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Understanding particle motion in narrow channels can guide progress in numerous
applications, from filtration to vascular transport. Thermal or active fluctuations of
fluid-filled channel walls can slow down or increase the dispersion of tracer particles via
entropic trapping in the wall bulges or hydrodynamic flows induced by wall fluctuations,
respectively. Previous studies concentrated primarily on the case of a single Brownian
tracer. Here, we address what happens when there is a large ensemble of interacting
Brownian tracers – a common situation in applications. Introducing repulsive interactions
between tracer particles, while ignoring the presence of a background fluid, leads to an
effective flow field. This flow field enhances tracer dispersion, a phenomenon reminiscent
of that seen for single tracers in incompressible background fluid. We characterise the
dispersion by the long-time diffusion coefficient of tracers numerically and analytically
with a mean-field density functional analysis. We find a surprising effect where an
increased particle density enhances the diffusion coefficient, challenging the notion that
crowding effects tend to reduce diffusion. Here, inter-particle interactions push particles
closer to the fluctuating channel walls. Interactions between the fluctuating wall and the
now-nearby particles then drive particle mixing. Our mechanism is sufficiently general
that we expect it to apply to various systems. In addition, our perturbation theory quantifies
dispersion in generic advection–diffusion systems.
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1. Introduction

Fluid transport in confined channels, and generally in porous structures, is relevant for a
broad range of biological and industrial applications, from nutrient transport in vascular
networks and microorganisms in soils (Bhattacharjee & Datta 2019; Tomkins, Hughes &
Morris 2021), to improved filtration of liquids or gases, including modern desalination
techniques and oil recovery (Werber, Osuji & Elimelech 2016; Marbach & Bocquet
2019). However, narrow channels present a number of challenging features to model,
e.g. the predominance of surface effects, the importance of spatiotemporal fluctuations,
as well as specific electrostatic response (Kavokine, Netz & Bocquet 2021). Significant
progress in the last decade has improved our understanding of transport features in such
porous environments, and we briefly review below the effects of (i) spatial and (ii)
temporal fluctuations of the confining environment, as well as (iii) crowding effects due to
interactions.

First, purely spatial corrugations of the confining channel reduce the long-time
diffusion coefficient of isolated particles. In fact, random crossings of channel
constrictions are rare events that impede overall transport: the constrictions form
effective entropic barriers (Zwanzig 1992). This effect is well captured by the so-called
Fick–Jacobs formalism (Jacobs 1935; Reguera & Rubí 2001; Kalinay & Percus 2006;
Rubi 2019), which reduces the problem to an effectively one-dimensional one. The
Fick–Jacobs formalism has been extended recently to arbitrary channel geometries
(Dagdug, García-Chung & Chacón-Acosta 2016; Chávez, Chacón-Acosta & Dagdug
2018). Recent work suggests that the approach is also adapted to study fluid flow through
biological membranes (Arango-Restrepo & Rubi 2020). Such entropic contributions
induce significant corrections to transport in microfluidic (Yang et al. 2017) or biological
(Rubí et al. 2017) channels.

