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Abstract

The Pliocene–Quaternary volcanic rocks which outcrop between Qorveh and Bijar are part of
post-collisional within-plate volcanic activity in northern Iran. These mafic alkaline rocks form
part of the northern arm of the Sanandaj–Sirjan (Hamedan–Tabriz) zone. Thermobarometry
on equilibrium clinopyroxene – whole-rock pairs yields pressures and temperatures of 4–6
(±1.8) kbar and 1182–1213 (±27) °C, respectively; olivine –whole-rock (melt) equilibrium ther-
mometry yields crystallization temperatures of 1212–1264 (±27) °C. Field relationships, includ-
ing the presence of pyroxenitic xenoliths, and geochemical evidence (e.g. high FeO/MnO, and
low CaO compared to lavas derived from peridotite sources) suggest a pyroxenitic mantle
source for the studied rocks. Variation of trace elements and isotopic ratios (i.e. Ce/Pb, Ba/
La, 87Sr/86Sr) indicate that this pyroxenite mantle source was generated by interaction between
melted sediments of the subducted Neo-Tethys slab with ambient peridotitic lithospheric man-
tle. The resulting metasomatized lithosphere is denser and has a lower viscosity than the peri-
dotitic mantle, and tectonic disturbance can cause it to fall into the depths of the mantle. The
descending volatile-rich material starts to melt with increasing temperature. Modelling of rare
earth element (REE) abundances suggests that <1 % partial melting of the descending pyrox-
enite could create the Plio-Quaternary alkali basaltic magma of the Qorveh–Bijar. The geo-
chemical evidence for lithospheric foundering, and hence drip magmatism, in the Qorveh–
Bijar volcanic belt is supported by seismographic studies indicating thinned lithosphere beneath
the study area.

1. Introduction

Alkali basaltic magmas are observed in several tectonic environments, including intra-
continental, intra-oceanic, post-collisional and arc settings (e.g. Rostami-Hossouri et al.
2020). Kogarko (2006) has noted that generally alkaline magmatism is most typical of stable
regions where it is controlled by rift structures and occurs along zones marked by abruptly
decreasing thickness of the continental lithosphere. These compositions have received consid-
erable attention regarding their geochemistry, petrology and geodynamic evolution (Cebria
et al. 2000; Temel et al. 2000, 2010; Thompson et al. 2005; Xu et al. 2005; Jung et al. 2006;
Kuritani et al. 2008, 2009; Pilet et al. 2008; Zeng et al. 2011; Ducea et al. 2013; Pang et al.
2013; Torkian et al. 2016; Rostami-Hossouri et al. 2020; Salehi et al. 2020; Verma & Molaei-
Yeganeh, 2022). The alkaline basalts parental magmas were produced by relatively small degrees
ofmelting (<5 wt%) of their heterogeneousmantle source (Fitton &Dunlop, 1985) and, as such,
alkali basalts may be taken as deep probes of enriched domains in the upper mantle (Farmer
et al. 2002).Modern geochemical and isotopic data show that alkali–basaltic magmas are formed
by melting of enriched reservoirs within the lithospheric and sub-lithospheric mantle
(Thompson et al. 2005; Xu et al. 2005; Jung et al. 2006; Kogarko, 2006; Kogiso &
Hirschmann 2006; Sobolev et al. 2007; Pilet et al. 2008; Kuritani et al. 2009; Zeng et al.
2010; Ma et al. 2011).

This study explores the petrogenesis of Plio-Quaternary mafic alkaline volcanic rocks that
outcrop between the two cities of Qorveh and Bijar. This volcanic episode has been the subject of
extensive research, which sets the stage for addressing the origin, age and tectonic settings of the
volcanic rocks erupted during this period. The petrogenesis of these volcanic rocks is broadly
related to subduction of Neo-Tethyan oceanic crust and continental collision (Malecootyan
et al. 2007; Kord, 2012). Malecootyan et al. (2007) conclude that crustal contamination occurred
during the upward movement of magma to the surface and this process was responsible for the
distinct compositional characteristics (enrichment in Pb, Rb and Sr and depletion in Nb and Zr)
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of the Qorveh–Bijar volcanic rocks. Torkian et al. (2016) docu-
mented the existence of gneissic xenoliths and quartz and alkali
feldspar xenocrysts in the NW Qorveh volcanic rocks as evidence
of crustal contamination phenomena that may partly overprint the
geochemistry of the mantle source. Several authors suggest they
derived from an ocean island basalt (OIB)-like mantle source
(Moinevaziri & Amin-Sobhani, 1988; Razavi & Sayyareh, 2010).
Allen et al. (2013) suggested that the high La/Nb and Zr/Hf of
the Qorveh–Bijar volcanic rocks indicates a mantle source which
was affected by slab-derived fluids. The high Nb concentration and
other geochemical features led Azizi et al. (2014) to interpret these
volcanic rocks as high-Nb basalts generated by partial melting of
metasomatized mantle associated with adakitic magma. Recent
calculations of the parental melt composition based on olivine-
hosted melt inclusions demonstrated a pyroxenite source for
Quaternary alkaline (Salehi et al. 2020).

Here we present new interpretations based on whole-rock geo-
chemistry (major elements, trace elements and Sr–Nd isotopes)
that constrain the contribution of crustal contamination to the
genesis of these rocks, as well as highlighting the possible role of
subducted oceanic crust in the geochemistry of the mantle source.
Detailed mineral chemistry is used to retrieve the intensive varia-
bles of the magmatic system. We integrate the petrological and

geochemical information derived for the Qorveh–Bijar volcanic
belt to provide additional constraints on the melting conditions
of the mantle source beneath the Arabian–Eurasian collision zone.

