Contents

	Preface page	e xi
1	Basics of Light Science and Device Modelling	1
	1.1 Basics of Visible Light and Primary Colours	1
	1.2 Light Emission in Traditional Light Sources and LEDs1.3 Heat Loss Mechanisms of Traditional Light Sources	1
	and LEDs	4
	1.4 LED Structures and their Thermal Equivalent Models	5
	References	8
2	Steady-State Photo-Electro-Thermal (PET) Theory for LED	
	Systems	9
	2.1 Luminous Intensity, Luminous Flux and Luminous	
	Efficacy	9
	2.2 Models for the Steady-State PET Theory	12
	2.2.1 Linking Photometric Quantity (Light) with	
	Electric Quantity (Power)	13
	2.2.2 Linking Thermal Quantity (Heat) with	
	Photometric Quantity (Light)	13
	2.2.3 Linking Electric Quantity (Power) with	
	Thermal Quantity (Heat)	14
	2.2.4 Linking Photometric, Electric and Thermal	
	Quantities together	14
	2.3 Important Meanings behind PET Theory	17
	2.4 Achieving Maximum Luminous Flux with Proper	
	Thermal Design	20
	2.5 Optimal Design Procedure for LED Systems	22
	References	24

3	Dynamic Photo-Electro-Thermal Theory for LED Systems	27
	3.1 Introduction	27
	3.2 Models for the Dynamic PET Theory	27
	3.2.1 Time-Domain Junction-to-Case Temperature	
	and Heatsink Temperature	29
	3.2.2 Time-Domain Luminous Efficacy	
	and Luminous Flux	31
	3.3 Predictions of Photo-Electro-Thermal Variables with	
	Time	33
	3.3.1 Variation of Luminous Flux with Time	33
	3.3.2 Prediction of Internal Junction Temperature	36
	References	39
4	Determination of PET Model Parameters and Internal	
	Variables	41
	4.1 Determination of the Heat Dissipation Coefficient	41
	4.1.1 Experimental Approach: The Silicon Oil Bath	
	Method	41
	4.1.2 Determination of Heat Dissipation Coefficient	
	from Optical Power	43
	4.2 Determination of Wall-Plug Efficiency and	
	Optical Power	44
	4.2.1 Theory	44
	4.2.2 Applications	49
	4.3 Determination of the Junction-to-Case Thermal	
	Resistance R_{ic} and Junction Temperature T_i	50
	4.3.1 Theory	50
	4.3.2 Application	52
	References	55
5	Unifying PET Theory with Colorimetry	57
	5.1 Spectral Power Distribution	57
	5.2 Practical Spectral Power Modelling Process	60
	5.2.1 Temperature Dependence of the Peak	
	Wavelength and FWHM	61
	5.2.2 Temperature Dependence of the $P_{opt_phosphor}$ /	
	P _{opt_b} Ratio	65

	5.3 Determination of Junction Temperature, CCT and	
	CRI using the Dynamic PET Theory Framework	68
	5.3.1 Temperature and Electrical Power Dependence	
	of the Optical Power	69
	5.3.2 Time Dependence of the Junction Temperature	71
	5.4 Application of the Extended PET Theory to CCT and	
	CRI Prediction	72
	5.4.1 Steady-State Measurements	74
	5.4.2 Dynamic Measurements	74
	5.4.3 Use of the Spectral Model as a Dynamic	
	Modelling Tool	77
	References	81
6	Chromatic, Photometric and Thermal Modelling of LED	
	Systems	83
	6.1 A Partitioned Grid Model for an LED System	83
	6.2 Generalized Partitioned Model for an $m \times n$ LED	
	Array Structure	88
	6.3 PET Modelling of Non-Identical LED Devices	
	in Array Structures	89
	6.4 Chromatic Modelling of LED Array Systems with	
	Non-Identical LED Devices	91
	6.5 Application Examples	93
	6.5.1 An LED System with Identical LED Devices	93
	6.5.2 An LED System with Non-Identical LED	
	Devices	97
	References	100
7	Precise Dimming and Colour Control of LED Systems	103
	7.1 Traditional Linear Colour Control and its Drawbacks	104
	7.2 Nonlinear Dimming and Colour Control	106
	7.2.1 Nonlinear CCT Function of White LED Systems	
	with Variable CCT	106
	7.2.2 Mutual Thermal Dependence of Different	
	LED Types	108

	7.2.3 Parameter Determination for the Nonlinear	
	Luminous Flux Functions	111
	7.3 Precise Dimming and Colour Control	114
	7.3.1 Averaged CCT for Cool-White LED as	
	a Function of D_T	115
	7.3.2 Averaged CCT for Warm-White LED as	
	a Function of D_T	115
	7.3.3 Mixed CCT Based on the Nonlinear Method	116
	7.4 Practical Implementation of Precise Dimming	
	and Colour Control	118
	References	119
8	Applications of PET Theory	121
	8.1 Design of Smart LED Street Lighting for Weak	
	Power Grids	121
	8.2 Structural Designs of LED Devices and Systems	126
	8.2.1 System Level	128
	8.2.2 Device Level	130
	8.3 Other Advanced Topics and Future Trends of LED	
	Technologies	133
	References	135
	Index	137