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A unified explanation of energy growth sources
for unstable modes in flat-plate boundary layers
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The detailed energy sources that sustain the eigenmodal exponential growth in boundary
layers are currently unclear. In the present study, the phase of each term in the linear
stability equation is examined to identify the significant physical sources for a wide
range of Mach numbers and wall temperature ratios. The Tollmien–Schlichting mode
for incompressible flows, the oblique first mode for supersonic flows and the Mack
second mode and supersonic mode for hypersonic flows share some similar features.
The unique appearance of obliqueness for the most unstable first mode is accompanied
by the enhancement of Reynolds shear stress. By contrast, the weakened Reynolds
thermal stress prevents the oblique second mode from being the most unstable state.
Wall cooling stabilises the oblique first mode by rendering Reynolds thermal stress and
dilatation fluctuations out of phase with the internal energy fluctuation. It destabilises the
second mode by a newly generated pronounced region of wall-normal internal energy
transport beneath the second generalised inflection point. In comparison, the porous
coating destabilises the oblique first mode by significantly enhancing the mean-shear
production while it stabilises the second mode similarly to wall heating. Finally, the
relatively weak supersonic mode has the feature that the phase destruction of wall-normal
transport near the critical layer results in a low contribution to the internal energy
growth. Connections and consistencies are also highlighted with the previous inviscid
thermoacoustic interpretation for the second mode (Kuehl, AIAA J., vol. 56, 2018,
pp. 3585–3592) and for the supersonic mode. The pronounced sources along the
critical layer and near-wall regions provide a unified understanding of the local energy
amplification mechanisms of the inviscid modes in hypersonic boundary layers.
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1. Introduction

Eigenmodal boundary-layer instability has been extensively investigated due to its
fundamental and industrial significance. In the low-speed limit, the Tollmien–Schlichting
(T–S) mode may first undergo a linear amplification to induce the boundary-layer
transition (Goldstein 1983). With the necessary existence of the viscous wall boundary
condition, the T–S mode can be unstable in a zero-pressure-gradient boundary layer. As
the Mach number increases, the dominant linear instability becomes the oblique first
mode, which can be regarded as an extension of the T–S mode in the low-supersonic
flow (Smith 1989). The difference is that, with the presence of the generalised inflection
point, the inviscid first-mode instability becomes possible and the associated dependence
on the no-slip boundary condition is eliminated. As the Mach number exceeds a threshold
value, a family of inviscid Mack modes evolve (Mack 1984), among which the second
mode is dominant. The most unstable Mack second mode is two-dimensional, which
behaves as acoustic waves trapped between the wall and the relative sonic line (Mack
1990; Fedorov 2011). In terms of the origin of the second mode, the synchronisation
of the phase speeds of the fast and slow modes plays a significant role. In the vicinity
of the synchronisation point, the second mode is excited through the intermodal energy
exchange mechanism, which was proposed by Fedorov & Khokhlov (1991) and verified
by Ma & Zhong (2003a,b, 2005) using direct numerical simulation (DNS). It is also
generally accepted that wall cooling stabilises the first mode and destabilises the second
mode. If the level of wall cooling is high, a new unstable branch called the supersonic
mode can be generated by the synchronisation between the second mode and the slow
acoustic wave of the continuous spectrum (Chuvakhov & Fedorov 2016; Saikia, Al
Hasnine & Brehm 2022). This supersonic mode may radiate slow acoustic waves outside
the boundary layer and also enlarge the unstable frequency band. Due to different
physical characteristics, generally, the instability mechanisms of various eigenmodes in the
subsonic, supersonic and hypersonic boundary layers were discussed separately. However,
the growth mechanism, or how to sustain the local exponential growth of energy, still
requires convincing explanations. In the high-speed transition community, Kuehl (2018)
performed an energy analysis on the second mode via an inviscid Lagrangian formulation.
The energy required to keep the resonant second-mode waves in place was believed to
be supplied by the thermoacoustic Reynolds stress. Tian & Wen (2021) performed relative
phase analyses on the second mode. They concluded that the change of fluctuating internal
energy is sustained by the advection of perturbed thermal energy in the vicinity of the
critical layer and by the dilatation fluctuation near the wall.

