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Inequivalent Transitive Factorizations
into Transpositions
I. P. Goulden, D. M. Jackson and F. G. Latour

Abstract. The question of counting minimal factorizations of permutations into transpositions that
act transitively on a set has been studied extensively in the geometrical setting of ramified coverings of
the sphere and in the algebraic setting of symmetric functions.

It is natural, however, from a combinatorial point of view to ask how such results are affected by
counting up to equivalence of factorizations, where two factorizations are equivalent if they differ only
by the interchange of adjacent factors that commute. We obtain an explicit and elegant result for the
number of such factorizations of permutations with precisely two factors. The approach used is a
combinatorial one that rests on two constructions.

We believe that this approach, and the combinatorial primitives that have been developed for the
“cut and join” analysis, will also assist with the general case.

1 Introduction

1.1 Minimal, Transitive Ordered Factorizations

Let S be a set with n elements, and let τ1, . . . , τk be transpositions acting on S. Then
f = (τk, . . . , τ1) is called an ordered factorization (where the context allows, we may
sometimes refer to these simply as factorizations), of a permutation π in the symmet-
ric group acting on S, if π = τk · · · τ1 (with the convention that permutations are to
act on the left of elements of S). If, in addition, τ1, . . . , τk act transitively on S, then
f is called transitive. If there are no such factorizations of π with fewer than k factors,
then the factorization is called minimal. Since

k ≥ n + l(π)− 2,(1.1)

from [GJ2], where l(π) denotes the number of cycles in the disjoint cycle representa-
tion of π, then

k = n + l(π)− 2(1.2)

for minimal, transitive ordered factorizations of π.
The number of minimal, transitive ordered factorizations of a permutation π into

transpositions is clearly constant on the conjugacy class of π in the symmetric group.
Suppose π is in the class indexed by the partition α = (α1, . . . , αm) of n with m parts,
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Inequivalent Transitive Factorizations 759

which we will denote by writing α � n and l(α) = m, respectively (and we call α the
cycle-type of π). Then this number is given by

cα = (n + m− 2)! nm−3
m∏

j=1

α
α j

j

(α j − 1)!
,(1.3)

from [H] and [GJ2]. Such factorizations of permutations arise in Hurwitz’s combi-
natorialization of ramified covers of the sphere, and will be discussed further from
this point of view in Section 1.3.

1.2 Inequivalent, Minimal Ordered Factorizations

Two factorizations are said to be equivalent if one can be transformed into the other
by a sequence of exchanges of pairs of adjacent factors, provided the two commute
(and we refer to this transformation as commutation). This defines an equivalence
relation on the set of all minimal, transitive ordered factorizations, and if two fac-
torizations f and g are equivalent, we write f ∼ g. We adopt the convention that
a pair of transpositions commute when, together, they consist of four distinct ele-
ments. Thus, in particular, we do not allow a transposition to commute with itself.
This convention simplifies the combinatorial analysis given in various parts of the
paper, since special treatment is not required when two adjacent factors are identical.

In this paper we consider the problem of counting equivalence classes of minimal,
transitive ordered factorizations with respect to this relation. Let c̃α be the number of
inequivalent, minimal, transitive ordered factorizations of a permutation with cycle-
type α, where α is a partition. For partitions with a single part, Eidswick [E] and
Longyear [L] (see also [GJ1]) have proved that the c(n) = nn−2 ordered factorizations
(from (1.3) with l(α) = m = 1 and α1 = n) fall into

c̃(n) =
1

2n− 1

(
3n− 3

n− 1

)
equivalence classes, where n ≥ 1. Note that, since the product is a full cycle in this
case, these factorizations are necessarily transitive. Consider the generating series for
c̃(n) given by

h(z) =
∑
n≥1

c̃(n)z
n−1.(1.4)

Then, from Lagrange’s Implicit Function Theorem (see, for example, [GJ3]), h(z) is
the unique solution of the functional equation

h(z) = 1 + zh(z)3.(1.5)

Now, for partitions with two parts, consider the generating series for c̃(k,l) given by

Γ(x, y) =
∑
k,l≥1

c̃(k,l)
xk

k

yl

l
,(1.6)
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where we define c̃(k,l) = c̃(l,k) for k < l. Note that the coefficients are scaled by a factor
of kl, which will be explained in the development. The main result of this paper is
that this generating series can be expressed succinctly in terms of the generating series
h(z) given in (1.4) above.

Theorem 1.1 (Main result)

Γ(x, y) = log

(
1 + xyh(x)h(y)

h(x) − h(y)

x − y

)
.

While it is the structure of the generating series for the c̃α that is of particular
interest in this paper, as explained in Section 1.3, Theorem 1.1 can be used to obtain
an explicit expression for c̃(k,l). The result is a triply indexed, finite summation of
binomial coefficients, which is straightforward to obtain, and not given here.

1.3 Background

There is a substantial history of investigations of ordered factorizations in the combi-
natorial literature (see, for example, [S]). They are also of interest in other areas. For
example, the connection coefficients of the (conjugacy) class algebra of the symmet-
ric group are a special case of enumerating ordered factorizations. Also, transitive
ordered factorizations occur in the study of the number of ramified covers of the
sphere by curves of given genus, with branching above infinity, simple branching
above other specified points and no other branching (see, for example, [A], [GJV]
and [H]). From this geometric point of view, expression (1.2) for k is a consequence
of the Riemann-Hurwitz formula. The numbers cα evaluated in (1.3), the Hurwitz
numbers, are, up to a multiplicative factor, the number of minimal transitive ordered
factorizations of a permutation in the class indexed by α � n, which specifies the
ramification over infinity. They are studied extensively in algebraic geometry (see,
for example, [ELSV] and [FP]).

These more recent investigations into transitive ordered factorizations (see also,
for example, [BIZ]), have revealed that they have a rich structure. One aspect of
this structure is the important role played by the series w, described as follows. For
partitions with one part, from (1.3) we obtain c(n) = nn−2, which is the number of
labelled trees on n vertices, and let

w(z) =
∑
n≥1

nc(n)
zn

n!
=
∑
n≥1

nn−1 zn

n!
,

the exponential generating series for labelled, rooted trees on n vertices. Then, from
Lagrange’s Implicit Function Theorem [GJ3], w(z) is the unique solution of the func-
tional equation

w(z) = zew(z).

Now, one of the unifying aspects for transitive ordered factorizations is how ubiqui-
tously the series w appears in the generating series for such factorizations. For exam-
ple, the generating series for the cα, given in (1.3), when α has any fixed number of
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parts, can be expressed compactly in terms of w(z1), . . . ,w(zm), where z1, . . . , zm are
independent indeterminates, and α has m parts (see [GJ2]).

For the present investigation into inequivalent, transitive ordered factorizations,
note that Theorem 1.1 expresses the generating series for the c̃α, when α has two
parts, compactly in terms of the series h. Moreover, h, defined in (1.4), is the ordinary
generating series for the c̃α when α has one part. Thus h is an analogous series to w,
and Theorem 1.1 gives some evidence that we might expect h to appear throughout
various generating series for inequivalent, transitive ordered factorizations. We have
been unable to determine an explicit expression for the generating series for the c̃α,
when α has three parts or more, but we conjecture that these series can be expressed
compactly in terms of h, and that they too have a rich structure. The treatment of
the c̃(n) given in [GJ1] involved a special class of symmetric functions introduced by
Macdonald [M], in which commutation was factored out by means of the Cartier-
Foata monoid [CF]. We hope that Theorem 1.1 will shed light on the role that these
algebraic methods might play in the general case.