2. Geological setting

The Cenozoic continental collision between the Iranian and
Arabian plateaus is manifest in widespread magmatic and meta-
morphic features in Iran. The subduction of Neo-Tethyan oceanic
lithosphere beneath eastern Turkey and Iran initiated during Early
Jurassic or Late Triassic time (Dewey et al. 1973; Berberian & King,
1981; Alavi, 1994; Stampfli & Borel, 2002; Hassanzadeh &
Wernicke, 2016; Barber et al. 2018; Tavakoli et al. 2020).
Subsequent northward motion of the Arabian plate following final
closure of Neo-Tethys occurred during the late Oligocene – early
Miocene (e.g. Dewey et al. 1973; Berberian & King, 1981; Alavi,
1994; Mouthereau et al. 2012; Hassanzadeh & Wernicke, 2016;
Barber et al. 2018; Tavakoli et al. 2020) or the Late Cretaceous –
Oligocene (Mohajjel & Fergusson 2014). The closure of Neo-
Tethys has given rise to the East Anatolian and Iranian plateaus
to the north and east, respectively, of the Bitlis–Zagros
suture (Fig. 1).

Fig. 1. (Colour online) Late Cenozoic volcanic
centres and active faults in Iran. The study area
is included in the red rectangle (the rectangle
shows the study area from Allen et al. 2013).
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There are considerable variations in the style and quantity of
magmatism after the Arabia–Eurasia collision. Magmatic rocks
ranging in age fromMiocene to Quaternary are geographically dis-
persed, volumetrically modest and chemically varied. The complex
continental collision zone in western Iran (Fig. 1) consists of the
Zagros fold-and-thrust belt (ZFTB), the Sanandaj–Sirjan zone
(SaSZ), and the Urumieh–Dokhtar magmatic belt (UDMB)
(Berberian & King, 1981; Alavi, 1994; Hassanzadeh & Wernicke,
2016; Tavakoli et al. 2020). The SaSZ can be divided into distinct
northern and southern sections (Eftekharnejad, 1981; Ghasemi &
Talbot, 2006). The northern section is mainly composed of an old
island arc and an active continental margin that collided in the Late
Jurassic – Early Cretaceous. The southern section consists entirely
of metamorphic basement with evidence of polyphase deformation
and metamorphism (Azizi & Asahara, 2013). The SaSZ has been
intruded by A-, S- and I-type granitoid batholiths emplaced from
Jurassic to Oligocene time (e.g. Sepahi & Athari, 2006; Mansouri-
Esfahani et al. 2010; Shahbazi et al. 2010; Torkian & Furman, 2015;
Yeganeh et al. 2018).

Between the Main Zagros Thrust (MZT) in the southwest and
the Tabriz Fault in the northeast, Azizi & Moinevaziri (2009) pro-
posed a subdivision of SaSz in northwestern Iran that is of
Cretaceous and Eocene–Miocene to Quaternary age, trending in
a NW–SE direction and including three minor volcanic belts:
(1) the Sonqor–Baneh volcanic belt (SBVB), (2) the Hamedan–
Tabriz volcanic belt (HTVB) and (3) the Cretaceous volcanic belt
(SCVB) (see fig. 3 in Azizi & Moinevaziri, 2009). The SCVB con-
sists mainly of mafic to intermediate submarine volcanics of calc-
alkaline affinity, and the SBVB is composed of basalt, as well as
gabbro to dioritic bodies, with extrusive to sub-volcanic magmatic
textures and tholeiitic to alkaline affinity.

The HTVB extends across the Hamedan to Tabriz and consists
of Miocene to Plio-Quaternary extrusive rocks. The northern part
of this belt hasMiocene volcanic rocks with adakitic features (Azizi
et al. 2014; Lechmann et al. 2018; Torkian et al. 2019; Shahbazi
et al. 2021). The southern part consists of two different volcanic
suites: felsic to intermediate rocks of Miocene age and Plio-
Quaternary basalts (Şengör & Kidd, 1979; Kheirkhah &
Mirnejad, 2014). Here we investigate mafic volcanic rocks in the
HTVB located between the cities of Qorveh and Bijar (i.e. 35°
18 0–35° 30 0 N, 47° 46 0– 47° 59 0 E; Fig. 2). The results of K–Ar
whole-rock dating in Qorveh–Bijar conducted by Boccaletti
et al. (1976) suggest that the volcanic activity occurred during
the Quaternary, from 1.3 ± 0.08 to 0.5 ± 0.15 Ma.

3. Field relationships

The Qorveh–Bijar volcanic products comprise bombs, scoria, lap-
illi tuffs and lava flows with an individual thickness up to several
tens of metres (Fig. 3a, b); we refer to these units collectively as the
QBB (Qorveh–Bijar basaltic rocks). Cinder cones represent the
youngest phase of magmatism in the region, preserving their geo-
logical structures over the lava flows. The lava flows cover the argil-
laceous limestone of Miocene to Pliocene time. There is no
significant deposition postdating the lava flows, and three-dimen-
sional structures are exposed through dissection by an external
drainage (Fig. 3c).

Felsic gneissic xenoliths are frequently observed in the basaltic
rocks and some of these xenoliths are larger than 10 cm (Fig. 3d).

