/3√ξ

. (5.6)

First, we see that J grows like the classical square-root singularity (Eggers & Pismen 2010)
ξ−1/2 as we move towards the contact line (ξ → 0), obtaining its maximum (singular)
value at r = R. Second, note that as the droplet shrinks and R decreases, J increases
and becomes more non-uniform (the peak shown in figure 4(b) becomes steeper). Thus
diffusion-limited evaporation tends to increase θa as the droplet shrinks, balancing the
increasing capillary pressure and giving the nearly constant θa shown in figure 5(b) (black
line).

For one-sided evaporation, note that near the contact line we have h ≈ hp, and the
pressure is dominated by the disjoining pressure, so we have from (2.19) that

J = 1 + δp
K + h + κ

≈ 1
K + hp + κ

(1 − δ Π(h)) . (5.7)

Thus, as we move towards the contact line and precursor film where 1 − δ Π(h) → 0
(see (2.20)), the evaporative flux J decreases (shown in figure 4b). This behaviour is
opposite to that for diffusion-limited evaporation, resulting in the steady decrease in θa
shown in figure 5(b) (red line). This may explain the decreasing contact angle observed
experimentally by Murisic & Kondic (2011) for evaporating water droplets well-described
by one-sided evaporation.

These effects are amplified as the evaporative number E is increased. Figure 7 shows the
apparent contact angle θa over time for both one-sided and diffusion-limited evaporation
as E is increased. With slow evaporation, the droplet will assume its equilibrium shape,
and the contact angle will remain nearly constant at θeq under both evaporation models
(though the radius evolution remains qualitatively different, as shown in figure 5a). This
is what we observe for E = 10−3 in figure 7 (black lines). Now, as E is increased under
diffusion-limited evaporation, θa increases but remains nearly constant throughout most of
the droplet lifetime. As E is increased, the effect of evaporation increasing θa is intensified
(see figure 6), leading to a larger θa. This in turn increases the bulk capillary pressure
(5.5), maintaining the balance between capillary spreading and non-uniform evaporation.
However, one-sided evaporation tends to decrease θa. So while increasing E results in a
net increase in θa due to faster overall evaporation, there is a steeper decrease in θa over
time due to increasing capillary pressure.
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Figure 7. The apparent contact angle θa over time for (a) diffusion-limited and (b) one-sided evaporation as E
is increased by an order of magnitude for each line. The black line is for E = 10−3. Note that θa approaches the
equilibrium contact angle θeq ≈ 18◦ (see § 2.4) as E is decreased because the droplet approaches its equilibrium
shape.
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r r
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Figure 8. Interface temperature TI profiles at t = t0/2 for (a) κ = 0 and (b) κ = 2/3. Note that the temperature
reaches its maximum TI = 1 in the precursor film where J = 0 and there is no evaporative cooling. The
droplet radius at t = t0/2 is larger under diffusion-limited evaporation, despite the same t0, due to different
dependencies on the droplet radius (see (4.4) and (4.7)).

6. Comparison of thermal gradients

In this section, we discuss how the fundamental differences revealed in § 5 give rise to
qualitative differences in the predicted temperature profiles under each evaporation model.
Specifically, we will show that the contact line is always warmer than the bulk droplet
under one-sided evaporation, whereas it can be warmer or cooler under diffusion-limited
evaporation. For the results presented here, we set Ma = 0.1; we have found that the
magnitude of Marangoni flow does not change our findings qualitatively.

Figure 8 shows temperature profiles TI at the liquid–gas interface under
diffusion-limited (black line) and one-sided (red line) evaporation. The temperature profile
at the interface is given by (2.16), so the temperature will change throughout the droplet as
J and h vary, and then rapidly increase to TI = 1 in the precursor film where J = 0. For an
infinitely conductive substrate, we have κ = 0, and figure 8(a) shows that both evaporation
models predict qualitatively similar temperature profiles; the droplet is cooler in the centre
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and warms as it thins towards the contact line where more heat is transported from the
substrate to the liquid–gas interface. However, at a larger conductivity ratio κ = 2/3 (less
conductive or thicker substrate), figure 8(b) shows that the evaporation models predict
opposite trends in the temperature profile. While one-sided evaporation still predicts a
warmer contact line, diffusion-limited evaporation now predicts a colder contact line.
This trend for diffusion-limited evaporation is consistent with findings by Ristenpart et al.
(2007) where the sign of thermal gradients near the contact line reverses as κ is increased
above a critical value κc.

Figure 8(b) shows that thermal gradients under one-sided evaporation do not reverse
at the same κc as diffusion-limited evaporation; we will show that one-sided evaporation
always predicts a warmer contact line. For a general evaporative flux J, thermal gradients
at the interface are given by

∂TI

∂r
= − (h + κ)

∂J
∂r︸ ︷︷ ︸

(a)

− J
∂h
∂r︸︷︷︸

(b)

, (6.1)

which has contributions from (a) gradients in evaporative cooling/heating, and (b)
gradients in the droplet thickness – a thinner droplet will conduct more heat from the
substrate to the liquid–gas interface. Note that for most droplets, ∂h/∂r < 0, so term
(b) contributes to positive thermal gradients (a warmer contact line). To have a negative
thermal gradient, the evaporative flux J must offset this and satisfy the inequality

1
J

∂J
∂r

> − 1
h + κ

∂h
∂r

. (6.2)

That is, the evaporative flux must increase sufficiently fast to offset heating from the
substrate.