Clearly, existing theories have not as yet reached a consensus. Meanwhile, some
interesting questions merit consideration: Why does obliqueness only appear for the
most unstable first mode? Why does wall cooling stabilise the oblique first mode and
destabilise the second mode (Masad & Abid 1995), while a porous coating behaves in
the reverse manner (Fedorov et al. 2003)? And what are the determining factors for the
supersonic-mode instability? A more comprehensive and self-consistent explanation of
the energy sources responsible for the unstable modes is currently missing and needed.
In this study, the phase analysis is performed on the T–S mode, the oblique first mode,
the second mode and the supersonic mode based on linear stability theory (LST). We
aim at finding out the significant physical sources for different types of boundary-layer
instabilities. In addition, for second and supersonic modes in hypersonic states, connection
and consistency with the current Lagrangian inviscid theory are shown.
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A unified explanation of energy growth sources

2. Methodology

2.1. Relative phase analysis
The relative phase analysis (RPA) employed here is initially utilised to interpret the
generation of acoustic waves in the Rijke tube (Rayleigh 1945). The sound in the Rijke
tube originates from a self-amplifying standing wave through a resonance process. The
wavelength of the standing wave is approximately twice the tube length, thus giving the
fundamental frequency. Analogously, the second mode behaves as a trapped resonating
acoustic wave between the relative sonic line and the wall, whose characteristic wavelength
is approximately twice the boundary-layer thickness. The phase behaviour is considered
as an alternative indicator to explain the exponential energy growth of the second mode.
Tian & Wen (2021) analysed the local phase difference between the rate of change of
fluctuations and right-hand side source terms. The purpose was to identify the pronounced
sources and explain the growth mechanisms of the second mode.

To obtain the phase, linear stability analysis is performed first. In that formulation,
the physical quantity is decomposed into a time-averaged base-flow term φ̄ and a small
disturbance φ′. The base flow is assumed to be a self-similar boundary layer. The
disturbance is assumed to possess the form of a travelling wave as

φ = φ̄ + φ′, φ′ = φ̂( y)exp(i(αx + βz − ωt)) + c.c., (2.1)

where φ = (u, v, w, T, p)T, φ̂ represents the corresponding complex eigenfunction, u, v,
w, T and p denote the streamwise, wall-normal and spanwise velocities, temperature and
pressure, respectively, and the superscript ‘T’ indicates transpose. In addition, t is the
time, ω is the angular frequency, α and β are the streamwise and spanwise wavenumbers,
respectively, and c.c. denotes complex conjugate. Cartesian coordinates are constructed
here, where x, y and z represent the streamwise, wall-normal and spanwise directions,
respectively. In the spatial analysis, α is complex, −αi refers to the spatial growth rate
and β and ω are real numbers. The primitive variables are non-dimensionalised by the
free-stream base-flow values, except the pressure, which is non-dimensionalised by the
free stream ρ∗∞u∗2∞, where ρ denotes the density. The asterisks represent dimensional
quantities, and the subscript ∞ refers to the free-stream quantities. The Reynolds number
Re = ρ∗∞u∗∞l∗/μ∗

∞ is defined based on the length scale l∗ = √
μ∗∞x∗/(ρ∗∞u∗∞), where μ∗

is the dynamic viscosity. This length scale is also used for non-dimensionalisation in this
paper.

In the present study, the source terms for the momentum and internal energy fluctuations
based on the LST are concentrated on. The base spanwise velocity is set to w̄ = 0. The
governing equations of the LST, mainly the momentum equations in the x and y directions
and the internal energy equation, can be written as (Tian & Wen 2021)

i(αū − ω)
û
T̄︸ ︷︷ ︸

ρ̄Du′/Dt

= −dū
dy

v̂

T̄︸ ︷︷ ︸
Tu,1

−iαp̂︸ ︷︷ ︸
Tu,2

+ Tu,3, (2.2)

i(αū − ω)
v̂

T̄︸ ︷︷ ︸
ρ̄Dv′/Dt

= −dp̂
dy︸︷︷︸

Tv,1

+ Tv,2, (2.3)
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i(αū − ω)
T̂
T̄︸ ︷︷ ︸

ρ̄DT ′/Dt

= −dT̄
dy

v̂

T̄︸ ︷︷ ︸
TT,1

−(γ − 1)

(
iαū + dv̂

dy
+ iβŵ

)
︸ ︷︷ ︸

TT,2

+ TT,3, (2.4)

where ρ̄Du′/Dt, ρ̄Dv′Dt and ρ̄DT ′/Dt represent the rates of change in fluctuations of
streamwise velocity, wall-normal velocity and internal energy, respectively. The right-hand
side sources Tu,1 and TT,1 represent the production by mean shear and mean temperature
gradient, which are associated with Reynolds shear stress (RSS) and Reynolds thermal
stress (RTS), respectively. Here, Tu,2, Tv,1 and TT,2 represent the streamwise gradient
of pressure fluctuations, the normal gradient of pressure fluctuations and the dilatation
fluctuations, respectively, Tu,3 and Tv,2 refer to viscous stresses and TT,3 corresponds to
the viscous dissipation and thermal conduction. The detailed expressions of Tu,3, Tv,2 and
TT,3 are shown in Appendix A. The linear stability analysis is performed by our in-house
code, which has been fully validated by comparison with theoretical, computational and
experimental results (Guo et al. 2020, 2021, 2022a,b; Cao et al. 2023).