4. Material and methods

4.a. Whole-rock geochemistry

Whole-rock major and trace element contents of the studied sam-
ples were determined on glassy pills synthetized with the Pt-loop
technique at 1600 °C in a chamber furnace installed at the HP-HT
Laboratory of Experimental Volcanology and Geophysics of the
Istituto Nazionale di Geofisica e Vulcanologia (INGV; Rome,
Italy). The pills were then analysed using an electron probe micro-
analyser (EPMA) Jeol-JXA8200 with combined energy-dispersive
spectrometry – wavelength-dispersive spectrometry (EDS-WDS;
five spectrometers with 12 crystals) using 15 kV accelerating volt-
age and 10 nA electric current. A slightly defocused electron beam
with a size of 3 μm was used, with a counting time of 5 s on back-
ground and 15 son peak. Sodium and potassiumwere analysed first
to prevent alkali migration effects. The accuracy of the microprobe
was measured through the analysis of well-characterized synthetic
oxides andmineral standards. Based on counting statistics, analyti-
cal uncertainties relative to their reported concentrations indicate
that precision was better than 5 % for all cations.

Trace element compositions of whole rocks were measured by
laser ablation inductively coupled plasma mass spectrometry (LA-
ICP-MS) conducted at the Institute of Geochemistry and Petrology
of ETH Zürich (Switzerland) using a 193 nm ArF Excimer laser
from Resonetic coupled to a Thermo Element XR ICP-MS. A spot
size of 43 μm was used for mineral analyses and reduced to 20 μm
for glass analyses; output energy of the laser beam was typically
~3.5 J cm−2. NIST612 and NIST610 were adopted as external stan-
dards for the data reduction. United States Geological Survey
(USGS) reference glass GSD-1G was used as a secondary standard
to monitor instrument accuracy. When appropriate, major
element concentrations from EPMA analyses were used as internal
standards. Long-term laboratory reproducibility of homogeneous
glass standards indicates precision significantly better than 5 % for
elements whose concentration was much greater (i.e. ≥2×) than
the detection limit.

4.b. Isotope analysis

Radiogenic isotopic data were obtained at the Department of Earth
Science, University of Cape Town (South Africa). Approximately
50mg of the powdered rock was dissolved in a 4:1 HF/HNO3 acid
mixture in sealed Savillex beakers for 48 h, and then the solutionwas
split for determination of both concentration data (Rb, Sr, Nd and
Sm), and Sr and Nd isotope ratios. The Sr and Nd fractions for iso-
tope analyses were isolated employing sequential column chemistry
(after Pin et al. 1994; Pin & Zalduegui, 1997; Míková & Denková,
2007). The Sr and Nd isotope data were obtained using a Nu
PlasmaHRmass spectrometer equipped with a DSN-100 desolating
nebulizer. All Sr isotopes were referenced to a value of 0.710255 for
the bracketing analyses of NIST SRM987. During the analysis, Sr
isotope data were corrected for Rb interferences using the measured
signal for 85Rb and the natural 85Rb/87Rb ratio, while instrumental
mass fractionation was addressed using the exponential law and the
86Sr/88Sr ratio of 0.1194. The Nd isotope values were normalized to
0.512115 for bracketing analyses of JNdi-1. These data were then
corrected for Sm and Ce interferences using the signals measured
for 147Sm and 140Ce and natural Sm and Ce isotope abundances,
while instrumental mass fractionation was addressed using the
exponential law and the 146Nd/144Nd ratio of 0.7219.
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5. Results

5.a. Petrography

The studied samples are generally fresh and show porphyritic and
microlithic textures (Fig. 4a–c). Phenocrysts and microphenoc-
rysts (35–45 vol. %) are represented primarily by clinopyroxene
and olivine; in some cases amphibole and biotite are present as
accessory phases (Fig. 4e). The groundmass (<35 vol. %) includes
microlites of clinopyroxene, acicular plagioclase and opaque min-
erals (titanomagnetite), all coexisting with glass (~20 vol. %).
Glomeroporphyritic aggregates of olivine and clinopyroxene are
observed in some samples.

5.b. Mineral chemistry

All mineral compositional data are provided in supplemental files
as Tables S1 and S2 (available online at https://doi.org/10.1017/
S0016756823000018). Clinopyroxene up to 2 mm is the most
abundant mafic mineral phase in all studied rocks. The crystals

are commonly euhedral to subhedral and display normal and oscil-
latory zoning. Some crystal cores and rims show sieve textures with
embayments (Fig. 4d). The absence of reaction rims is considered
as an indicator of equilibrium between the crystal and the host
magma. The clinopyroxenes (Fig. 5a) are classified as diopside
to salite with Wo41.3-49.4, En36.4-47.6, Fs6.6–12, Mg# 0.40–0.89
(Mg# expressed as molar Mg/(Mg þ Feþ2) where iron is Fe2þ

total). Many crystals are slightly zoned, showing increasing TiO2

and FeO concentrations and decreasing MgO contents towards
the rims (Fig. 5b, c).