1.4 The Cut and Join Operations

The argument that we shall use to prove Theorem 1.1 rests on two combinatorial
constructions obtained by a “cut-and-join” analysis of the effect on a permutation of
multiplication by a transposition. The operations of cut and join are defined below.
Let Ŝ be the set of all strings in S in which no symbol occurs more than once. If
i1 · · · ir ∈ Ŝ, we denote the corresponding circular sequence (in which i1 and ir are
adjacent) by (i1 · · · ir). This we may also regard as a cycle on the elements of S, so that
i1 �→ i2, i2 �→ i3, . . . , ir �→ i1 under the action of this cycle. The string notation will
be useful in the “cut-and-join” analysis of the effect of multiplying a permutation σ
on S by a transposition τ = (ab). There are two cases, in which τ is referred to as a
cut and a join, respectively, in the following result.

Proposition 1.2 Let τ = (ab) where a, b ∈ S, and let σ be a permutation on S. For
the product τσ, there are two cases:

1. If a, b are on the same cycle of σ then this cycle is (aαbβ) where α, β ∈ Ŝ. The cycles
of τσ are obtained from those of σ by deleting (aαbβ) and adjoining (aα) and (bβ).
In this case, we call τ a cut for σ.

2. If a, b are on different cycles of σ then the two cycles are (aα) and (bβ) where α, β ∈
Ŝ. The cycles of τσ are obtained from those of σ by deleting (aα) and (bβ) and
adjoining (aαbβ). In this case, we call τ a join for σ.

The transpositions in an ordered factorization f can now be identified as cuts or
joins, as follows. Let f = (τk, . . . , τ1), where τ1, . . . , τk are transpositions, and let
σ j = τ j · · · τ1 for j = 1, . . . , k. Then, for 1 ≤ i ≤ k,

1. τi is called a cut of f if it is a cut for σi−1,
2. τi is called a join of f if it is a join for σi−1.

Thus, although throughout we apparently apply the term “cut” or “join” to a
transposition τi in an absolute sense, it is always to be regarded as relative to the
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product, σi−1, of the transpositions that precede it (to the right) in the factorization
f . We call σ j the j-subproduct of f .

Now, in a minimal, transitive ordered factorization f = (τk, . . . , τ1) of permu-
tation π, we have k = n + l(π) − 2 from (1.2). From [GJ2], as j runs from 1 to k,
exactly n − 1 of the τ j are joins, and l(π) − 1 are cuts. But, in the main result, we
must consider minimal, transitive ordered factorizations of permutations π with two
cycles, so l(π) = 2, and thus such factorizations have a single cut. To avoid a possible
source of confusion, we will refer to this cut as the unique cut.

1.5 Organization of the Paper

The proof of the main result is developed in this paper through a combinatorial anal-
ysis of the unique cut in equivalence classes of minimal, transitive ordered factoriza-
tions of a permutation with two cycles. There are a number of stages in this develop-
ment. In Section 2 we provide a combinatorial model so that inclusion-exclusion can
be applied. Then, in Sections 3 and 4, we give two constructions that, respectively,
allow us to evaluate the generating series that arise as summands in the inclusion-
exclusion model. The first of these, in Section 3, allows us to decompose each of
these summands by means of a “switching” construction, thereby reducing the anal-
ysis to a single, simpler problem. The second of these, in Section 4, allows us to solve
this simpler problem by means of a “commutation” construction, following a de-
tailed analysis of the equivalence classes containing factorizations having a particular
pair of elements as the unique cut.

The combinatorial primitives developed in this paper can also be used to obtain
another proof of the functional equation (1.5) for factorizations of a single cycle. It
is included for completeness in Appendix A.

2 Factorizations With Distinguished Possible Cuts

2.1 Possible Cuts

In the remainder of the paper, we restrict our attention to minimal, transitive or-
dered factorizations of permutations with exactly two cycles. Much of the analysis is
detailed, and a number of examples are given, so we find it convenient to specify the
elements on these two cycles by using positive integers with superscripts “1” and “2”,
to distinguish between them. Thus let Si

m = {1
i, . . . ,mi}, for i = 1, 2, and let the

permutations act on S = S1
n1
∪ S2

n2
, a set of size n1 + n2, where n1 and n2 are positive

integers. Now consider the set of all minimal, transitive ordered factorizations of any
permutation on S1

n1
∪ S2

n2
consisting of an n1-cycle on S1

n1
and an n2-cycle on S2

n2
. Let

F denote the union of the sets of all such factorizations over n1, n2 ≥ 1. Note that the
number of transposition factors for factorizations on S1

n1
∪ S2

n2
in F is n1 + n2, from

(1.2).
The next result gives a convenient characterization of the unique cut of a factor-

ization in F. Some terminology is needed to state the result compactly. We say that
a permutation on S1

n1
∪ S2

n2
is pure if each of its cycles has either all of its elements in

S1
n1

or all of its elements in S2
n2

; otherwise, it will be called mixed. Thus, for example,
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a transposition is pure if both elements belong to S1
n1

or to S2
n2

, or is mixed if one
element belongs to S1

n1
and the other belongs to S2

n2
(since in a transposition all of the

other cycles have one element only, which are the fixed points in the permutation).
Such a transposition that appears as a factor in a factorization is then called a pure
factor or mixed factor, respectively.

Proposition 2.1 The unique cut of a factorization f ∈ F is the left-most mixed factor
of f .

Proof Each element f of F is a factorization of a pure permutation σn1+n2 , since
σn1+n2 has two cycles, one consisting of the n1 elements of S1

n1
, and the other consist-

ing of the n2 elements of S2
n2

. Now, since f is a transitive factorization, it must contain
at least one mixed factor. But, if the last (left-most) mixed factor is a join, then σn1+n2

must also be a mixed permutation, which is a contradiction, so the left-most mixed
factor is a cut. The result follows, since there is only one cut.

Before we give an example of this characterization of the unique cut for elements
of F, we define one further term. A factor in a factorization f that can become the
unique cut of f by commutation of the factors of f is called a possible cut of f . In
particular, the unique cut is always a possible cut.

Example 2.2 For n1 = 10 and n2 = 6,(
(3141),(1262), (1181), (6132), (2141), (1112), (81101), (1222),

(5142), (8191), (4152), (1152), (4142), (5132), (6171), (7122)
)

is a factorization in F. It is a factorization of (11 · · · 101)(12 · · · 62), with unique cut
(6132). There are four possible cuts, namely (6132), (1112), (5142), and (4152). It
is a straightforward matter to verify that each of these can become the unique cut,
by commuting the appropriate factors, and applying Proposition 2.1. Note, that for
(4152) to become the unique cut, (2141) has to be commuted to the left of (6132).

2.2 Distinguished Possible Cuts and Inclusion-Exclusion

As preparation for the inclusion-exclusion argument, let F
†
k , k ≥ 1, consist of ele-

ments of F in which a subset consisting of k of the possible cuts are distinguished
(we mark them with a “†” as a superscript). We call such possible cuts distinguished
possible cuts. Thus each element of F with j possible cuts appears

( j
k

)
times in F

†
k , for

k ≤ j, once for each of the distinguished subsets. If k of the possible cuts in a fac-
torization f ∈ F of π are distinguished to create an element of F

†
k , for some k ≥ 1,

then we say that this element is also a factorization of π. Thus, whether factors are
distinguished or not will make no difference in how they are multiplied together.