Second, and of importance in several applications, confining channels are often not
static but fluctuate in time, due to either thermal agitation or an external forcing. Molecular
dynamics simulations found, early on, enhanced diffusion of gas in microporous materials
if the thermal vibrations of the material are accounted for (Leroy, Rousseau & Fuchs
2004; Haldoupis et al. 2012), and more recently, enhanced water diffusion in solid state
pores via phonon-fluid coupling (Ma et al. 2015, 2016; Cao, Wang & Ma 2019; Noh
& Aluru 2021). Recent theoretical work suggests that enhanced diffusion is universally
due to longitudinally fluctuating fluid flows, driven by fluctuations of the channel walls,
that convect the tracer particles (Marbach, Dean & Bocquet 2018). The mechanism is
thus reminiscent of Taylor–Aris dispersion, where the long-time diffusion coefficient is
enhanced by a cross-sectionally inhomogeneous fluid flow profile (in the initially studied
case of Poiseuille flow) (Taylor 1953; Aris 1956; Hydon & Pedley 1993). When the
characteristic time scale of wall fluctuations is smaller (larger) than the time scale to
diffuse across typical constrictions, diffusion is enhanced (decreased), a criterion that was
verified numerically (Chakrabarti & Saintillan 2020) and in experiments in fluctuating
porous matrices (Sarfati, Calderon & Schwartz 2021). Such enhancement of dispersion
properties is relevant in a number of biological contexts, such as in blood vessels (Masri,
Puelz & Riviere 2021), slime mould vasculature (Marbach & Alim 2019), the gut (Codutti,
Cremer & Alim 2022), and near molecular motors (Evans, Krause & Feringa 2021), and
are of general relevance in plants (Tomkins et al. 2021).
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Interactions enhance dispersion in fluctuating channels

Third, in addition to the fluctuating confinement, tracer particles are often not isolated
and interact with other particles or molecules that are also diffusing in the medium. The
current paradigm is that such crowded environments, in an open domain, tend to slow
down diffusion at equilibrium (Lekkerkerker & Dhont 1984; Lowen & Szamel 1993; Dean
& Lefèvre 2004). However, subtle effects may arise if the crowded medium is driven out of
equilibrium (Zaccone et al. 2011; Lappala, Zaccone & Terentjev 2013). For example, the
diffusion coefficient of a tracer driven by an external force may be enhanced at low density
and high forcing (Bénichou et al. 2013, 2018; Démery, Bénichou & Jacquin 2014; Illien
et al. 2018). Typically, a trade-off is observed between, on the one hand, the increased
diffusion induced by faster exploration of space thanks to the driving force, and on the
other hand, the decreased diffusion due to spatial constrictions induced by the confining
media (Illien et al. 2018). Such effects may be exploited for active microrheology within
spatially corrugated channels (Puertas, Malgaretti & Pagonabarraga 2018; Malgaretti,
Puertas & Pagonabarraga 2022).

Given its obvious importance, especially in biological systems, the coupling between
the effects of fluctuating channels and inter-particle interactions has received surprisingly
little attention. Since temporal channel fluctuations increase transport coefficients, and
since inter-particle interactions, or crowding effects, generally decrease diffusion, it is
natural to ask if one can predict which effect dominates. Even though recent numerical
work showed that diffusion enhancement could be obtained with increased particle density
in microporous matrices (Obliger et al. 2019), sometimes even exhibiting a maximum
(Pireddu et al. 2019) at a certain density, it was also noticed that the effect can depend
strongly on the precise details of the system understudy (Obliger et al. 2023). These results
thus call for a general theoretical investigation.

In this paper, we investigate the motion of diffusing particles with repulsive interactions
in a confined and fluctuating channel (see figure 1a), which is essentially a spatially
periodic profile moving with constant velocity vwall. We perform numerical simulations to
quantify the effective long-time self-diffusion coefficient Deff and the effective long-time
drift Veff of particles. We explain their behaviour for a broad range of interaction strengths
between particles and fluctuating channel speeds vwall = ω0/k0, where k0 and ω0 are
the wavenumber and frequency of the wall fluctuations. Using perturbation theory, we
obtain simple analytical predictions for Veff and Deff that are in excellent agreement with
simulations.