Olivine is the secondmost abundant phenocryst phase. Crystals
are euhedral to subhedral in shape, showing sporadically skeletal
and glomeroporphyritic textures (Fig. 4). Some of the olivine phe-
nocrysts display a dissolving–erosion structure, while in other
cases the crystals are broken and replaced with iddingsite along
fractures and rims. The forsterite content of olivine is variable
(Fig. 6a) and generally decreases from core to rim following the
normal growth zoning. The highest forsterite content (Fo82–88)
is measured in olivine crystals from the Illanlu area. The CaO

Fig. 2. (Colour online) Schematic geological
map showing the location of lava flows in the
study area. After Emami et al. (1993). The sam-
pling sites are shown. Abbreviations in the dia-
gram are Gh (Ghezelche-Kand), IL (Illanlu), A
(Ahmad-Abad), T (Tahmoures) and G (Ghare-
Toreh).
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content of olivine ranges from 0.16 to −2.9 wt %, which is higher
than olivine from mantle xenoliths (CaO <0.1 wt %; Thompson &
Gibson, 2000).

5.c. Whole-rock geochemistry

Representative whole-rock (major and trace element) composi-
tions are given in the supplemental file as Table S3 (available online
at https://doi.org/10.1017/S0016756823000018). The studied rocks
are identified as basanite and phono-tephrite with alkaline affinity
in a plot of total alkalis vs SiO2 (Le Bas et al. 1986) (Fig. 6b); they are
generally sodic with Na2O > 2 þ K2O.

QBB rocks contain 45.3–48.0 wt % SiO2, 8.1–10.3 wt % MgO,
and their Mg# (Mg#=Mg/(Mg þ Fe)) ranges from 65 to 72.

Variations in Al2O3, Na2O, K2O and SiO2 vs MgO do not define
clear trends, and no systematic variations are found between Sr,
Nb, La, Th and MgO. However, MgO contents correlate positively
with CaO, Ni and Cr (Fig. 7).

Figure 8 shows the chondrite-normalized rare earth elements
(REE) and the primitive-mantle-normalized trace element pat-
terns of the QBB rocks. Similar to other intraplate alkaline basalts
(Zou et al. 2000;Wilson & Patterson, 2001; Shaw et al. 2003; Aydin
et al. 2008; Asan & Kurt, 2011; Pang et al. 2013), all the samples are
enriched in light REE (LREE), exhibiting steep REE patterns
(Fig. 8a) with (La/Yb)N values ranging from 33.1 to 68.3. The
sub-parallel and tight REE patterns suggest that these volcanic
rocks originated from a common mantle source. The QBB are
enriched in large-ion lithophile elements (LILE) (Cs: 1.1–3.6

Fig. 3. (Colour online) Overview of the products
object of this study. (a) Scoria cones, (b) volcanic
bombs, (c) scoria and lavas and (d) gneissic
xenoliths.

Fig. 4. (Colour online) Representative photo-
micrographs of the studied volcanic rocks. (a)
Microlithic porphyry texture; (b) glomeropor-
phyry texture; (c) porphyry texture; (d) sieve tex-
ture of clinopyroxene; (e) amphibole; (f) skeletal
olivine. Ol: Olivine; Cpx: Clinopyroxene; Qtz:
Quartz; Bt: Biotite; Pl: Plagioclase.

892 N Salehi et al.

https://doi.org/10.1017/S0016756823000018 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756823000018
https://doi.org/10.1017/S0016756823000018
https://doi.org/10.1017/S0016756823000018


Fig. 5. (Colour online) (a) Classification scheme
of Morimoto et al. (1988), showing that the
pyroxenes are diopside–salite in composition;
(b) backscattered electron image microphoto-
graph of clinopyroxene from Illanlu (IL-C7);
and (c) mineral compositional variation from
rim to rim.

Fig. 6. (Colour online) (a) Variations of forsterite content in olivine vs Mg# of whole rock. Olivines in equilibriumwith the host lavas plot between the dashed lines; (b) Na2Oþ K2O
(wt %) vs SiO2 (wt %) diagram for the QBB rocks (Le Bas et al. 1986).
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ppm; Sr: 1586–3080 ppm; Pb: 11.2–28.1 ppm), and display nega-
tive Nb–Ta anomalies on primitive-mantle normalized abundance
diagrams, which is a known characteristic of lavas derived from a
mantle source with subduction-modified material or crustal con-
tamination (Fig. 8b).

Whole-rock Nd–Sr isotopic analyses for QBB are reported in
Table 1. Initial 87Sr/86Sr and 143 Nd/144Nd ratios of QBB range from
0.70453 to 0.70535 and from 0.512643 to 0.512722 (ϵNd þ0.23 to
þ1.76), respectively. The QBB rocks plot close to the composition
of the bulk silicate earth and have lower values of 87Sr/86Sr in

Fig. 7. (Colour online) Bivariate diagrams of
selected major and trace elements against
MgO (wt %).
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comparison to the gneissic xenoliths (Azizi et al. 2014) which are
considered as continental crust components in the study
area (Fig. 9a).

5.d. Intensive parameters

The pressure and temperature conditions of magmas were esti-
mated using the clinopyroxene-melt based thermobarometric
models of Putirka et al. (2003) and Putirka (2008), using as input
data the compositions of the early-formed crystal cores and the
whole-rock analyses (i.e. the original magma compositions). To
ascertain whether the clinopyroxene-melt pairs were effectively
in equilibrium at the time of crystallization, we employed the equi-
librium test of Putirka (2008) based on Fe–Mg exchange between
clinopyroxene core and whole rock (Fig. 9b). As seen in Figure 9b,
values of cpx-meltKdFe–Mg closely match, with both the equilibrium
ranges of 0.27 ± 0.03 and 0.28 ± 0.08 indicated by Putirka et al.
(2003) and Putirka (2008) (their eqs. 32a and 33), respectively.
Calculations based on equilibrium clinopyroxene–melt pairs yield
pressures and temperatures of 4–6 (±1.8) kbar and 1182–1213
(±27) °C, respectively (Table 2).