Recall from (5.7) that the one-sided evaporative flux decreases as one approaches the
contact line (see figure 4b), so ∂J/∂r < 0 and inequality (6.2) can never be satisfied. Thus
one-sided evaporation always results in a warmer contact line. Substituting (2.19) into (6.1)
gives

∂TI

∂r
= − 1

K + h + κ

(
δ(h + κ)

∂p
∂r

+ KJ
∂h
∂r

)
. (6.3)

Noting that both ∂p/∂r < 0 and ∂h/∂r < 0 near the contact line, ∂TI/∂r is strictly
positive near the contact line under one-sided evaporation for all values of K, δ and κ .
While increasing κ decreases the influence of substrate heating in inequality (6.2), it also
decreases the evaporative flux given by (2.19). This is not the case with diffusion-limited
evaporation, where the evaporative flux does not depend explicitly on κ . As shown in
figure 4(b), the diffusion-limited evaporative flux (black line) increases rapidly near the
contact line, so ∂J/∂r > 0. For a sufficiently large κ > κc, this increase in J is larger than
the substrate heating effect on the right-hand side of (6.2), and we observe a cooler contact
line as shown in figure 8(b).

While it does not affect our results qualitatively, we discuss briefly the influence of
Marangoni flow on droplet evolution. When the contact line is warmer than the bulk, as
in figure 8(a), Marangoni flow is directed away from the contact line towards the bulk.
This causes the droplet to retract and have a smaller radius R and larger apparent contact
angle θa. Consequently, evaporation is slower in both one-sided and diffusion-limited
evaporation (see (4.4) and (5.2)). When the contact line is colder than the bulk droplet,
as for diffusion-limited evaporation (black line in figure 8b), Marangoni flow is directed
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outwards towards the contact line. This causes the droplet to spread, giving larger R and
smaller θa, and consequently faster evaporation. This effect of Marangoni flow is consistent
with what has been observed previously theoretically and experimentally for evaporating
sessile droplets (Maki & Kumar 2011; Murisic & Kondic 2011; Tsoumpas et al. 2015).

7. Conclusions

In this work, we have compared predictions from one-sided and diffusion-limited
evaporation to develop a fundamental understanding of the physical mechanisms
responsible for their different predictions. First, while it is known that the diffusion-limited
evaporation rate is proportional to the droplet circumference (∼R), we show that for
a sufficiently large inverse mass-transfer coefficient, the one-sided evaporation rate
is proportional to the droplet surface area (∼R2). Previous work has reported that
in some scenarios (e.g. forced convection over a droplet), experimentally measured
evaporation rates are proportional to the droplet surface area (∼R2), and diffusion-limited
evaporation is inaccurate (Shahidzadeh-Bonn et al. 2006). Our results suggest that
one-sided evaporation may be able to capture experimental data in these scenarios by
treating the inverse mass-transfer coefficient as a fitting parameter since it predicts the R2

dependence of the evaporation rate.
Second, we show that fundamental differences in the structure of the evaporation

models near the contact line lead to fundamentally different behaviour of apparent contact
angles. Under diffusion-limited evaporation, the apparent contact angle remains nearly
constant throughout most of the droplet lifetime; the diffusion-limited evaporative flux
grows increasingly quickly near the contact line as the droplet shrinks, counteracting
increasing capillary pressures to give a nearly constant apparent contact angle. In contrast,
under one-sided evaporation, the apparent contact angle decreases appreciably as the
droplet shrinks; the one-sided evaporative flux decreases near the contact line and cannot
oppose increasing capillary pressures. This may explain the decrease in θa observed
experimentally by Murisic & Kondic (2011) for evaporating water droplets well-described
by one-sided evaporation.

The form of the one-sided evaporative flux near the contact line leads to it always
predicting a warmer contact line; because the evaporative flux decreases near the contact
line, evaporative cooling cannot compete with heating from the substrate as the droplet
thins. In contrast, the contact line under diffusion-limited evaporation can be either warmer
or colder than the bulk, depending on the conductivity ratio of the liquid and solid.

To conclude, we speculate on the differences in deposition patterns under one-sided and
diffusion-limited evaporation. The formation of a coffee-ring-like deposition pattern is
linked to pinning of the contact line that leads to particle accumulation (Deegan et al. 2000;
Pham & Kumar 2017; Wilson & D’Ambrosio 2022). The diffusion-limited evaporative
flux shown in figure 4(b) (black line) increases sharply near the contact line, which is
expected to cause particle accumulation there. This accumulation would increase the
viscosity and possibly cause self-pinning (Deegan 2000), leading to a coffee-ring-like
deposition pattern. In contrast, the one-sided evaporative flux shown in figure 4(b) (red
line) is not as peaked at the contact line, so one might expect a coffee-ring-like deposition
pattern to form more slowly and to be less pronounced. However, as discussed in § 5,
under some conditions the one-sided evaporative flux resembles the diffusion-limited
evaporative flux, in which case we would expect the deposition patterns to be more similar.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.873.
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Appendix A. Effect of droplet height on gas phase concentration

We can justify rigorously the change in domain z∗ ∈ (εh, ∞) �→ z∗ ∈ (0, ∞) discussed in
§ 2.3.2 by the mapping

z∗ �→ z∗ − εh. (A1)

Note that z∗ derivatives are unaffected by this translation, but x derivatives must be
transformed using the chain rule:

∂

∂x
�→ ∂

∂x
− ε

∂h
∂x

∂

∂z∗ = ∂

∂x
+ O(ε). (A2)

The correction in (A2) is O(ε) and may be neglected provided that derivatives of h and cg
are O(1). Thus x derivatives are also unaffected (up to O(ε)), and this change of domain
causes no change in the governing equations; we may neglect the droplet height at z∗ = εh,
instead applying boundary conditions at z∗ = 0, with only O(ε) error.
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