The paper is organised as follows. To start, in § 2, we consider a simple ideal gas in
the fluctuating channel. We find that the long-time diffusion coefficient Deff exhibits
a maximum with respect to the wall phase velocity vwall, corresponding to maximal
enhancement of diffusion. This result should be contrasted with that of the diffusion
of tracer particles in incompressible fluids that exhibits a monotonic increase with the
wall phase velocity vwall (Marbach et al. 2018). The non-monotonic behaviour seen in
the case studied here originates from the interplay between diffusion and advection due
to the wall that increases long-time diffusion only when the diffusive time scale and
the advection time scale are comparable. In § 3, we then consider soft-core interactions
between particles (see figure 1b). We find that Deff can be enhanced further with increasing
repulsive interactions. Here, repulsive interactions play a role in generating a more
uniform distribution of particles in the channel, even in the vicinity of rapidly fluctuating
bulges. Eventually, increased wall–particle collisions, caused by now-nearby particles,
enhance dispersion. This behaviour is reminiscent of the mechanism of enhanced tracer
diffusion in a fluctuating channel filled with an incompressible fluid (Marbach et al.
2018), and indeed in § 4, we show that remarkably, analytically and numerically, transport
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Figure 1. Set-up to study the transport of tracers in an interacting system with fluctuating boundaries.
(a) Tracer particles (yellow) perform a random walk within this wiggling environment, here represented by
a top, moving wall (red arrows). (b) We consider pairwise, soft, repulsive interactions between particles, and
we vary the interaction strength α and the particle number density ρ0 to investigate more or less crowded
environments.

coefficients converge to a universal incompressible fluid regime in the limit of strong
repulsive interactions. Finally, in § 5 we discuss how these mechanisms and techniques
may be used further to investigate more complex situations of transport in fluctuating
confined environments.

2. Transport of ideal (isolated) tracers in a fluctuating channel

2.1. Simulation results
We start by exploring the motion of tracers in a fluctuating channel, where the environment
is not crowded, i.e. where tracer particles are sufficiently far away from each other that we
can consider that they do not interact. The tracer particles perform a random walk with
diffusion coefficient D0. We refer to this case as the ‘ideal gas’ regime. Throughout this
study, we will assume that the impact of the fluctuating channel boundaries on the velocity
field of the supporting fluid is negligible. This is the case of particles embedded in a highly
compressible fluid or gas, for which the mean free path is much smaller than any relevant
length scale in the system. Examples of such compressible systems in biology include
airflow in the pulsating alveoli in the lungs (Sznitman et al. 2007; Dong, Yang & Zhu
2022). Alternatively, this situation can also be achieved considering that the boundaries
are not implemented by hard walls but rather by potential barriers, such as (fluctuating)
electrostatic potentials for charged tracers. The impact of fluctuating boundaries on the
fluid’s velocity field has already been characterised in the Stokes flow regime (Marbach
et al. 2018).

We simulate the motion of these non-interacting particles in a fluctuating channel,
described through a fluctuating wall at height h(x, t) = H + h0 cos(k0x − ω0t). The shape
of the fluctuating interface is chosen to be sinusoidal, as a generic interface profile can
be decomposed in terms of plane waves. The presence of the walls is incorporated via a
soft boundary potential acting on the particles. We track the motion of particles over long
times, and evaluate their effective long-time self-diffusion coefficient Deff and mean drift
Veff along the main channel axis x (see Appendix A for details).
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Figure 2. Transport properties of non-interacting tracers in a periodic driven channel; comparison between
a compressible (ideal gas) and an incompressible supporting fluid. (a) Long-time longitudinal diffusion
coefficient and (b) drift of particles, with Pe = ω0/D0k2

0 = vwallL/(2πD0). In (a) and (b), error bars
corresponding to one standard over 10 independent runs are smaller than point size, except for (b) small Pe,
since Veff � vwall ∼ 0.01�0/τ0 is small compared to the noise level. Ideal gas theory corresponds to (2.18) and
(2.19), and incompressible fluid to (2.24) and (2.25). Stationary density profiles of particles for vwall = 0.1�0/τ0
(or Pe � 3) for (c) the ideal gas and (d) an incompressible fluid, for vwall = 0.5�0/τ0 (Pe � 16). Blue arrows
show the velocity field in the channel, represented in the referential of the moving wall, with length proportional
to magnitude (arbitrary scale). The colour scale for the density profiles is shared in (c) and (d), and yellow
(purple) regions indicate regions of high (low) density. Other numerical parameters are L = 200�0, H = 12�0,
h0 = 3�0 and D0 = 1�2

0/τ0.