Olivine–melt equilibria are particularly useful for liquidus tem-
perature estimates because the Fe–Mg exchange reaction is nearly
constant over a wide range of temperature, bulk composition and
oxygen fugacity (i.e. Ol-meltKdFe–Mg= 0.30 ± 0.03), and because the
olivine Fo content is highly sensitive to the thermal path of magma
(e.g. Roeder & Emslie 1970; Kuritani et al. 2019; Rollinson 2019).

Using the olivine-based thermometer approach of Putirka et al.
(2007) (their eq. 4), we find that Fo85–87 olivine is in equilibrium
with the whole-rock data (Fig. 6a), yielding crystallization onset
temperatures of 1212–1264 (±27) °C.

6. Discussion

6.a. Fractional crystallization and crustal contamination

Post-melting processes including fractional crystallization and
crustal contamination present challenges to deciphering trace
element data to determine the nature and composition of the melt
source region.We consider the QBB rocks with MgO>10 wt %, Ni
~300 ppm and Cr >400 ppm to be primary mantle melts. Ni, Cr
and CaO contents decrease with decreasing MgO (Fig. 7f–g), con-
sistent with minor fractionation of olivine, clinopyroxene and
probably chromian spinel from parental magma. This interpreta-
tion is also supported by petrological observations.

Values of Eu/Eu* (0.9–1) and the lack of negative Eu anomalies
in chondrite-normalized REE diagrams (Fig. 8) suggest that there
is no significant plagioclase fractionation involved in the petrogen-
esis of the QBB rocks. Many QBB rocks have Ba and Sr abundances
that record incompatible behaviour of these elements, consistent
with olivine and clinopyroxene fractionation in the absence of pla-
gioclase formation. Following Pang et al. (2012), the absence of
negative correlations between Y or Sm, elements with compara-
tively higher Kd values for amphibole–liquid compared to

Fig. 8. (Colour online) (a) Chondrite-normal-
ized REE diagram and (b) primitive-mantle-nor-
malized trace element diagram for QBB rocks.
Normalization values from Sun & McDonough
(1989).
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pyroxene–liquid, and Cr (an index of fractionation) (Fig. 10a and
b) indicates that amphibole fractionation was not substantial.

Before eruption, intra-plate basalts pass through thick
continental crust, creating the possibility that they become conta-
minated by the crust. The QBB magmas had to pass through the
thick continental lithosphere of western Iran (~110 km; Tunini
et al. 2014), in which contamination may potentially occur.
Indeed, the presence of abundant gneissic xenoliths provides evi-
dence for this process. Numerous mantle xenoliths and xenocrysts
are found in the study area; most of the xenoliths are fragmented in
appearance with angular edges, suggesting that the host magma
ascended too rapidly for them to melt, and thus too rapidly for
crustal contamination to play a significant role in the petrogenesis
of the QBB (Torkian et al. 2016; Salehi et al. 2020). The upper
continental crust is characterized by enrichment in LILE, depletion
in high-field-strength elements (HFSE), high SiO2 (66.6 wt %;

Rudnick et al. 2003) and enriched Sr–Nd isotopic compositions
(87Sr/86Sr= 0.7130, ϵNd −15; Gan et al. 2018). Consequently, mag-
mas contaminated by continental material should be characterized
by elevated SiO2 and LILE concentrations as well as 87Sr/86Sr ratios,
but lower HFSE concentrations and 143Nd/144Nd ratios. We
emphasize that the QBB lava geochemistry does not display these
key features. Further, the lack of systemic positive correlations in
plots of Nb/Th – ϵNd and Th/Yb – 87Sr/86Sr (Yu et al. 2020) implies
negligible crustal contamination (Fig. 10c–d).

We employed FC–AFC–FCA® and mixing model software of
Ersoy &Helvaci (2010) to investigatemore fully the possible occur-
rence of crustal contamination; the model was constrained by the
concentrations of incompatible trace elements Nb, Zr and Y in the
mafic lavas and the original partition coefficients set in the model
(Fig. 11). Primitive mafic lava GH2 with 45.3 wt % SiO2 and 9.3 wt
% MgO is assumed as the starting magma composition for AFC

Fig. 9. (Colour online) (a) 87Sr/86Sr vs 143Nd/144Nd. The compositions of EnrichedMantle 1 (EM1) and EnrichedMantle 2 (EM2) reservoirs come from Zindler & Hart (1986). The fields
for OIBs and high-μ (HIMU) come fromHart (1988), and the composition of gneissic xenoliths comes fromAzizi et al. (2014). (b) TheMg# of clinopyroxene is plotted against the value
of cpx-meltKdFe–Mg (Putirka et al. 2003; Putirka, 2008). Values of cpx-meltKdFe–Mg closely match both the equilibrium ranges of 0.27 ± 0.03 and 0.28 ± 0.08 indicated by Putirka et al.
(2003) and Putirka (2008), respectively.