In the framework of the RPA, the left-hand side Lagrangian rate of change in the
momentum or internal energy fluctuation can be regarded as the ‘output’ of the linear
system. The right-hand side terms are the source ‘inputs’ induced by the interaction
between the base flow and the existing fluctuation itself, such as the mean shear and the
wall-normal velocity fluctuation in Tu,1. With appropriate phase angles of local source
inputs (such as dilatation in near-wall regions), sustainable energy growth can be excited.
These eligible inputs that force the outputs to be in a coherent phase are regarded as
‘significant’. The phase analysis is applied to identify which term or terms are significant
at different wall-normal heights of the laminar boundary layer. The corresponding results
may provide possible insights into what source or sources should be controlled for different
types of instability modes. Meanwhile, the crucial region of the laminar boundary layer
may be identified for control.

2.2. Inviscid energy equations in a Lagrangian framework
The above RPA qualitatively identifies the responsible sources for the energy variation. To
further reveal the relative significance, an energy budget analysis similar to the inviscid
thermoacoustic formulation of Kuehl (2018) is performed here. Under the parallel-flow
assumption, Kuehl’s energy equation could be given by

ū
∂

∂x

⎛
⎜⎜⎜⎝ρ̄

u′u′ + v′v′

2
+ p′p′

2ρ̄ā2︸ ︷︷ ︸
PAE

⎞
⎟⎟⎟⎠ = −∂( p′u′)

∂x
− ∂( p′v′)

∂y︸ ︷︷ ︸
DAP

−u′v′ρ̄
∂ ū
∂y︸ ︷︷ ︸

RSS

. (2.5)

The left-hand side of (2.5) represents the rate of change of the parcel acoustic energy
(PAE). The first two terms on the right-hand side were called the divergence of acoustic
power (DAP) by Kuehl and the third term was the omitted RSS. A positive source term
indicates a local contribution to the increase of acoustic disturbance energy. It is clear that
Kuehl’s inviscid approximation enables a concise acoustic-energy-based explanation of
the second-mode instability. However, the thermodynamic part of the energy can also be
pronounced in the second-mode instability. For this reason, a more comprehensive energy
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norm of Chu (1965) is adopted, which yields

ū
∂

∂x

[
ρ̄

u′u′ + v′v′

2
+ p′p′

2ρ̄ā2 + γ − 1
2γ

p̄s′2
]

︸ ︷︷ ︸
Chu′s energy density

= −∂( p′u′)
∂x

− ∂( p′v′)
∂y︸ ︷︷ ︸

DAP

−u′v′ρ̄
∂ ū
∂y︸ ︷︷ ︸

RSS

− ρ̄

γ M2
∂T̄
∂y

v′s′︸ ︷︷ ︸
HE

. (2.6)

Here, ā is the mean sound speed, s′ denotes the entropy fluctuation and M represents the
free-stream Mach number. The third term on the right-hand side represents the effect of
heat exchange, noted as HE in the following analysis.

2.3. Direct numerical simulation
Data from two-dimensional DNS are utilised to analyse the source terms in the Lagrangian
energy equations and also validate the phase results obtained by LST. Two DNS cases are
simulated here to investigate the Mach 6 flat-plate boundary layers under the adiabatic wall
(case 1) and cold wall (case 2) conditions with the same unit Reynolds number 1 × 107.
Perfect gas is assumed with a specific heat ratio γ = 1.4 and Prandtl number Pr = 0.72. In
case 1, we follow the flow conditions of Egorov, Fedorov & Soudakov (2006), the ratio of
the wall temperature to the adiabatic wall (‘ad’) value is Tw/Tad = 1. In case 2, we follow
the settings of Chuvakhov & Fedorov (2016) with Tw/Tad = 0.07, which could generate
the supersonic mode. Other details can be found in the references. A wall blowing–suction
actuator (Egorov et al. 2006) is utilised to initiate unstable modes, which perturbs the
wall-normal mass flow rate ṁw in the following form:

ṁw(x, t) = ε sin
(

2π
x − x1

x2 − x1

)
sin(2πft). (2.7)

In case 1, we set x1 and x2 corresponding to Re = 267.6 and 313.7, respectively. The forcing
frequency is fixed at f ∗ = 160.52 kHz. The forcing amplitude ε = 6 × 10−4 is adopted.
In case 2, the corresponding Re values of x1 and x2 are 1481.1 and 1596.2, respectively.
Additionally, f ∗ = 435.11 kHz and ε = 1 × 10−4 are employed. The utilised DNS code
based on the finite difference method has been fully validated in our previous work (Zhao
et al. 2018). An excellent convergence of mesh resolution and selection of the time step was
confirmed under the considered conditions. The inviscid flux derivatives are discretised
using a fifth-order upwind compact scheme. The viscous components are discretised using
a sixth-order central difference scheme. For the time marching, a third-order Runge–Kutta
scheme is used.