Let f̃ †k,n1,n2
be the number of equivalence classes of elements of F

†
k on S1

n1
∪ S2

n2
,

for k ≥ 1. (For this equivalence, it is not important in carrying out commutation
of pairs of factors whether the factors are distinguished or not. However, in testing
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the equality of the resulting factorizations, the factors must occur in the same order,
and it is essential that the distinguished factors are identical, in this order.) Then

the generating series for the f̃ †k,n1,n2
that is exponential in the indeterminates marking

both n1 and n2, is

F̃†k =
∑

n1,n2≥1

f̃ †k,n1,n2

xn1

n1!

yn2

n2!
.(2.1)

We now apply inclusion-exclusion to express the generating series Γ(x, y), defined in
(1.6), in terms of this series, for k ≥ 1.

Lemma 2.3

Γ(x, y) =
∑
k≥1

(−1)k−1F̃†k .

Proof Let the number of equivalence classes of elements of F on S1
n1
∪S2

n2
be denoted

by f̃n1,n2 . Now, we apply the Principle of Inclusion and Exclusion, using the termi-
nology of “properties”. A property that an equivalence class may possess is to have a

given mixed pair as a factor among its possible cuts. Thus f̃ †k,n1,n2
is the number of

classes with “at least” k properties, for k ≥ 1, while f̃n1,n2 is the number of classes with
“at least” 0 properties. Thus, from the Principle of Inclusion and Exclusion, we have

f̃n1,n2 +
∑
k≥1

(−1)k f̃ †k,n1,n2
= 0,

for n1, n2 ≥ 1, since there are no equivalence classes with exactly 0 properties (ev-
ery factorization in F has a single cut, and thus at least one possible cut). But, by
relabelling,

f̃n1,n2 = (n1 − 1)! (n2 − 1)! c̃(n1,n2),

since there are (ni−1)! choices for the ni-cycle on Si
ni

, for i = 1, 2. The result follows
from (1.6) and (2.1).

3 The Switching Construction

3.1 The Switch

Let F be the set of all minimal, transitive ordered factorizations of each permutation
with a cycle on a nonempty subset of the elements of S1

∞ and a cycle on a nonempty
subset of the elements of S2

∞.
Suppose that a factorization f ∈ F has factors τc = (w1x2) and τc−1 = (y1z2), for

some c ≥ 2, where (w1x2) is the (unique) cut of f , and (y1z2) is a possible cut of f .
Then we say that

(
(w1x2), (y1z2)

)
are at the cut of f .
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Proposition 3.1 Suppose that (w1x2), (y1z2) are possible cuts of a factorization f ∈
F. Then the factors of f can be commuted to obtain a factorization g ∈ F, where g ∼ f ,
so that

(
(w1x2), (y1z2)

)
are at the cut of g.

Proof Since (w1x2) is a possible cut of f , the factors of f can be commuted to obtain
an equivalent factorization e ∈ F so that (w1x2) is the unique cut of e. Then in e
there are factors τc = (w1x2) and τd = (y1z2), and since (y1z2) is also a possible cut
of e, we have d < c.

Now we describe an algorithm that will enable us to commute factors of e, so that
(w1x2) is still the unique cut, but (y1z2) is immediately to its right: At each stage we
have a set of factors M; initially M = {τd}. Then, for i = d + 1, . . . , c − 1, if τi does
not commute with some factor in M, we update M by inserting τi into M.

Now, we establish some properties of the final M that is constructed by this algo-
rithm. For each factor τ j ∈M, it is easy to prove by induction that, for some m ≥ 0,
there exists a sequence j = i0 > i1 > · · · > im = d, where τi0 , . . . , τim ∈ M, such
that τir does not commute with τir+1 , for r = 0, . . . ,m − 1. Thus, τc must commute
with all elements of M, since if τc does not commute with some τ j ∈ M, then we
have a sequence τc, τ j = τi0 , . . . , τim = τd, of pairwise noncommuting factors that
appears in left-to-right order in e; this would make it impossible to commute τd to
the left of τc, which contradicts the fact that τd is a possible cut, by Proposition 2.1.
(The same argument shows that, if τi is a possible cut of e, for d < i < c, then τi
cannot belong to M.) Also, by construction in the above algorithm, if τi is not in M

for some c > i > d, then τi commutes with all τ j in M, such that i > j.
These observations allow us to commute factors of e as follows: Move the elements

of M except τd, maintaining their left-to-right order, immediately to the left of τc;
move τd immediately to the right of τc. All required commutations are legitimate,
from the above observations. Also, τc is still the unique cut, since M contains no
possible cuts, and the resulting factorization is therefore a suitable choice of g.

Let F
†
k , k ≥ 1, consist of elements of F in which a subset consisting of k of the

possible cuts are distinguished by marking them with a “†” as a superscript. Again,
whether factors are distinguished or not will make no difference in how they are
multiplied together.

Suppose that (a1
1b2

1)†, . . . , (a1
kb2

k)† are the distinguished possible cuts of f ∈ F
†
k

where k ≥ 1, and a1 < · · · < ak (note that possible cuts are all pairwise commuting,
so ai �= a j and bi �= b j , for i �= j). Then we define the index of f as I( f ) =
{a1, . . . , ak}. For k ≥ 2, we define ϑ( f ), the switch of f , as follows: Commute the
factors of f to obtain f ′, so that

(
(a1

1b2
1)†, (a1

2b2
2)†
)

are at the cut of f ′ (this is always
possible, from Proposition 3.1). Then ϑ( f ) is the ordered factorization obtained
from f ′ by replacing the factor (a1

1b2
1)† by (a1

1b2
2)†, and replacing the factor (a1

2b2
2)† by

(a1
2b2

1)† (note that this does not uniquely define ϑ( f ), but all ϑ( f ) constructed in this
way are equivalent).

In the next result, we show that the switch of a factorization has a remarkable de-
composition property. Some notation is needed to state the result. If f , g are ordered
lists of transpositions, let f · g denote the ordered list obtained by appending the ele-

https://doi.org/10.4153/CJM-2001-031-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-031-x


766 I. P. Goulden, D. M. Jackson and F. G. Latour

ments of f to those of g. Let supp( f ) denote the union of the sets on which the trans-
positions listed in f act. We write {A1, . . . ,Ap} � A to indicate that {A1, . . . ,Ap}
is a (set) partition of A.

Lemma 3.2 Suppose that (a1
1b2

1)†, . . . , (a1
kb2

k)† are the distinguished possible cuts of

f ∈ F̄
†
k where k ≥ 2, and a1 < · · · < ak. Then

ϑ( f ) ∼ ϑ1( f ) · ϑ2( f ),

where ϑ1( f ), ϑ2( f ) satisfy the following

1. ϑ1( f ) ∈ F
†
j , ϑ2( f ) ∈ F

†
k− j , for some j = 1, . . . , k− 1,

2.
{

supp
(
ϑ1( f )

)
, supp

(
ϑ2( f )

)}
� supp( f ),

3.
{

I
(
ϑ1( f )

)
, I
(
ϑ2( f )

)}
� I( f ),

4. (a1
1b2

2)† is the cut of ϑ1( f ), and (a1
2b2

1)† is the cut of ϑ2( f ).