Previous work on incompressible fluids has established that a relevant parameter to
analyse the system is given by the Péclet number characterising the fluctuations,

Pe = ω0

D0k2
0

= τdiff

τwall
, (2.1)

which compares the time scale to diffuse across the length of a channel corrugation τdiff =
1/D0k2

0 to the period of the channel fluctuations τwall = 1/ω0 (Marbach et al. 2018). In
simulations, we therefore fix the typical channel corrugation length L = 2π/k0 and vary
the wall phase velocity vwall = ω0/k0. All parameters are expressed in terms of a time
unit τ0 and a length unit �0, which are arbitrary. We present the results (yellow dots) in
figures 2(a,b) for Deff and Veff with increasing Pe.

Interestingly, the long-time diffusion coefficient Deff exhibits a non-monotonic
dependence on the Péclet number Pe (yellow dots in figure 2a), which we interpret
in the following way. At low Péclet numbers Pe � 1, particles move much faster than
the wall, τwall � τdiff , hence the wall appears frozen. Particles therefore spend time
exploring the bulges before escaping the constrictions, and their diffusion coefficient
is consequently decreased, Deff ≤ D0. This effect is well captured by the Fick–Jacobs
approximation, where transport is reduced due to constrictions acting as effective entropy
barriers (Jacobs 1935; Zwanzig 1992; Reguera & Rubí 2001; Kalinay & Percus 2006;
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Burada et al. 2007; Mangeat, Guérin & Dean 2017; Marbach et al. 2018; Rubi 2019).
At intermediate Péclet numbers Pe � 1, τwall � τdiff and the moving boundaries enhance
particle motion: particles collide with the moving corrugated walls, which increases their
diffusion coefficient overall, Deff ≥ D0. At high Péclet numbers Pe � 10, τwall � τdiff and
the wall moves so fast that particles no longer have time to enter the bulges; they therefore
behave as though they were not seeing any corrugation, the effective diffusion coefficient
is unchanged and equals the bare diffusion, Deff = D0. In other words, from the point
of view of the particles, the channel is effectively flat with height given by its minimum
height.

To further understand the behaviour at high Péclet numbers, we plot the average density
distribution ρ(x, y) of particles within the channel (the average being over noise), in the
reference frame where the channel profile is stationary, for a large value of vwall (figure 2c).
We observe that particles accumulate at the constriction. Indeed, in this reference frame,
the channel constriction acts as a bottleneck for transport. This can be seen as an inverse
Bernoulli effect: in the channel’s frame of reference, the particle flux ρ(x)h(x)vwall is
necessarily constant, where ρ(x) is the cross-sectional averaged density of particles. Hence
the density (and not the velocity, as in the Bernoulli effect) is largest where the channel
is constricted, ρ(x) ∝ 1/h(x). Eventually, since the particles explore only low vertical
coordinates y � H − h0, they no longer collide with the moving wall, hence their diffusion
coefficient is unchanged.

The effective particle drift Veff decreases monotonically with the Péclet number (yellow
dots in figure 2(b), noting that the vertical axis is the normalised drift relative to the wall
phase velocity, Veff /vwall). At small Péclet numbers, the density of particles is uniform in
the channel, therefore the particles within the bulge are carried along in the same direction
as the wall phase velocity. At higher Péclet numbers, the fraction of particles within the
bulge decreases, as seen in figure 2(c). Since all particles accumulate within the bottleneck,
they are no longer pushed by the moving wall, hence Veff /vwall → 0.

2.2. Analytic theory to account for transport in fluctuating channels
To account for this broad behaviour, we build a general analytic theory that reproduces
these effects. With the goal of making a pedagogical introduction to our perturbation
method, which closely follows that which was described only briefly in Marbach et al.
(2018), we devote this subsection to a detailed explanation.