Table 1. Rb–Sr and Sm–Nd isotopic data for the Qorveh–Bijar basaltic rocks

Samples* 87Rb/86Sr ±2s 87Sr/86Sr (87Sr/86Sr)i 147Sm/144Nd ±2s 143Nd/144Nd (143Nd/144Nd)i εNd

A2 0.1112 12 0.70528 0.70527 0.08649 9 0.51266 0.51266 0.43

A3 0.0928 10 0.70536 0.70535 0.08509 12 0.51265 0.51264 0.18

IL1 0.1088 11 0.7047 0.70469 0.10179 17 0.51271 0.5127 1.37

IL3 0.1272 13 0.70466 0.70465 0.10651 13 0.5127 0.51269 1.11

G1 0.0415 12 0.70489 0.70489 0.08318 12 0.51265 0.51265 0.23

G3 0.0411 11 0.70485 0.70485 0.08677 9 0.51266 0.51265 0.37

GH1 0.1609 11 0.70517 0.70515 0.09304 13 0.51267 0.51267 0.68

GH2 0.1158 17 0.70455 0.70453 0.09981 13 0.51273 0.51272 1.76

TE3 0.054 10 0.70465 0.70464 0.09369 13 0.51269 0.51269 1.03

TE4 0.0525 10 0.70469 0.70468 0.09423 13 0.51269 0.51269 1.07

*The age correction is based on the ages calculated by Boccaletti et al. (1976).
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modelling. The composition of the contaminant is that of gneissic
xenolith sample EGH6 which contains Nb, Zr and Y 5.79 ppm, 98
ppm and 5.77 ppm, respectively (Kord, 2012). The investigated
ratio of assimilation to fractionation (r) is 0.1, as higher r values
would be inconsistent with the primitive MgO contents of the
erupted products. Calculated model results plotted in the Zr/Y
vs Nb diagram (Fig. 11a) essentially rule out the possibility that
the geochemical signature of magmas is due to binary mixing with
the continental crust or gneissic xenoliths. Rather, Nb enrichment
results from its incompatibility in the fractionating phases of oli-
vine and clinopyroxene. Correlations between 87Sr/86Sr vs Th and
Nd143/Nd144 vs Sr further support the trace element modelling,
show a limited role for contamination (~5 %) and make it clear
that the enriched nature of the QBB rocks could not result from
crustal contamination (Fig. 11 b–c).

The primitive-mantle-normalized incompatible trace element
abundance patterns of the QBB are characterized by negative

anomalies in Nb and Ta which are a distinctive signature of sub-
duction-related magmas (Wilson, 1989). Therefore, the simple
mixing process between a primitive-mantle-derived magma and
crustal material cannot be considered a viable mechanism to gen-
erate the observed trace element concentrations, and we must con-
sider other factors such as enrichment of the mantle source by
subduction components.

6.b. Mantle nature and modelling of melting

Distinguishing the source lithology is pivotal for interpreting the
magmatic processes and origin of mantle-derived magmas. This
identification can provide important constraints on crustal recy-
cling and/or mantle metasomatism that may have contributed to
mantle heterogeneity (Wang et al. 2012, 2014). Peridotites are
abundant in the upper mantle, and the vast majority of Earth’s
basaltic lavas form through peridotite melting (Hirose &

Fig. 10. (Colour online) (a) Y (ppm)
vs Rb (ppm) and (b) Sm vs Rb dia-
grams for investigating the frac-
tional crystallization for the QBB
rocks; (c) Th/Yb vs 87Sr/86Sri and
(d) Nb/Th vs ϵNd for studied rocks.

Table 2. Results from clinopyroxene-based thermobarometery, olivine-based thermometry for QBB rocks

Clinopyroxene Olivine

Putrika et al. (2003) Putrika (2008) Putrika et al. (2007)

Sample T (°C) P (kbar) T (°C) Fo content T (°C)

Ghare-Toreh 1179 4.00 1182 87.5 1211

Illanlu 1236 5.00 1119 87.3 1264

Ahmad-Abad 1224 6.00 1213 85.5 1202

Tahmoures 1211 6.00 1186 85.2 1209

Ghale-Parian 1231 4.00 1213 84.9 1256
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Kushiro, 1993; Walter, 1998; Rhodes et al. 2012). Experimental
investigations, however, show that partial melts of volatile-free
mantle peridotite are unable tomatch several important geochemi-
cal features of intra-plate basalts, including their TiO2, CaO, FeO*
and Al2O3 contents (Hirose & Kushiro, 1993; Hirschmann et al.
2003; Kogiso et al. 2003). As a result, intra-plate basalts have been
suggested to be generated from pyroxenite, peridotite þ CO2, and
hornblendite source lithologies (Pilet et al. 2008; Ying et al. 2013).
The results of experimental studies illustrate that peridotite and
pyroxenite may play a pivotal role in the genesis of basaltic mag-
mas. The existence of pyroxenite in the mantle source of basaltic
rocks can be discerned by comparing the major and trace elements
chemistry of basaltic magmas with high-pressure experimental

products (e.g. Hirschmann et al. 2003; Kogiso et al. 2003;
Sobolev et al. 2007).