Proof Suppose that f is a factorization of permutation π1, and thus f ′ (as described
in the construction of ϑ( f ) above) is also a factorization of π1. Suppose that ϑ( f ) is
a factorization of π2. Let the product of the factors to the left and right of (a1

1b2
1)†,

(a1
2b2

2)† in f ′ be γ and δ, respectively. Now, let (a1
1b2

1)†(a1
2b2

2)† = (a1
1b2

1)(a1
2b2

2) = α1

(we ignore the fact that these transpositions are distinguished in determining their
product), and (a1

1b2
2)(a1

2b2
1) = α2, so

γα1δ = π1, γα2δ = π2.

But α2 = α3α1, where α3 = (a1
1a1

2)(b2
1b2

2), and we have

π2 = γα2δ = γα3α1δ = γα3γ
−1γα1δ = γα3γ

−1π1.(3.1)

If γ(x) is the image of element x under γ, then, by conjugation,

γα3γ
−1 =

(
γ(a1

1)γ(a1
2)
)(
γ(b2

1)γ(b2
2)
)
.(3.2)

But all factors of γ are pure, from Proposition 2.1 (since (a1
1b2

1)† is the unique cut of
f ′), so γ is pure, and thus γ(a1

i ) ∈ S1
∞ and γ(b2

i ) ∈ S2
∞, for i = 1, 2. Now, since

f ∈ F, then π1 consists of exactly two cycles, one consisting entirely of elements of
S1
∞, and the other consisting entirely of elements of S2

∞. Therefore,
(
γ(a1

1)γ(a1
2)
)

and
(
γ(b2

1)γ(b2
2)
)

are cuts for π1, and it follows from Proposition 1.2, and (3.1),
(3.2), that π2 consists of exactly four cycles, say A1, A2, B1, B2, where A1, A2 consist
entirely of elements of S1

∞, and B1, B2 consist entirely of elements of S2
∞. Let A1

contain γ(a1
1), so A2 contains γ(a1

2), and let B1 contain γ(b2
1), so B2 contains γ(b2

2).
Now, let β1 be the set consisting of the elements of A1 together with the elements

of B2, and β2 consist of the elements of A2 together with the elements of B1. Denote
the size of β1 by m1, and the size of β2 by m2. The number of factors in f (and thus
also in f ′, ϑ( f )), is m1 + m2, from (1.2), and the number of factors in a transitive
ordered factorization of π2 is at least m1 +m2 +2, from (1.1), so ϑ( f ) is not a transitive
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factorization of π2. However, since α2 and γ are products of factors in ϑ( f ), we
deduce that the factors of ϑ( f ) act transitively on β1, and act transitively on β2. Thus
there can be no factor in ϑ( f ) containing both an element of β1 and an element of
β2. This means that the factors in ϑ( f ) fall into two classes, those consisting of a pair
from β1, and those consisting of a pair from β2; let the ordered list of factors of the
first kind be denoted by ϑ1( f ), and the ordered list of factors of the second kind be
denoted by ϑ2( f ). Now, all factors of ϑ1( f ) commute with all factors of ϑ2( f ), so, in
particular, we may write

ϑ( f ) ∼ ϑ1( f ) · ϑ2( f ).

But, ϑ1( f ) is a transitive ordered factorization of A1B2, so it must have at least m1

factors, from (1.1). Similarly, ϑ2( f ) is a transitive ordered factorization of A2B1, and
must have at least m2 factors. Since ϑ( f ) has exactly m1 + m2 factors, from above,
then ϑ1( f ), ϑ2( f ) must have exactly m1, m2 factors, respectively, and so, from (1.2),
they are minimal, transitive ordered factorizations. All of the stated properties of
ϑ1( f ), ϑ2( f ) follow from the development above, noting that βi = supp

(
ϑi( f )

)
, for

i = 1, 2.

Example 3.3 For the factorization given in Example 2.2, suppose we distinguish
three of the possible cuts, to obtain the following factorization:

f =
(

(3141), (1262), (1181), (6132)†, (2141), (1112)†, (81101), (1222),(3.3)

(5142), (8191), (4152)†, (1152), (4142), (5132), (6171), (7122)
)
.

Thus, f ∈ F
†
3, and we have I( f ) = {1, 4, 6}. Now we can commute factors in f to

obtain an equivalent f ′, with
(

(1112)†, (4152)†
)

at the cut:

f ′ =
(

(3141), (1262), (1181), (2141), (1112)†, (4152)†, (81101), (1222),

(5142), (8191), (6132)†, (1152), (4142), (5132), (6171), (7122)
)
,

so we have

ϑ( f ) =
(

(3141), (1262), (1181), (2141), (1152)†, (4112)†, (81101), (1222),

(5142), (8191), (6132)†, (1152), (4142), (5132), (6171), (7122)
)
.

Now, in the notation of the proof of Lemma 3.2, f is a factorization of π1 =
(11 · · · 101)(12 · · · 62), and we have γα3γ

−1 = (2181)(5262). Thus, we have π2 =
(118191101)(21 · · · 71)(12 · · · 4262)(52). Now, the unique cuts of ϑ1( f ) and ϑ2( f ) are
(1152)† and (4112)†, respectively, so ϑ1( f ) is a factorization of (118191101)(52), and
ϑ2( f ) is a factorization of (21 · · · 71)(12 · · · 4262). Thus, we have supp

(
ϑ1( f )

)
=

{11, 81, 91, 101, 52}, and supp
(
ϑ2( f )

)
= {21, . . . , 71, 12, . . . , 42, 62}. These sets al-

low us to determine immediately to which factorization each factor of ϑ( f ) belongs,
and we obtain

ϑ1( f ) =
(

(1181), (1152)†, (81101), (8191), (1152)
)
,(3.4)

https://doi.org/10.4153/CJM-2001-031-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-031-x


768 I. P. Goulden, D. M. Jackson and F. G. Latour

ϑ2( f ) =
(

(3141), (1262), (2141), (4112)†, (1222), (5142), (6132)†,(3.5)

(4142), (5132), (6171), (7122)
)
.

Note that I
(
ϑ1( f )

)
= {1} and I

(
ϑ2( f )

)
= {4, 6}.

The switch is reversed as follows. Given two factorizations f1 ∈ F
†
l and f2 ∈ F

†
j ,

for l, j ≥ 1, where supp( f1), supp( f2) are disjoint, and the two smallest elements of
I( f1)∪I( f2) are, say, s1, s2 with si ∈ I( fi), suppose that s1 < s2 (if s1 > s2, interchange
f1 and f2). Then commute factors of fi , if necessary, to obtain gi , where (s1

i t2
i )†, for

some ti , is the unique cut of gi , for i = 1, 2. Suppose that gi = ui · (s1
i t2

i )† · vi , for
i = 1, 2, and let g = u1 · u2 · (s1

1t2
2 )†(s1

2t2
1 )† · v1 · v2. Then we have recovered the

factorization f ′ = g in the switch, so that ϑ1( f ) = g1, ϑ2( f ) = g2; of course, all
possible f from which this f ′ could arise in the construction are equivalent to f ′.