2.2.1. Constitutive equations
Brownian tracer particles evolve in a fluctuating environment, confined in the y direction
between y = 0 and y = h(x, t), and infinitely long in the x direction. Compared to the
simulation, we here make no assumption on the form of h(x, t), which may describe
thermal motion of the wall (determined e.g. through a Hamiltonian characterising the
flexibility of the interface) or active motion (driven by an external source of energy,
as in our simulations where fluctuations are imposed). The probability density function
ρtr(x, y, t) to find a tracer particle at position (x, y) at time t obeys the Fokker–Planck
equation

∂ρtr(x, y, t)
∂t

+ ∇ · j(x, y, t) = 0, (2.2)

with j(x, y, t) ≡ −D0 ∇ρtr(x, y, t)+ u(x, y, t) ρtr(x, y, t), and where we have assumed that
the tracer’s diffusion coefficient D0 is uniform in space and that the tracer is advected by
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the field u(x, y, t), which can have both potential and non-potential components. In the
case of ideal non-interacting particles, the underlying supporting fluid does not move due
to the moving interface, and there are no interactions, u(x, y, t) ≡ 0. For now, we keep
u(x, y, t) arbitrary as this will be useful in the incompressible and interacting regimes.

2.2.2. Boundary conditions
We impose no flux boundary conditions at both surfaces. This means that the projection
of the current on the direction normal to the lower surface boundary is zero, and that
similarly, the projection of the current on the direction normal to the upper boundary in
the frame moving with speed Uwall, where the surface is static, is zero. The boundary
conditions thus read

jy(x, 0, t) = 0, (2.3)

j(x, h(x, t), t) · n = −ρ(x, h(x, t), t)Uwall · n. (2.4)

Here, n is the outward normal to the interface, and Uwall = (0, ∂th) is the velocity of
the wall, considering that the wall atoms move vertically about their average position,
similarly to phonon modes that propagate on material structures (Chaikin, Lubensky &
Witten 1995) or peristaltic motion of vasculature (Alim et al. 2013; Marbach & Alim 2019).
We derive these boundary conditions from first principles in § 1 of the supplementary
material available at https://doi.org/10.1017/jfm.2023.640.

2.2.3. Simplified longitudinal equation for the probability distribution
To make progress on the long-time behaviour of (2.2), we place ourselves within the
lubrication approximation. This means that we consider the typical corrugation length
L to be much bigger than the average channel height, 〈h(x, t)〉 = H, H � L, itself much
bigger than the amplitude of the channel fluctuations, i.e.

√
〈(h − H)2〉 ∝ h0 � H. Within

the lubrication approximation, the outward normal to the interface in (2.4) simplifies to
n � (∂xh, 1). In this framework, the particle density relaxes much faster on the vertical
direction y than on the longitudinal direction x. At low Péclet number, this should notably
yield a vertically uniform particle density. Figure 2(c) shows that the density profile is
indeed independent of y in our simulations. Also, in Appendix B, we show that even
though the lubrication approximation should fail for e.g. larger channel heights H, the
results derived below remain surprisingly robust.

We therefore look for an approximate evolution equation on the probability distribution
integrated vertically, or marginal distribution, ptr(x, t) = ∫ h(x,t)

0 ρtr(x, y, t) dy. Taking the
time derivative of ptr(x, t) and using (2.2) yields

∂ptr(x, t)
∂t

= ∂h(x, t)
∂t

ρtr(x, h(x, t), t)−
∫ h(x,t)

0

(
∂jy(x, y, t)

∂y
+ ∂jx(x, y, t)

∂x

)
dy

= ∂h(x, t)
∂t

ρtr(x, h(x, t), t)− jy(x, h(x, t), t)+ jy(x, 0, t)

+ ∂h(x, t)
∂x

jx(x, h(x, t), t)− ∂

∂x

(∫ h(x,t)

0
jx(x, y, t) dy

)
, (2.5)
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where we used the simple and useful relation

∂

∂x

(∫ h(x,t)