3. Results of RPA

In this section, LST is used to reveal the instability features of the most unstable mode.
The maximum growth rate σ = −αi is sought and determined in the parameter space
of ω and β. We concentrate on a fixed Reynolds number Re = 1183.2. This value is
designated corresponding to the station x∗ = 0.14 m in the DNS of case 1 to facilitate
convenient comparisons. The effects of Mach number and the wall temperature ratio on
the growth rate and the dimensional frequency of the most unstable mode are shown
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Figure 1. Dimensionless growth rate and dimensional frequency of the most unstable mode vs (a) M, (b) wall
temperature ratio at M = 3.5 (first mode) and (c) wall temperature ratio at M = 6 (second mode).

in figure 1. In figure 1(a), the most unstable modes at Mach 0.3, 1.0–4.0 and 4.5–6.0
correspond to the T–S mode, the oblique first mode and the second mode, respectively.
The considered interval for Mach number is δM = 0.5 for M ∈ [1, 6]. Figure 1(b,c) shows
that wall cooling would stabilise the oblique first mode and destabilise the second mode,
which is consistent with existing knowledge. For figure 1(b), the cases Tw/Tad = 0.2 and
Tw/Tad = 0.4 do not report unstable first modes, and thus they are not shown.

As interpreted in § 2.1, the phase profiles will be analysed first. It should be noted
that the significant source terms identified by the RPA require a sufficient magnitude of
amplitude input. Therefore, the amplitude profiles of the source terms are also examined
in Appendix B.

3.1. Effects of Mach number and obliqueness
In this section, the effects of Mach number and obliqueness on the most unstable modes
are investigated according to the phase distribution of the terms in (2.2)–(2.4). Throughout
this paper, the results of the eigenfunctions are normalised by the pressure eigenfunction at
the wall to depict the phase. Figure 2 shows the wall-normal distribution of the significant
source terms and the location of the critical layer at various Mach numbers under the
adiabatic wall condition. These terms, marked by symbols, are determined by keeping
those whose phases are within a minor difference from that of the left-hand side rates
of change in (2.2) and (2.4). Thus, these shown symbols highlight the locally significant
physical sources which are in phase with the rate of change of fluctuations. Here, this
minor tolerance of phase difference is set to 0.1π, which has shown convergence of
significant source terms qualitatively. The vertical axis is Y = y/δ, where δ is the local
boundary-layer thickness determined by ūy=δ = 0.99. For all the cases below, the change
of the wall-normal velocity fluctuation is consistently dominated by the normal gradient
of the pressure fluctuation. Thus, only results related to fluctuations of the streamwise
velocity and internal energy are displayed. The DNS data are also transformed into the
frequency domain and used to obtain the phase in figure 2(a,b) for Mach 6. The favourable
agreement between LST and DNS rules out the possible influence of the high-order effects
in the RPA.

Figure 2 indicates that different types of modal instabilities share some similarities.
The productions induced by mean shear (Tu,1) and mean temperature gradient (TT,1)
are always present, excepting that the internal energy fluctuation is not considered for
the T–S mode. Mean-shear production is pronounced across the boundary layer for
low-frequency disturbances (T–S and oblique first modes) and beneath the critical layer
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Figure 2. Phase profiles of significant source terms (a) Tu,1 and (b) Tu,2 and Tu,3 in (2.2), (c) the terms in
(2.4), and (d) location of the critical layer with various Mach numbers.

for high-frequency disturbances (second mode). Mean temperature gradient production
is active in the outer regions for all the eligible modes. In the near-wall region, the
significant sources are switched from viscous stress (Tu,3) and viscous dissipation and
thermal conduction (TT,3) mainly for the first mode at M ∈ [2, 4] to the streamwise
gradient of pressure fluctuation (Tu,2) and the dilatation fluctuation (TT,2) for the second
mode at M ∈ [5, 6], respectively. Obviously, this observation highlights the acoustic nature
of the second mode and the increasing significance of compressibility in hypersonic states.
The importance of near-wall dilatation for the second mode has also been observed in
experimental studies (Zhu et al. 2018). It should also be noted that the dilatation fluctuation
(TT,2) already becomes notable near the wall for the oblique first mode at M = 4.
This phase feature indicates that the dilatational contribution is augmented not only by
the trapped thermoacoustic resonance of the second mode but also by compressibility.
In general, the significant source terms are largely concentrated near the wall for the
second mode, which suggests the wall control technique is promising, such as ultrasonic
absorptive coatings. However, for the first mode, both the active mean shear (Tu,1) and
mean temperature gradient (TT,1) productions are distributed across the boundary layer.
The wall manipulation might be less efficient in controlling the first mode than the
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Figure 3. Effect of obliqueness on the phase profiles of the (a) oblique first mode (M = 3.5) and (b) second
mode (M = 6). The grey region in (a) marks the enlarged in-phase region of the most unstable state ϕ = 69◦
compared with the marginally unstable state ϕ = 43◦.