3.2 The Iterated Switching Algorithm

We now apply the switch iteratively, to decompose a factorization in F
†
k into k factor-

izations.

Algorithm 3.4 (Iterated Switching Algorithm) The input is f ∈ F
†
k , with k ≥ 2.

Suppose the index of f is I( f ) = {a1, . . . , ak}.

Step 1 Set f1 = f .

Step i (For i = 2, . . . , k) Determine the unique ti so that ai ∈ I( fti ), where 1 ≤ ti ≤
i − 1. Apply ϑ to fti ; set fi = ϑ2( fti ) and replace fti by ϑ1( fti ).

The output is ( f1, . . . , fk) and (t2, . . . , tk).

Example 3.5 If the input is the factorization f given in Example 3.3, then k = 3
and I( f ) = {1, 4, 6}.

Step 1 Set f1 = f , where f is given in (3.3).

Step 2 We have a2 = 4, and a2 ∈ I( f1), so t2 = 1. Then apply ϑ to f1, setting
f2 = ϑ2( f1) = ϑ2( f ), given in (3.5), and replacing f1 by ϑ1( f1) = ϑ1( f ), given in
(3.4). For later use, we record the fact that

f1 =
(

(1181), (1152)†, (81101), (8191), (1152)
)

(3.6)

Step 3 We have a3 = 6, and a3 ∈ I( f2), so t3 = 2. Then apply ϑ to f2. First,
commute factors of f2 to obtain an equivalent factorization with

(
(4112)†, (6132)†

)
at the cut:(

(3141), (1262), (2141), (4112)†, (6132)†, (1222), (5142), (4142),

(5132), (6171), (7122)
)
.
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Then, we immediately obtain

ϑ( f2) =
(

(3141), (1262), (2141), (4132)†, (6112)†, (1222), (5142),

(4142), (5132), (6171), (7122)
)
.

Now, in the notation of the proof of Lemma 3.2, f2 is a factorization of π1 =
(21 · · · 71)(12 · · · 4262), and we have γα3γ

−1 = (2161)(3262). Thus, we have π2 =
(21 · · · 51)(6171)(122262)(3242). Now, the unique cuts ofϑ1( f2) andϑ2( f2) are (4132)†

and (6112)†, respectively, so ϑ1( f ) is a factorization of (21 · · · 51)(3242), and ϑ2( f ) is
a factorization of (6171)(122262). Thus,

f2 =
(

(3141), (2141), (4132)†, (5142), (4142), (5132)
)
,(3.7)

f3 =
(

(1262), (6112)†, (1222), (6171), (7122)
)
.(3.8)

The output is ( f1, f2, f3), displayed in (3.6), (3.7), (3.8), and (t2, t3) = (1, 2).

The next result gives an enumeratively useful property of the Iterated Switching
Algorithm.

Theorem 3.6 For the output ( f1, . . . , fk) and (t2, . . . , tk) of the Iterated Switching
Algorithm, we have

1. For i = 1, . . . , k, fi ∈ F
†
1 with I( fi) = {ai}.

2. {supp( f1), . . . , supp( fk)} � supp( f ).
3. For i = 2, . . . , k, 1 ≤ ti ≤ i − 1.

Moreover, the Iterated Switching Algorithm is reversible (up to membership in an equiv-
alence class).

Proof By induction, it is easy to prove from Lemma 3.2 that, for i = 1, . . . , k, after
Step i we have ( f1, . . . , fi), where

1. f j ∈ F
†
m j

, where m j ≥ 1 for j = 1, . . . , i, and m1 + · · · + mi = k.
2. {I( f1), . . . , I( fi)} � {a1, . . . , ak}, where a j ∈ I( f j), for j = 1, . . . , i.
3. {supp( f1), . . . , supp( fi)} � supp( f ).

This immediately establishes that 1 ≤ ti+1 ≤ i, for i = 1, . . . , k − 1. Knowing the
t j ’s, we can straightforwardly reverse each step of the algorithm (up to equivalence,
as discussed following Example 3.3). The result follows.

3.3 Enumerative Consequences of the Iterated Switching Algorithm

Theorem 3.6 immediately gives an expression for the generating series Γ(x, y), de-
fined in (1.6) in terms of F̃†1 defined in (2.1).

Corollary 3.7
Γ(x, y) = log(1 + F̃†1 ).
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Proof Apply the Iterated Switching Algorithm (Algorithm 3.4) to representatives of
the equivalence classes of F

†
k , for k ≥ 2. The exponential generating series for the

input f is F̃†k . We now determine the exponential generating series for the output
( f1, . . . , fk) and (t2, . . . , tk) of the algorithm. There are two parts to this. First, the
exponential generating series for ( f1, . . . , fk), where

1. f j ∈ F
†
1 , for j = 1, . . . , k,

2. {supp( f1), . . . , supp( fk)} � supp( f ),

is (F̃†1 )k. But the condition on the a j ’s in Theorem 3.6 for the output imposes a canon-
ical order on the f j ’s, so the exponential generating series for the output ( f1, . . . , fk)
of the Iterated Switching Algorithm is

1

k!
(F̃†1 )k.

Second, the number of choices for the output (t2, . . . , tk), is (k − 1)!, so multiplying
this into the above generating series, we have

F̃†k =
1

k
(F̃†1 )k(3.9)

since the Iterated Switching Algorithm is reversible (up to equivalence). The result
follows immediately from (3.9) and Lemma 2.3.

4 The Commutation Construction

4.1 Factorizations With a Fixed Unique Cut

In Corollary 3.7, we have reduced the evaluation of the series Γ(x, y) to the determi-
nation of F̃†1 . The remainder of the paper is concerned with this determination, and
thus we shall complete the proof of the main result.

In considering factorizations of a permutation with two cycles, it is convenient to
choose these to be the canonical cycles Ci = (1i · · · ni

i) on Si
ni

for i = 1, 2. Let Dn1,n2

denote the subset of F consisting of all minimal, transitive ordered factorizations of
C1C2, in which the unique cut is (1112). From (1.2), members of Dn1,n2 have n1 + n2

factors. Let d̃n1,n2 be the number of equivalence classes of Dn1,n2 . Note that Dn1,n2 is
not closed under commutation, for factorizations with more than one possible cut,
so equivalence classes of Dn1,n2 are subsets of equivalence classes of F, in general. Let

D̃(x, y) =
∑

n1,n2≥1

d̃n1,n2 xn1 yn2 ,(4.1)

the ordinary generating series for the d̃n1,n2 .

Proposition 4.1

F̃†1 = D̃(x, y).
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Proof For the elements of F
†
1 , there are (ni − 1)! choices for the ni-cycle on Si

ni
, for

i = 1, 2, and n1n2 choices for the distinguished possible cut. Then, by relabelling, we
obtain

f̃ †1,n1,n2
= n1(n1 − 1)! n2(n2 − 1)! d̃n1,n2 ,

and the result follows from (4.1) and (2.1).

This result shows that to determine the series F̃†1 , and thus complete the proof
of the main result, it is sufficient to determine the series D̃(x, y). We begin this, in
the following proposition, with a number of detailed combinatorial results about the
structure of elements of Dn1,n2 . One piece of notation will be convenient in stating
these results. For i = 1 or 2, a sequence ai

1 · · · a
i
m of elements in Si

ni
is said to be Ci-

ordered if the order of the elements of the sequence is consistent with their circular
order in the cycle Ci (that is, there is a (unique) j such that 1 ≤ a j < a j+1 < · · · <
am < a1 < · · · < a j−1 ≤ ni).