0
f (x, y, t) dy

)
= ∂h(x, t)

∂x
f (x, h(x, t))+

∫ h(x,t)

0

∂f (x, y, t)
∂x

dy (2.6)

for any function f . Equation (2.5) can be simplified remarkably by using the no-flux
boundary conditions (2.4) and (2.3), which lead to all the surface terms vanishing, and
we find

∂ptr(x, t)
∂t

= − ∂

∂x

(∫ h(x,t)

0
jx(x, y, t) dy

)
. (2.7)

We look for a closed equation on ptr(x, t). Writing

jx(x, y, t) = −D0
∂ρtr(x, y, t)

∂x
+ ux ρtr(x, y, t) (2.8)

explicitly, and using (2.6) again, we find

∂ptr(x, t)
∂t

= − ∂

∂x

(
−D0

∂ptr(x, t)
∂x

+ D0
∂h(x, t)
∂x

ρtr(x, h(x, t), t)

+
∫ h(x,t)

0
ux ρtr(x, y, t) dy

)
, (2.9)

where the last terms still do not depend explicitly on the marginal ptr. We will therefore
make the common first-order approximation that since the probability distribution profile
is nearly uniform vertically, we may assume ρtr(x, y, t) ∼ ptr(x, t)/h(x, t). We then obtain
the following Fokker–Planck equation on the marginal distribution, at lowest order in
ρtr(x, y, t)− ptr(x, t)/h(x, t):

∂ptr

∂t
= − ∂

∂x

(
−D0

∂ptr

∂x
+ D0ptr

∂ln h
∂x

+ uxptr

)
, (2.10)

where ux = (1/h)
∫ h(x,t)

0 ux dy is the vertically averaged longitudinal drift. This final step
can be made more rigorous using a centre manifold expansion; see Mercer & Roberts
(1990, 1994) and Marbach & Alim (2019). Equation (2.10) can alternatively be obtained by
starting with the ansatz ρtr(x, y, t) ∼ ptr(x, t)/h(x, t) at the level of (2.2), and making use
of the boundary conditions. However, the derivation that we present here has the advantage
of being approximation-free until (2.9).

Equation (2.10) clearly simplifies the initial problem, and it is sufficient to study the
long-time behaviour of ptr to obtain the long-time diffusion coefficient Deff and drift Veff .
When ux ≡ 0, (2.10) corresponds exactly with the Fick–Jacobs equation (Jacobs 1935;
Zwanzig 1992; Reguera & Rubí 2001), which describes the motion of (non-interacting)
particles in spatially varying but time independent channels y ≡ h(x). Interestingly, the
Fick–Jacobs equation is therefore also valid for fluctuating channels in time, h(x, t),
regardless of the functional shape of h(x, t), the only assumption being the lubrication
approximation. We note that (2.10) is also consistent with the case of a background
incompressible fluid, when ux is the cross-sectionally averaged fluid velocity (Eq. (1) of
Marbach et al. 2018).
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Interactions enhance dispersion in fluctuating channels

2.2.4. Perturbation theory to obtain the long-time transport behaviour
Our goal is now to obtain the long-time transport behaviour of particles from the
simplified, longitudinal evolution equation (2.10). We seek an approximate long-time
equation for the marginal distribution peff (x, t) = ptr(x, t → ∞) of the form

∂peff (x, t)
∂t

= Deff
∂2peff (x, t)

∂x2 − Veff
∂peff (x, t)

∂x
+ δ(x) δ(t), (2.11)

such that we can naturally read off the long-time diffusion Deff and drift Veff , and where
we assumed, without loss of generality, that the particle was initially at the centre of the
domain.