second mode. For the first mode, global adjustment of the mean flow (e.g. the pressure
gradient) to reduce the velocity gradient dū/dy may be the alternative control strategy to
consider the region away from the wall. Wall temperature control to alter the temperature
profile T̄( y) and reduce dT̄/dy also merits considerations (Liang et al. 2010).

Interestingly, for the low-speed cases at M = 0.3 and 1 in figure 2, the viscous
stress (Tu,3) competes strongly with the RSS (Tu,1) and streamwise gradient of
pressure fluctuations (Tu,2) according to their absolute amplitude, which results in
the disappearance of dominators in the near-wall region. This does not contradict the
knowledge that the existence of viscosity (a no-slip wall) is a prerequisite for the T–S
instability in a zero-pressure-gradient boundary layer. Once the necessary viscosity is
present, u′ and v′ are non-orthogonal, and a non-zero RSS is generated. Then, the RSS
becomes the driver for the energy production of the T–S mode. The observed two regions
for energy amplification, i.e. the outer region in the vicinity of the critical layer and
near-wall region, will be further checked by the inviscid Lagrangian equations.

The effect of obliqueness on the oblique first mode and second mode can also be
interpreted by figure 3. The obliqueness is evaluated by the wave angle ϕ = arctan(β/αr).
The most unstable first mode has a wave angle of ϕ = 69◦, while the most unstable second
mode is two-dimensional (ϕ = 0◦). For comparison, another two marginally unstable
states are displayed, where ϕ = 43◦ for the first mode and ϕ = 32◦ for the second mode.
Note that the terms which do not show evident differences are not displayed, such as
Tu,2, TT,1 and TT,2 in figure 3(a). As shown in figure 3(a), the most unstable first
mode with ϕ = 69◦ at M = 3.5 possesses two significant regions of the mean-shear term
(Tu,1), which is in phase with ρ̄Du′/Dt. The two regions are located above and below
the critical layer Y = 0.53, respectively. This feature is also found for the most unstable
first mode at other Mach numbers. The two in-phase regions contributed by mean shear
also correspond to the peak amplitude of ρ̄Du′/Dt on the two sides of the critical layer
in figure 9(a). In comparison, the marginally unstable state with ϕ = 43◦ reports the
absence of the lower significant region (marked by the grey box) in figure 3(a). This
indicates that the strong growth of the most unstable oblique wave via mean shear is
decreased when gradually reducing to the two-dimensional pattern. The growth rate is
increased from 0.5 × 10−3 at ϕ = 43◦ to 1.9 × 10−3 at ϕ = 69◦. The peak modulus of the
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Figure 4. (a) Mean streamwise velocity and temperature profiles and (b) their normal gradient, and (c) the
distribution of GIP for M = 6 boundary layers with various wall temperature ratios.
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Figure 5. Phase profiles of significant source terms of (a) (2.2) and (b) (2.4) for M = 6, and (c) (2.4) for
M = 3.5 with various wall temperature ratios.

eigenfunction |û|, |v̂| and |ŵ| is increased by a factor of 5.5, 2.4 and 3.3 from ϕ = 43◦
to ϕ = 69◦, respectively, which is obviously inhomogeneous. The largest amplification
in the streamwise velocity fluctuation agrees with the augmented mean-shear effect in
the streamwise velocity equation. As the wave angle ϕ is changed, the phase modulation
induced by fluctuation energy redistribution among u′, v′ and w′ should be the contributor,
since a base-flow quantity such as dū/dy is unchanged in the mean-shear term. At an
appropriate oblique wave angle, the phase coherence between the u′-related ρ̄Du′/Dt and
the v′-related −ρ̄v′dū/dy (i.e. Tu,1) reaches the maximum. To suppress the first-mode
growth, spanwise fluctuation may be introduced to redistribute u′, v′ and w′ and destruct
the phase coherence at a certain wave angle, such as spanwise flow oscillation via an
electromagnetic body force (Berlin 1998). By contrast, as shown in figure 3(b), RTS (TT,1)
becomes out of phase with the internal energy fluctuation for the oblique second mode
compared with the planar counterpart, indicating a weaker contribution to the growth of
internal energy fluctuation. This provides an explanation as to why obliqueness would
strengthen the first-mode instability while weakening the second-mode instability.