Proposition 4.2 Let f = (τn1+n2 , . . . , τ1) ∈ Dn1,n2 and let σ j be the j-subproduct of
f . Let τc denote the unique cut of f . Then:

1. For i = 1, 2, the elements from Si
ni

appearing in each cycle of σ j are Ci-ordered for
j = 1, . . . , n1 + n2.

2. No cycle of σ j , for j < c, has a subsequence of the form s1t2u1v2 where s1, u1 ∈ S1
n1

and t2, v2 ∈ S2
n2

.
3. For i = 1, 2, if ai, bi ∈ Si

ni
are on the same cycle of σ j for some j, with 1 ≤ j ≤

n1 + n2, then ai , bi are on the same cycle of σm for all m > j.
4. σc−1 has exactly one mixed cycle, which contains 11 and 12.
5. For i = 1, 2, σ−1

c (1i) = pi
i for some 1 ≤ pi ≤ ni.

6. Suppose g = (τ ′n1+n2
, . . . , τ ′1 ) ∈ Dn1,n2 , where g ∼ f . Let τ ′c ′ denote the unique cut

of g, and ω j the j-subproduct of g. For i = 1, 2, σ−1
c (1i) = ω−1

c ′ (1i).

Proof From Proposition 1.2, the effect of a sequence of subsequent joins on the ele-
ments of a cycle is to keep them together on cycles that are formed by the joins, and
to maintain their relative circular order around such cycles. Moreover, f is a factor-
ization of C1C2, which is a pure permutation with the two cycles C1 and C2, and so
it is these two cycles that will ultimately be formed by the sequence of joins in f .

However, f contains one cut, so we must analyze the effect of this cut in the se-
quence of joins. The cut is τc = (1112), so σc−1 has a cycle containing 11 and 12,
and this cycle is replaced, in σc, by two cycles, one containing 11, and the other 12,
from Proposition 1.2. Now τ j is a pure factor for all j > c, from Proposition 2.1, so
σk = τ

−1
k+1 · · · τ

−1
c C1C2 is a pure permutation for all k ≥ c. In particular, σc is a pure

permutation, so (4) and (5) hold. Also, the cycle in σc−1 containing 11 and 12 must
be of the form (11w112w2), where wi is a string consisting entirely of elements of Si

ni
,

for i = 1, 2. This cycle is replaced by the two cycles (11w1) and (12w2) in σc, so the
cut has no effect on the relative positions around cycles of the elements of S1

n1
or S2

n2
.

Thus, we have parts (1), (3) and (2).
Part (6) follows since we cannot commute a factor involving 1i with (1112).
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4.2 Classification of Factors With Respect to the Fixed Cut

The following lemma enables us to classify the factors τv = (ab) in f ∈ Dn1,n2 with
respect to the unique cut (1112) by determining the subsets of S1

n1
× S1

n1
, S2

n2
× S2

n2

(when τv is pure) and S1
n1
× S2

n2
(when τv is mixed) to which (ab) can belong. It is

necessary to introduce the following sets where pi , for i = 1, 2, is given by Proposi-
tion 4.2(5). For i = 1, 2, let

Li = {mi : 1 < m < pi}, Gi = {mi : pi < m ≤ ni}.

Then (for the pure pairs) let

K1 = (L1 × L1) ∪ (L2 × L2), K2 = (G1 × G1) ∪ (G2 × G2),

K3 = ({p1
1} × L1) ∪ ({p2

2} × L2), K4 = ({11} × G1) ∪ ({12} × G2),

K5 =
(
{11} × (L1 ∪ {p1

1})
)
∪
(
{12} × (L2 ∪ {p2

2})
)
,

and (for the mixed pairs)

K6 = (L1 ∪ {11, p1
1})× (L2 ∪ {12, p2

2}).

Lemma 4.3 Let (τn1+n2 , . . . , τ1) ∈ Dn1,n2 . Then

τv ∈

{
K1 ∪K2 ∪K3 ∪K4, if τv is on the left of the unique cut (1112),

K1 ∪K2 ∪K3 ∪K5 ∪K6, if τv is on the right of the unique cut (1112).

Proof Let the unique cut be τc. A case analysis is required. In all cases, τv is a join
when v �= c.

For Pure Pairs From Proposition 4.2(5), for i = 1 and 2, there exists a pi with
1 ≤ pi ≤ ni , such that σc(pi

i) = 1i . Thus, in σc, there is a cycle C containing pi
i and

1i , of the form (pi
i1

i · · · ). There are three cases.

Case 1 Suppose that τv = (aibi) where ai , bi ∈ Si
ni
\ {1i, pi

i} for i = 1 or 2. There
are two subcases.

A: If v > c then v − 1 ≥ c. Thus, from Proposition 4.2(3), since 1i and pi
i are on

the cycle C of σc, then they are also on the same cycle C ′, say, of σv−1. Since τv is a
join for σv−1, then at most one of ai and bi is on C ′. There are two subcases of this
case.

(i) If one of ai and bi is on C ′, suppose it to be ai , without loss of generality. Then
C ′ has the form

(ai · · · 1i · · · pi
i · · · ) or (ai · · · pi

i · · · 1
i · · · ).

But σv = τvσv−1 so σv has a cycle of the form

(ai · · · 1i · · · pi
i · · · b

i · · · ) or (ai · · · pi
i · · · 1

i · · · bi · · · ),
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respectively. But, from Proposition 4.2(1), this means that 1 < pi < b < a or
1 < b < a < pi , respectively, so τv ∈ K1 ∪K2.

(ii) If neither ai nor bi is on C ′, then, from Proposition 4.2(3), 1i and pi
i are on

one cycle of σv, and, since τv is a join, ai and bi lie on another cycle of σv. Then these
cycles will be joined at some stage by the successive multiplication of τv+1, . . . , τn1+n2 ,
giving a cycle of the form

(1i · · · pi
i · · · a

i · · · bi · · · ) or (1i · · · pi
i · · · b

i · · · ai · · · ),

(in which case, from Proposition 4.2(1), (aibi) ∈ K1) or of the form

(1i · · · ai · · · bi · · · pi
i · · · ) or (1i · · · bi · · · ai · · · pi

i · · · ),

(in which case, from Proposition 4.2(1), (aibi) ∈ K2). Thus τv ∈ K1 ∪K2.
B: If v < c, then ai and bi are on the same cycle of σv since τv is a join, so, from

Proposition 4.2(3), ai and bi are on the same cycle of σc. There are two subcases of
this case.

(i) If ai and bi are on C , then C has the form

(pi
i1

i · · · ai · · · bi · · · ) or (pi
i1

i · · · bi · · · ai · · · ).

Then from Proposition 4.2(1) we have τv ∈ K1 ∪K2.
(ii) If neither ai nor bi is on C , then the cycle of σc containing ai and bi and the

cycle C will be joined at some stage by successive multiplication of τc+1, . . . , τn1+n2 ,
and, as in Case 1 A(ii), we conclude from Proposition 4.2(1) that τv ∈ K1 ∪K2.