The incompatible element enrichment observed in the QBB
rocks could be derived directly from an enriched mantle source
(Fig. 8). However, the geodynamic history of the studiy area
(SaSZ) leads us to investigate the possible occurrence of mantle
metasomatism. It is accepted that slab-derived fluid or melts from
ancient Neo-Tethyan oceanic slab subduction beneath the study
area could affect the geochemical signature of the mantle source
(Agard et al. 2011). The Ce/Pb ratio is sensitive to the proportion
of sediment melt components: subducted sediments incorporated
wholesale will increase Ce/Pb values of resulting lavas, whereas
fluid components will decrease it because they are rich in fluid-

Fig. 11. (Colour online) Geochemical evidence for crustal contamination in Qorveh–Bijar lavas. (a) AFC modelling for the QBB rocks (gneissic xenoliths of Kord, 2012); (b) 143Nd/
144Nd vs Sr (Moghadam et al. 2014); (c) 87Sr/86Sr vs Th (ppm) (Ersoy et al. 2012) with modelled assimilation – fractional crystallization pathways (AFC; r= 0.4 curve); (d) Ba/La vs Ce/
Pb and (e) Th/Yb vs Ba/La plots to assess the effects of subducted slab materials on the mantle source of QBBs.
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mobile Pb (Tatsumi, 2000).We note that in the plot of Ba/La vs Ce/
Pb (Fig. 11d), QBB rocks manifested the effects of sediment com-
ponents in the mantle source. This is an excellent indicator of the
type of sedimentary component because sediment-bound Pb is not
mobilized by hydrous fluid, whereas it is incompatible during the
melting of pelagic sediments (Class et al. 2000; Johnson & Plank,
2000). Moreover, high Th levels are commonly interpreted as
reflecting the predominance of a component of subducted pelagic
sediments in the magma source (Kirchenbaur et al. 2009;
Kirchenbaur & Munker, 2015). The Th/Yb vs Ba/La plot shows
that the QBB rocks array supports the involvement of melt com-
ponents derived from sediments – but not fluids – during the
enrichment of the mantle (Fig. 11e).

In addition to incorporating subducted sediments, the mantle
source of the QBB experienced metasomatism by silicate melts.
Clinopyroxenitic xenoliths have been reported in the Qorveh–
Bijar basaltic rocks (Kord, 2012) and in Plio-Quaternary alkali
basalts of the Marand area in NW Iran (Khezerlou et al. 2017).
These samples provide valuable information on the nature and
evolution of the lithospheric mantle in these areas (Downes,
1993; Griffin et al. 1999; Zhang et al. 2005; Nasir et al. 2006;
Ackerman et al. 2012; Saadat & Stern, 2012; Ying et al. 2013).

Complex and diverse mechanisms have been proposed for the
formation of pyroxenite veins or zones (Sobolev et al. 2007;
Herzberg, 2011). Mantle pyroxenite can be generated by melting
unmodified recycled basaltic crust (stage I pyroxenite) or by the
reaction of melted subducted oceanic crust with solid peridotite
(stage II pyroxenite; Sobolev et al. 2005). As the MgO content
of QBB lavas (avg. MgO 9.2 wt %) are expected to be higher from
melts of stage I pyroxenite (<8 wt % MgO; Pertermann &
Hirschmann, 2003), we consider the melting of stage II pyroxenite.
The experimental studies of Sobolev et al. (2005) show that eclogite
has a lower solidus temperature than peridotite in the lithospheric
mantle, therefore eclogite begins melting at higher pressures and
greater depth. This melt has high Si concentration and can easily
react with olivine-bearing peridotite, converting it to a solid oli-
vine-free pyroxenite. Pyroxenites that result from silicate-melt-
modified mantle are often considered the source of oceanic island
and intercontinental basaltic rocks (Herzberg, 2006), and the geo-
chemical characteristics of QBB lavas suggest it is the source of
these eruptives.

Mafic melts derived from pyroxenite sources are geochemically
distinguishable from melts originating from peridotite sources
(Zeng et al. 2011; Sheldrick et al. 2020); these geochemical signa-
tures are observed consistently in the QBB rocks and suggest
contribution from a pyroxenite mantle source. First, melts of
pyroxenite have lower CaO contents compared with peridotite-
derived basaltic rocks of similar MgO content. While Ca is incom-
patible with olivine (DCaO l= 0.02; Leeman & Scheidegger, 1977),
the primary constituent of peridotite, it is compatible with clino-
pyroxene (DCaCpx= 1.8–2.0; Pertermann & Hirschmann, 2002).
As a result, the CaO content of pyroxenite melts will be lower than
that of peridotite melts, as observed in the low CaO content of QBB
lavas (Fig. 12a). Second, the QBB lavas have high Fe/Mn values
which, following Kogiso & Hirschmann (2001) and Le Roux
et al. (2010), can be attributed to pyroxenite melting (Fig. 12b).
Finally, olivine-hostedmelt inclusions in QBBmafic lavas manifest
higher values of Zn/Fe*10000 than predicted for peridotite-derived
melts, supporting a pyroxenite composition for the mantle source
of the studied area (Salehi et al. 2020).

The QBB rocks show LREE enrichments counterbalanced by
heavy REE (HREE) depletions; this strong fractionation effect

(Fig. 8) suggests that garnet belongs to the phase assemblage of
the mantle source (e.g. Coban, 2007). Y/Yb values >10 provide
an additional clue that garnet is a residual phase in the source
region (Ge et al. 2002). We note further that Nb concentrations
(>20 ppm) and Nb/Ta values in the studied rocks are high (18–
21), consistent with melting in the presence of rutile (Klemme
et al. 2005; Liu et al. 2008).

We explore this question explicitly using Sm/Yb-La/Yb values
to distinguish between melts formed in the garnet and spinel sta-
bility fields (Fig. 12e). Calculations are consistent with generation
of the QBB volcanic rocks by a small degree (about 1 %) of partial
melting from a garnetþ rutile bearing pyroxenite source (Fig. 12e).