To keep the calculations general, we rewrite (2.10) as a Fokker–Planck equation

∂ptr(x, t)
∂t

= − ∂

∂x

(
−D0

∂ptr(x, t)
∂x

+ v(x, t) ptr(x, t)
)

+ δ(x) δ(t), (2.12)

where v(x, t) is a general advection coefficient (for the ideal gas case, v = D0∂xh/h). Here,
we consider that v(x, t) = O(ε) is a fluctuating perturbation. Its average over realisations
of the noise vanishes, 〈v(x, t)〉 = 0, and its fluctuations are described in Fourier space by
a spectrum S(k, ω) as

〈ṽ(k, ω) ṽ(k′, ω′)〉 = S(k, ω) (2π)2 δ(k + k′) δ(ω + ω′), (2.13)

where k and ω are the wavenumber and frequency, respectively, and the Fourier transform
ṽ(k, ω) of v(x, t) is defined in (C1). Performing a perturbation development to solve (2.12)
on the small parameter ε, we find (see Appendix C)

Deff = D0

(
1 − ε2

∫
dk dω
(2π)2

k2(D2
0k4 − 3ω2)

(D2
0k4 + ω2)2

S(k, ω)

)
, (2.14)

Veff = ε2
∫

dk dω
(2π2)

ω

k
k2

D2
0k4 + ω2

S(k, ω). (2.15)

Equations (2.14) and (2.15) are two of the main results of this work. They predict the
long-time transport properties of particles within a fluctuating channel with arbitrary
fluctuating local drift v(x, t). The results can be applied regardless of the nature of
the fluctuations, be they thermal or non-equilibrium, and regardless of the strength of
the interactions between particles, and between particles and the supporting fluid. In
essence, we generalise the results of Marbach et al. (2018), which were valid only for
an incompressible supporting fluid.

2.3. Applications of the theory to the periodic channel

2.3.1. Ideal gas
To use the above analytic framework to describe our simulations, we now take
the case of the periodic travelling wave h(x, t) = H + h0 cos(2π(x − vwallt)/L) = H+
h0 cos(k0x − ω0t) on the surface. The Fourier transform of h − H is h̃(k, ω) = (h0/2)
(δ(k + k0) δ(ω − ω0)+ δ(k − k0) δ(ω + ω0)). The local drift v in the ideal gas case is
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at lowest order in ε = h0/H,

v(x, t) = D0
1
H
∂h
∂x
, and in Fourier space ṽ(k, ω) = iD0k

˜h(k, ω)
H

. (2.16)

This yields a spectrum for the local drift as

S(k, ω) = D2
0k2

(2π)2

h2
0

4H2 (δ(k + k0) δ(ω − ω0)+ δ(k − k0) δ(ω + ω0)). (2.17)

Plugging the expression for the spectrum in (2.14) and (2.15) yields the long-time transport
coefficients in the ideal gas case:

Dideal gas
eff

D0
= 1 + h2

0
2H2

3Pe2 − 1
(Pe2 + 1)2

, (2.18)

Videal gas
eff

vwall
= h2

0
2H2

1
1 + Pe2 , (2.19)

where we recall the expression of the Péclet number Pe = ω0/D0k2
0.

We present plots of (2.18) and (2.19) as lines in figures 2(a,b), and find excellent
agreement with simulations. This agreement is robust over a wide range of physical
parameters – see figure 9. Analytically, we recover for Pe → 0 (corresponding to
fixed channels, vwall = 0) the well-known entropic trapping result where Deff = D0(1 −
h2

0/2H2) (Zwanzig 1992; Jacobs 1935; Reguera & Rubí 2001; Marbach et al. 2018; Rubi
2019). The analytic computation recovers the non-monotonic behaviour of the diffusion
coefficient for intermediate Pe, and confirms that Deff = D0 at high Pe → ∞. Finally, the
amplitude of the correction for both the diffusion and the drift scales as h2

0/H
2, which

can be interpreted naturally and confirms the collision mechanism in bulges; indeed, the
strength of the fluctuations scales as h0/H but only a fraction h0/H of particles lie within
the bulge and take part in the enhancement of the diffusion coefficient or in the mean drift.