3.2. Effects of wall cooling and porous coating
Figure 4(a,b) shows the streamwise velocity and temperature of the base flow in
conjunction with their wall-normal gradients. The location for the generalised inflection
point (GIP) is shown in figure 4(c). Clearly, wall cooling results in a significant change
in the magnitude and sign of the base temperature gradient. This profile distortion would
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affect the vertical transport of internal energy mostly by TT,1 in (2.4). Figure 5 depicts the
phase profiles of significant source terms, which reflect the impact of wall cooling. The
decrease of wall temperature has no evident effect on the streamwise velocity fluctuations,
i.e. the significant regions for Tu,1 and Tu,2 are nearly invariant, as shown in figure 5(a)
for M = 6 and also for M = 3.5 (not shown here). For internal energy fluctuations under
the adiabatic wall condition, in figure 5(b), the vertical transport of internal energy (TT,1)
is in phase with ρ̄DT ′/Dt only when it is away from the wall (Y > 0.45). Note that the
relative sonic line is located in the range between Y = 0.48 and Y = 0.5 for all the cases
at M = 6. Meanwhile, the acoustic energy of the second mode is mostly trapped beneath
the relative sonic line. Thus, under the adiabatic wall condition, figure 5(b) demonstrates
that the RTS (TT,1) is almost not responsible for the acoustic energy production essentially
below the relative sonic line (Y < 0.48). By contrast, the dilatation work (TT,2), which is
active between the wall and the relative sonic line, is significant in the acoustic energy
growth of the second mode.

What is new with wall cooling is that, for cold walls with Tw/Tad ≤ 0.8, a new
branch of symbols related to the mean temperature gradient effect (TT,1) appear in the
near-wall region of Y < 0.9YGIP, lower. Here, YGIP, lower denotes the lower GIP appearing
under wall cooling (see figure 4c). Figure 4(b) illustrates that wall cooling increases
the absolute magnitude of the base temperature gradient dT̄/dy in the near-wall region.
Consequently, wall cooling results in an enlarged region for the vertical transport of
internal energy (−ρ̄v′T ′dT̄/dy) through an augmented base temperature gradient. This
internal energy behaviour manifests as the newly detected phase coupling between
ρ̄DT ′/Dt and −ρ̄v′dT̄/dy (i.e. TT,1) beneath the second GIP (YGIP, lower) in figure 5(b).
Clearly, this region is further extended as wall temperature is decreased, which is relevant
to a more unstable second mode. This extended source leads to an enhancement in the
internal energy growth, which will be reconfirmed by the following Lagrangian energy
analysis. In comparison, for the oblique first mode, figure 5(c) shows that wall cooling
suppresses the effects of the dilatation fluctuation and RTS near the wall. This provides an
explanation as to why wall cooling stabilises the first mode while destabilising the second
mode.

For hypersonic flows, porous coatings have been proven to be a promising passive
control strategy for the second mode. Tian & Wen (2021) showed that the effect of the
porous coating on the second mode was to distort the phase of mean temperature gradient
effect TT,1 at Mach 6 and reduce the internal energy growth induced by wall-normal
transport. This mechanism resembles that of wall heating inferred from figure 5(b). They
also investigated the two-dimensional first mode at Mach 6, but the results merit further
examination because of a lack of obliqueness. Figure 6 showed the effect of the porous
coating on the oblique first mode at Mach 3.5. The same boundary condition v′ = Ap′ as
Tian & Wen (2021) is imposed, where A is the wall acoustic admittance. When the wall
changes from smooth (A = 0) to porous (A = −4), the growth rate of the most unstable
oblique first mode increases from 1.86 × 10−3 to 3.35 × 10−3. Compared with the phase
distribution of the smooth-wall case, a prominently enlarged region of the RSS (related to
Tu,1 in phase) promotes the production of the streamwise velocity fluctuation. This analysis
of the streamwise momentum equation was not considered in Tian & Wen (2021). For the
change of internal energy, RTS (related to TT,1 in phase) is slightly strengthened while
the dilatation is slightly suppressed for the porous-wall case, which is consistent with Tian
& Wen (2021) at Mach 6. In summary, phase variations in both RSS and RTS account
for the destabilisation effect of the porous wall on the first mode with the appearance of
obliqueness. As aforementioned, the oblique first mode is characterised by the pronounced
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Figure 6. Phase profiles of significant source terms of (2.2) in (a), and (2.4) in (b) at M = 3.5 with smooth
and porous walls.
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Figure 7. Phase profiles of significant source terms in the regions of the second mode (Re = 2000) and the
supersonic mode (Re = 2200) of (a) (2.2) and (b) (2.4). (c) Contour of pressure fluctuation of case 2. Dashed
green line in (b,c) represents the location above which the structures of the supersonic and second modes clearly
differ.

mean-shear production across the boundary layer. Although the dilatational contribution
is suppressed by the porous wall, the reinforced mean-shear effect is more evident at
moderate Mach numbers except for special cases, e.g. when the phase of wall admittance
A approaches π/2 (Tian et al. 2019).