6.c. Geotectonic evolution

Several geological and geophysical studies attribute Iranian and
East Anatolian magmatism to the break-off of the southern
Neo-Tethyan oceanic slab beneath the Bitlis–Zagros suture and/
or delamination of part of the lower lithosphere (e.g. Keskin,
2003; Şengör et al. 2003; Molinaro et al. 2005; Omrani et al.
2008; Hatzfeld & Molnar 2010; Agard et al. 2011; Chaharlang
et al. 2020, Kettanah et al. 2021). Priestley and McKenzie (2006)
suggest that lithosphere thickness in the study area is 150–
200 km. Based on this inferred lithosphere thickness, Allen et al.
(2013) rejected the process of delamination and suggested that
the melting of amphibole- (richterite-)bearing mantle beneath
the thickened lithosphere is responsible for the occurrence of melt-
ing in this region.

Fichtner et al. (2013) provide a very high-resolution tomo-
graphic model (~10–20 km) at crustal and lithospheric levels
which highlights several low-velocity elliptical bodies (~100–
150 km along the shortest axis and 200 km along the longest axis)
beneath the study area. These bodies were named ‘compaction
pockets’ by Soltanmohammadi et al. (2018), who suggested that
they could be rising from the mantle transition zone. However,
the model suggested by Salehi et al. (2020) raises the alternative
that these bodies could be drips from the lithospheric mantle.
Recent investigations by Motavalli-Anbaran et al. (2011) found
that lithospheric thinning (100–120 km) affects the whole of the
northern Zagros Mountains including central Iran, relative to a
thickness of 180–200 km under the ZFTB and the Persian Gulf.
Similarly, Tunini et al. (2014) identified abrupt thinning to c.
140 km under northwestern Iran including the QBB study area.
Numerical studies of lithospheric drip and delamination indicate
that even this moderate degree of abrupt lithospheric thinning is
appropriate for the onset of drip melting. Geochemical modelling
of REE abundances in the QBB rocks (Fig. 12d) suggests that the
mantle source is garnet ± rutile bearing pyroxenite. Garnet-pyrox-
enite in the subcontinental lithospheric mantle will be denser than
surrounding peridotite and hence gravitationally unstable, so it
could delaminate locally and form a metasomatized drip
(Elkins-Tanton, 2007). As this drip moves downwards it will
undergo increased melting as it descends into the hot surrounding
asthenosphere. This scenario is in marked contrast to adiabatic
upwelling of the asthenosphere, where the degree of melting
increases as the depth of melting shallows. The geochemical signa-
ture of the studied rocks supports the drip-melting model.
FollowingHolbig &Grove (2008), covariation between the amount
of normative olivine and Cr concentration in primitive mafic rocks
can distinguish between the trends of adiabatic and drip melting
(e.g. Furman et al. 2016; Gall et al. 2021). The QBB rocks follow
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the trend for increased melting with depth as predicted for drip
melting (Fig. 12e).

Edge convection along an abrupt lithospheric boundary can
result in the melting of deep lithosphere that is suddenly exposed
to heating; this process would develop analogous geochemical sig-
natures in the melts. Undoubtedly, geochemical evidence is not
enough to confirm lithospheric drip. However, the oval low-veloc-
ity zones could support the notion of partially molten zones within
the lithospheric mantle. Their shape suggests they cannot ascend
further as they are being compressed rather than rising from the
asthenosphere, and we consider these oval-shaped low-velocity
zones in the lithosphere to be pieces of foundered lithosphere,
i.e., drips. Basaltic melts derived from these drips are likely to be
rich in volatiles. They may ascend quickly to the surface along
deep-rooted faults, allowing for only a brief stay in magma cham-
bers where they would experience assimilation and fractional crys-
tallization. Among the QBB samples, the low calculated degree of
fractionation and the lack of plagioclase in the fractionating assem-
blage is consistent with this model rather than with a shallow
chamber.

7. Conclusion

The Quaternary Qorveh–Bijar basaltic rocks (QBBs) located along
a NW–SE trend parallel to the Zagros suture zone are typically
alkali basalts with porphyritic, glomeroporphyritic and aphanitic
textures. The main crystalline phases are olivine and clinopyrox-
ene. The volcanic rocks show REE and LILE concentrations higher
than those of the gneissic xenoliths they carry (which are assumed
to represent the continental crust in the study area), indicating that
geochemical variations within the QBB suite cannot be attributed

to assimilation and/or mixing between primitive magmas and
continental crust or gneissic material. High CaO contents, Fe/
Mn and Zn/Fe values in the QBB lavas suggest that this mantle
source is garnet-bearing pyroxenite in composition. As pyroxenite
is denser than peridotitic lithospheric mantle, it is unstable gravi-
tationally and can start to move downwards under its own weight
through the process of mantle drip or localized delamination. This
model is supported by geophysical data that confirmed the exist-
ence of elliptical-shaped low-velocity structures ~100–200 km in
dimension interpreted as melt batches under the study area.
Modelling of REE abundances (La/Yb and Sm/Yb) suggests the
QBB lavas formed through low degrees of partial melting (~1
%) from an enriched mantle source in the garnet stability field.
This source began to melt during descent in response to increasing
temperatures, and the resulting magma ascended along deep-
rooted faults, passing through a thick lithosphere where minor
assimilation and fractional crystallization took place within the
continental crust.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0016756823000018
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