Case 2 Suppose that τv = (pi
ia

i) where ai ∈ Si
ni
\ {1i, pi

i} for i = 1 or 2. There are
two subcases.

A: If v > c, then v − 1 ≥ c. Thus, from Proposition 4.2(3), since 1i and pi
i are

on the cycle C of σc, then they are also on the same cycle C ′, say, of σv−1. Moreover,
ai is not on C ′ since τv is a join and therefore pi

i , a
i are on different cycles of σv−1.

Thus, C ′ has the form (pi
i · · · 1

i · · · ) and so, under the action of τv, σv has a cycle of
the form

(pi
i · · · 1

i · · · ai · · · ).

Then from Proposition 4.2(1), 1 < a < pi , so τv ∈ K3.
B: If v < c, then ai and pi

i are on the same cycle of σv, since τv is a join, so from
Proposition 4.2(3), ai and pi

i are on the same cycle of σc. Thus ai is also on C , so C
has the form

(pi
i1

i · · · ai · · · ).

Then from Proposition 4.2(1), 1 < a < pi , so τv ∈ K3.

Case 3 Suppose that τv = (1iai) where ai ∈ Si
ni
\ {1i} for i = 1 or 2. There are two

subcases.
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A: If v > c, then v − 1 ≥ c. Thus, from Proposition 4.2(3), since 1i and pi
i are

on the cycle C of σc, then they are also on the same cycle C ′, say, of σv−1. Moreover,
ai is not on C ′ since τv is a join and therefore 1i , ai are on different cycles of σv−1.
Thus, C ′ has the form (1i · · · pi

i · · · ) and so, under the action of τv, σv has a cycle of
the form

(1i · · · pi
i · · · a

i · · · ).

Then, by Proposition 4.2(1), pi < a ≤ ni , so τv ∈ K4.
B: If v < c, then 1i and ai are on the same cycle of σv since τv is a join, so 1i

and ai are on the same cycle of σc, from Proposition 4.2(3). Thus ai is also on C .
Then either ai = pi

i , or ai �= pi
i , in which case C has the form (pi

i1
i · · · ai · · · ), so, by

Proposition 4.2(1), 1 < a < pi . Combining these possibilities we have 1 < a ≤ pi ,
so τv ∈ K5.

This completes the proof of the lemma for the pure pairs.

For Mixed Pairs Suppose that τv = (a1b2) for a1 ∈ S1
n1

and b2 ∈ S2
n2

. Then v ≤ c
from Proposition 2.1. If v < c, then τv is a join, from Proposition 2.1, so a1 and
b2 lie on the same cycle of σv. Since, from Proposition 4.2(4), there is precisely one
cycle Ĉ , say, in σc−1 containing elements of both S1

n1
and S2

n2
, this cycle certainly

contains a1 and b2. Now, σc−1 = (1112)σc, so σc−1(p1
1) = 12 and σc−1(p2

2) = 11,
from Proposition 4.2(5), so Ĉ contains a1, b2, p1

1, 12, p2
2, 11. Moreover, because of

the action of σc−1, p1
1 and 12 appear consecutively on Ĉ , and so also do p2

2 and 11.
Combining these facts with Proposition 4.2(2), we see that Ĉ has the form

(p1
112 · · · b2 · · · p2

211 · · · a1 · · · ).

Moreover, a1 may assume the values 11 or p1
1, and b2 may assume the values 12 or p2

1.
Then, from Proposition 4.2(1), 1 ≤ a ≤ p1 and 1 ≤ b ≤ p2, so τv ∈ K6.

This completes the proof of the lemma for the mixed pairs.

In the next lemma, we commute factors, and prove that the selection of represen-
tatives from equivalence classes of Dn1,n2 can be restricted to a special form.

Lemma 4.4 Let f ∈ Dn1,n2 . Then there exists f � ∈ Dn1,n2 such that f � ∼ f , where
for any factor τ in f �,

τ ∈

{
K2 ∪K4, if τ is on the left of the unique cut (1112),

K1 ∪K3 ∪K5 ∪K6, if τ is on the right of the unique cut (1112).

Proof If A and B are subsets of transpositions acting on S1
n1
∪ S2

n2
, we will write

A � B if αβ = βα for all α ∈ A and all β ∈ B.
Since f ∈ Dn1,n2 then, from Lemma 4.3, the factors on the left of the unique cut

(1112) in f are in K1 ∪ K2 ∪ K3 ∪ K4, and the factors on the right of (1112) are in
K1 ∪K2 ∪K3 ∪K5 ∪K6. Now

K2 � {(1112)} ∪K1 ∪K3 ∪K5 ∪K6
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since the set on which the transpositions in K2 act is disjoint from the set on which
the transpositions in {(1112)}∪K1 ∪K3 ∪K5 ∪K6 act. Thus the left-most factor of
f on the right of (1112) that is in K2 can be commuted to the position immediately
to the left of (1112). Repeat this operation for each such factor of K2. Also,

K1 ∪K3 � {(1112)} ∪K2 ∪K4,

by a similar argument, so the right-most factor of f on the left of (1112) that is in
K1 ∪K3 can be commuted to the position immediately to the right of (1112). Repeat
this operation for each such factor of K1 ∪K3.

Let f � be the result of this construction. Then f � ∼ f , and the factors of f � to
the left of (1112) are in K2 ∪ K4, while the factors of f � to the right of (1112) are in
K1 ∪ K3 ∪ K5 ∪ K6. Note that, of the Ki ’s, only K6 contains mixed factors, and
no elements of K6 are moved to the left of (1112) in the construction of f �, so we
conclude from Proposition 2.1 that f � ∈ Dn1,n2 , and the result follows.

4.3 Representatives of Equivalence Classes With the Fixed Cut

We are now able to exploit the special form for factorizations in Lemma 4.4, to give a
canonical representation for the equivalence classes of Dn1,n2 .

Lemma 4.5 Let f ∈ Dn1,n2 . Then for unique p1, p2 with 1 ≤ p1 ≤ n1 and 1 ≤ p2 ≤
n2,

f ∼ l1 · l2 · (1112) · r,

where

1. For i = 1, 2, li is a minimal, transitive ordered factorization of
(

1i(pi + 1)i · · · ni
i

)
,

2. r is a minimal, transitive ordered factorization of (11 · · · p1
112 · · · p2

2).

Proof Let f ∈ Dn1,n2 , and let f � be the factorization of C1C2 obtained by means
of the algorithm in Lemma 4.4. Let f � = l · (1112) · r, and suppose that l and r
are ordered factorizations of λ and ρ, respectively. Then C1C2 = λ(1112)ρ, where
λ is a product of transpositions in K2 ∪ K4 and ρ is a product of transpositions in
K1 ∪K3 ∪K5 ∪K6.

Now the transpositions in K2∪K4 act on the set G1∪G2∪{11, 12}, so the elements
of the complement of this set with respect to S1

n1
∪ S2

n2
are fixed points of λ. Thus

λ(k1) = k1 for 1 < k ≤ p1, and λ(k2) = k2 for 1 < k ≤ p2.
Similarly, the transpositions in K1 ∪ K3 ∪ K5 ∪ K6 act on the set L1 ∪ L2 ∪

{11, 12, p1
1, p

2
2}, so the elements of the complement of this set with respect to S1

n1
∪S2

n2

are fixed points of ρ. Thus ρ(k1) = k1 for p1 < k ≤ n1, and ρ(k2) = k2 for p2 < k ≤
n2.