For the cold-wall condition, the supersonic mode is also found to be important. The
phase distribution of (2.2)–(2.4) is investigated under the cold-wall condition for both the
second and supersonic modes, as shown in figure 7(a,b). Here, Re = 2000 and Re = 2200
correspond to the regions of the second mode and the supersonic mode, respectively. The
second mode synchronises with the slow acoustic wave at Re = 2120, which evolves into
the supersonic mode downstream (Chuvakhov & Fedorov 2016). As shown in figure 7(c),
the supersonic mode radiates acoustic waves towards the far field, whose wave structure is
essentially different from the second mode above the dashed line in figure 7(c). This region
roughly corresponds to Y > 0.3 in figure 7(b). For the supersonic mode in this region,
what is less in phase with the rate of change of velocity or internal energy fluctuation
is the wall-normal transport of the internal energy (TT,1). This decreased contribution of
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Figure 8. Distribution of source terms in (2.6) normalised by each maximum left-hand side term of (2.6) at
(a) Re = 1183 for case 1, and (b) Re = 2000 and (c) Re = 2200 for case 2. Dash-dotted line marks the location
of the critical layer.

TT,1 may be linked with the weaker instability of the supersonic mode compared with the
second mode, which will be further checked by the Lagrangian approach.

4. Connection with inviscid Lagrangian interpretation

Based on the DNS data, the time-averaged quantities of the source terms for case 1
and case 2 in (2.6) are depicted in figure 8. For case 1, as shown in figure 8(a), the
dominant source term destabilising the second mode near the wall appears to be the
DAP. The expression of DAP contains the components of fluctuations of dilatation and
pressure gradient in (2.2)–(2.4). Therefore, the fact that DAP contributes to the growth of
disturbance energy of the second mode near the wall is consistent with the significant role
of fluctuations of dilatation and pressure gradient in RPA, as shown in figure 2(a–c). The
RSS term keeps a nearly constant positive value inside the boundary layer, indicating a
destabilisation effect on the second mode. The most pronounced contribution comes from
the heat exchange term near the critical layer. This term is closely related to the internal
energy fluctuation due to vertical transport, i.e. TT,1 (RTS) in (2.4). Replacing Kuehl’s
(2018) acoustic energy norm with Chu’s energy norm, we obtain a more comprehensive
understanding that the internal energy is mainly amplified along the critical layer while
the acoustic energy is augmented in near-wall regions. The consistency with the RPA is
also found.

For case 2, as shown in figure 8(b,c), the distribution of RSS for cold walls reports
limited differences compared with the second mode in case 1. This finding is consistent
with RPA in that wall cooling has no significant effect on RSS, as shown in figure 5(a).
For the DAP, it is indicated that the region of DAP becomes relatively narrow under
the cold-wall condition, which may be related to the appearance of the second GIP in
the very near-wall region (see figure 4c). The contribution of the HE effect becomes
not distinguished under the cold-wall condition for both second and supersonic modes
near the critical layer. This may be relevant to the decreased base temperature gradient
magnitude in the outer region, as shown in figure 4(b). Furthermore, the HE effect is
augmented by wall cooling near the wall, which is consistent with the near-wall appearance
of resonance between ρ̄DT ′/Dt and TT,1 in figure 5(b). The considerable reduction in the
HE of the supersonic mode near the critical layer is also consistent with the explanation
by RPA in figure 7(b). The transition from a strong second-mode instability to a weak
supersonic-mode instability may be associated with the fact that the wall-normal HE (also
TT,1) is gradually out of phase with the internal energy fluctuation. The above observations
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indicate that RPA and Lagrangian energy analysis point to the same mechanisms for the
inviscid high-frequency modes in hypersonic boundary layers.

5. Conclusion

The energy source terms of unstable modes over flat-plate boundary layers are investigated
using RPA with various Mach numbers and wall temperature ratios. Through the phase
analysis of source terms and changes of momentum and internal energy perturbations, the
leading source terms of the T–S mode, the oblique first mode, the second mode and the
supersonic mode are clarified, with considerations of porous coatings and obliqueness. It
is found that contribution of the RSS is strengthened along with the distinctive oblique
characteristic for the most unstable first mode, whereas that of the RTS is weakened for
the second mode considering obliqueness. Wall cooling renders the fluctuations of RTS
and dilatation out of phase with the rate of change of the internal energy fluctuation,
thus stabilising the oblique first mode. However, a newly generated prominent region
of wall-normal internal energy transfer, which is located underneath the second GIP,
destabilises the second mode under wall cooling. As for the effect of porous coating, it
stabilises the second mode in a manner comparable to wall heating while it destabilises
the oblique first mode by enhancing mean-shear production in phase. Moreover, the
wall-normal transport of internal energy at the critical layer becomes more out of
phase for the significantly weaker supersonic mode, which accounts for the decreased
contribution to energy growth. Connections and consistencies are highlighted with the
inviscid thermoacoustic interpretation for the second and supersonic modes. The distinct
sources in the critical layer and near-wall regions provide an in-depth understanding of
the regional energy amplification processes of the inviscid modes in hypersonic boundary
layers. Possible control strategies aimed at different modal properties are preliminarily
discussed.
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Appendix A. Detailed formulae in stability equations

The expressions of Tu,3, Tv,2 and TT,3 are shown as follows, where Stokes’ hypothesis for
the bulk viscosity is applied:

Tu,3 = μ̄

Re

[
−4

3
α2û + 1

3
(iα

dû
dy

− αβŵ) + d2û
dy2 − β2û

]

+ 1
Re

[
dμ̄

dy

(
dû
dy

+ iαv̂

)
+ dμ̄

dT̄

(
d2ū
dy2 T̂ + dū

dy
dT̂
dy

)
+ 1

Re
d2μ̄

dT̄2

dT̄
dy

dū
dy

T̂

]
, (A1)
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Figure 9. Amplitude distribution of the terms in (a) (2.2), (b) (2.3) and (c) (2.4) for the oblique first mode at
M = 3.5 and Tw/Tad = 1.0. Dash-dotted line marks the location of the critical layer.

Tv,2 = μ̄

Re

[
−α2v̂ + 1

3

(
iα

dû
dy

+ iβ
dŵ
dy

)
+ 4

3
d2v̂

dy2 − β2v̂

]

+ 1
Re
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dū
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+ iβ
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)
T̂ − 2

3
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dv̂
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)]
, (A2)

TT,3 = μ̄γ

RePr
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μ̄
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]
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RePr
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dū
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(

dw̄
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[
dū
dy

(
dû
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+ iαv̂

)2

+ dw̄
dy

(
iβv̂ + dŵ

dy

)]
. (A3)

Appendix B. Amplitude profiles

The amplitude distribution of the terms in (2.2)–(2.4) is also examined for further
references. The variation of the amplitude profiles in the considered wide parameter space
is calculated. In general, the amplitude distribution supports the existence of the significant
source terms reported by the RPA in each parametric state. This finding is not surprising
because consistency between the RPA and Lagrangian interpretation has been reached.
The criterion of the Lagrangian interpretation is based on the amplitude magnitude.

In this section, the amplitude profiles of two representative states are shown, including
the oblique first mode under an adiabatic wall condition in figure 9 and the second mode
under a cold-wall condition in figure 10. Figure 9 illustrates that the amplitude of mean
shear (Tu, 1) and RTS (TT,1) are pronounced across the boundary layer for the oblique
first mode. The amplitude of viscous stress (Tu,3) and viscous dissipation and thermal
conduction (TT,3) becomes comparable to the rate of change in fluctuations below the
critical layer. It is concluded that these distributions of amplitude magnitude support the
significant source terms shown with RPA by figure 2 in the corresponding wall-normal
region. For the second-mode behaviour in figure 10, the mean shear (Tu,1) and streamwise
gradient of pressure fluctuations (Tu,2) report relatively large amplitudes below the critical
layer compared with the amplitude of ρ̄Du′/Dt. For the sources of internal energy
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Figure 10. Amplitude distribution of the terms in (a) (2.2), (b) (2.3) and (c) (2.4) for the second mode at
M = 6 and Tw/Tad = 0.2. Dash-dotted line marks the location of the critical layer.

fluctuations, the amplitude of RTS (TT,1) near the critical layer and dilatation (TT,2) near
the wall are comparable to that of ρ̄DT ′/Dt. In addition, the newly generated source term
(TT,1) near the wall due to wall cooling (see figure 5b) also shows a moderate amplitude.
The amplitude of the viscous-associated terms become negligible for the second mode.
All these amplitude observations show no inconsistency with the conclusions by RPA.
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