Also, if the unique cut of f = (τn1+n2 , . . . , τ1) is τc, then from Proposition 4.2(5),
p1 and p2, where 1 ≤ p1 ≤ n1, 1 ≤ p2 ≤ n2, are uniquely chosen so that σc(pi

i) = 1i ,
for i = 1, 2. Thus, from Proposition 4.2(6), we have (1112)ρ(pi

i) = 1i , for i = 1, 2,
so ρ(p1

1) = 12 and ρ(p2
2) = 11.
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But λ = C1C2ρ−1(1112), so for p1 < k ≤ n1, then λ(k1) = C1C2ρ−1(1112)(k1) =
C1(k1) and, similarly λ(k2) = C2(k2) for p2 < k ≤ n2. In addition, λ(11) =
C1C2ρ−1(1112)(11) = (p1 + 1)1 and, similarly, λ(12) = (p2 + 1)2. Thus
(1i(pi + 1)i · · · ni

i), for i = 1, 2, are cycles of λ, and the remaining cycles are fixed
points, so

λ =
(

11(p1 + 1)1 · · · n1
1

)(
12(p2 + 1)2 · · · n2

2

)
,

and, finally,

ρ = (1112)λ−1C1C2 = (11 · · · p1
112 · · · p2

2).

Now we return to the factorizations l and r. Let m1 and m2 denote the number
of factors in l and r, respectively. The factorization r must act transitively on the
elements of the (p1+p2)-cycle in ρ, so from (1.1), we have m2 ≥ p1+p2−1. Similarly,
the factorization l must act transitively on the elements of the (n1 − p1 + 1)-cycle in
λ, and on the elements of the (n2− p2 + 1)-cycle in λ, so m1 ≥ (n1− p1) + (n2− p2).
Combining these inequalities, we obtain

m1 + m2 ≥ (p1 + p2 − 1) + (n1 − p1 + n2 − p2) = n1 + n2 − 1.

But m1 + m2 = n1 + n2 − 1, since f (and f �) has n1 + n2 factors, so each of the
above inequalities is an equality. Thus, we conclude from (1.2) that r is a minimal,
transitive ordered factorization of (11 · · · p1

112 · · · p2
2). In addition, we conclude that

l consists of two disjoint sets of factors, one giving a minimal, transitive ordered
factorization l1 of (11(p1 + 1)1 · · · n1

1), and the second giving a minimal, transitive
ordered factorization l2 of (12(p2 + 1)2 · · · n2

2). Moreover, since the factors in li act
only on Si

ni
, for i = 1, 2, each factor of l1 commutes with each factor of l2, so we have

l ∼ l1 · l2, and the result follows from Lemma 4.4.

4.4 An Enumerative Theorem for Factorizations With a Fixed Cut

In the following result, we use Lemma 4.5 to determine D̃(x, y), and thus complete
the proof of the main result.

Theorem 4.6

D̃(x, y) = xyh(x)h(y)
h(x) − h(y)

x − y
.

Proof The ordinary generating series for equivalence classes of D̃n1,n2 , for n1, n2 ≥ 1,
is D̃(x, y), from (4.1). In Lemma 4.5, the ordinary generating series for equivalence
classes of l1 is h(x) and of l2 is h(y), from (1.4). The ordinary generating series for
equivalence classes of r is∑

p1,p2≥1

c̃(p1+p2)x
p1 y p2 = xy

h(x)− h(y)

x − y
,
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and the result follows.

Proof of the Main Result The main result (Theorem 1.1) follows immediately, by
combining Corollary 3.7, Proposition 4.1 and Theorem 4.6.
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Appendix A. The Case of a Single Cycle

We conclude with a synoptic treatment of inequivalent, minimal ordered factoriza-
tions of a full cycle, which have been enumerated elsewhere in [E], [L] and [GJ1]. The
functional equation for the generating series for these factorizations has been stated
in (1.5), and is due to Longyear [L]. It can also be derived from a canonical repre-
sentation of equivalence classes of these factorizations into three other factorizations
of a full cycle, and we state such a representation without proof in this Appendix (as
Lemma A.4), for completeness. The development is very similar to that given in Sec-
tion 4 of this paper, and the canonical representation is comparable in purpose to
Lemma 4.5. We simply state the results here, since the interested reader will be able
to supply the details.

The permutations act on {1, . . . , n}, where n is a positive integer, and we consider
factorizations of the canonical n-cycle Cn = (1 · · · n). Let Bn be the set of minimal,
transitive ordered factorizations of Cn. Then the elements of Bn have n − 1 factors,
with no cuts, from the discussion at the end of Section 1.4. The first result identifies
two parameters, denoted by q and p, whose values are fixed for the equivalence classes
of Bn.

Proposition A.1 Let f = (τn−1, . . . , τ1) ∈ Bn and let σ j be the j-subproduct of f .
Suppose g = (τ ′n−1, . . . , τ

′
1 ) ∈ Bn, where g ∼ f , and ω j denotes the j-subproduct of g.

If τc is the right-most factor of f that moves 1 and τ ′c ′ is the right-most factor of g that
moves 1, then, for n ≥ 2,

1. τc = τ ′c ′ = (1q), for some 1 < q ≤ n,
2. σ−1

c (1) = ω−1
c ′ (1) = p, for some q ≤ p ≤ n.

The next result classifies the factors of f ∈ Bn with respect to the canonical factor
(1q), given in Proposition A.1(1) of the above result, using the parameter p, given in
Proposition A.1(2) of the above result. For this purpose, let X = {x : 1 < x < q},
Y = {x : q < x < p}, and Z = {x : p < x ≤ n}. Let

U1 = X× X, U2 = Y× Y, U3 = Z× Z,

U4 = {1} × Y, U5 = {q} × X,

U6 = {q} × (Y∪{p}), U7 = {p} × Y.
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Lemma A.2 Let f = (τn−1, . . . , τ1) ∈ Bn. Then, for n ≥ 2,

τv =

{
U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5 ∪ U7, if τv is on the left of (1q),

U1 ∪ U2 ∪ U3 ∪ U6 ∪ U7, if τv is on the right of (1q).

Lemma A.3 Let f = (τn−1, . . . , τ1) ∈ Bn. Then there exists f � ∈ Bn such that
f � ∼ f , where for any factor τ in f �, for n ≥ 2,

τv =

{
U1 ∪ U3 ∪ U4 ∪ U5, if τv is on the left of (1q),

U2 ∪ U6 ∪ U7, if τv is on the right of (1q).

With the aid of these, we may now obtain a canonical representation of the equiv-
alence classes of Bn. The decomposition is the analogue of Lemma 4.5 for Bn.

Lemma A.4 Let f ∈ Bn. Then for unique p, q with 1 < q ≤ p ≤ n, n ≥ 2,

f ∼ l1 · l2 · (1q) · r,

where

1. l1 is a minimal, transitive ordered factorization of
(

1(p + 1) · · · n
)

,
2. l2 is a minimal, transitive ordered factorization of (2 3 · · · q),
4. r is a minimal, transitive ordered factorization of

(
q(q + 1) · · · p

)
.

This result leads immediately to the functional equation for h(z) that is given in
(1.5).
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