2.3.2. Comparison with transport in incompressible fluid
We now relate our results for the ideal gas to transport within incompressible fluids
(Marbach et al. 2018). In that case, when the channel walls fluctuate, because the
supporting fluid is incompressible, they induce fluctuations in the fluid’s velocity field.
Particles are thus advected by fluid flow. The channel walls here are perfectly slipping
walls, which corresponds to the smooth boundary conditions considered for the gas
particles, which have no specific lateral friction with the walls. The flow field (ux, uy)

can be derived in the low-Reynolds-number limit, which is the relevant limit to consider
since we envision applications in microfluidics to nanofluidics. We find

ux(x, y, t) = U0(x, t), (2.20)

uy(x, y, t) = y
h

(
∂h(x, t)
∂t

+ U0
∂h(x, t)
∂x

)
, (2.21)

where U0(x, t) is the average fluid flow. We calculate U0(x, t) assuming peristaltic
flow, i.e. that the flow is driven purely by channel fluctuations and that there is
no mean pressure-driven flow (Marbach & Alim 2019; Chakrabarti & Saintillan 2020).
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Interactions enhance dispersion in fluctuating channels

The average pressure force on the fluid has to vanish, and we find U0(x, t) � vwall(h0/H)
cos(2π(x − vwallt)/L) at lowest order in h0/H (see § 2 of the supplementary material).
The flow field is presented in figure 2(d) as blue arrows. As the channel moves towards the
right-hand side, fluid mass in the right-hand side bulge has to swell out, consistently with
the flow lines. Similarly, the bulge on the left-hand side opens up, allowing fluid flow to
come in.

The advection term now has two contributions, one coming from the spatial
inhomogeneities, and one coming from advection by fluid flow

v(x, t) = D0
1
H
∂h(x, t)
∂x

+ U0(x, t), (2.22)

or ṽ(k, ω) = (iD0k + ω/k) h̃(k, ω)/H in Fourier space. The spectrum of the fluctuating
drift is thus

S(k, ω) = D2
0k2 + ω2/k2

(2π)2

h2
0

4H2 (δ(k + k0) δ(ω − ω0)+ δ(k − k0) δ(ω + ω0)). (2.23)

We then obtain

Dinc. fluid
eff

D0
= 1 + h2

0
2H2

3Pe2 − 1
Pe2 + 1

, (2.24)

Vinc. fluid
eff

vwall
= h2

0
2H2 . (2.25)

We perform numerical simulations where particles are advected by the flow field defined
by (2.20) and (2.21). We present the numerical results as blue dots and the analytical results
as blue lines in figures 2(a,b). We find perfect agreement between simulation and theory,
confirming the analytical approach of Marbach et al. (2018).

In contrast with the ideal gas, when particles are surrounded by an incompressible
fluid, Deff increases monotonically until it reaches a plateau at large Pe, and Veff stays
constant regardless of Pe. In fact, at any value of Pe, and especially at high Pe, the density
distribution of particles within the channel is uniform, as can be seen in figure 2(d).
Therefore, even at high Pe, the population of particles lying within the bulges is pushed by
the moving boundaries and increases both Deff and Veff .

In this case it is natural to ask why the density distribution remains homogeneous
along the channel. Looking closely at the velocity field (figure 2d), we see that particles
are carried away from the bottleneck by the flow field, and into the bulges. The flow
field therefore facilitates recirculation of accumulated particles. This naturally raises the
question of how the supporting fluid’s compressibility changes the transport properties of
particles within fluctuating channels.

3. Interactions increase diffusion and drift in fluctuating channels

To investigate the impact of the compressibility of the supporting fluid, we introduce
interactions between the particles (see figure 1b), and tune the interaction strength to vary
the effective compressibility of the system.

3.1. Pairwise interactions and compressibility
We simulate the dynamics of interacting particles within a simple periodic fluctuating
channel h(x, t) = H + h0 cos(k0x − ω0t), as in § 2. We use a pairwise interaction potential
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between particles,

Vint(r) =
{
α(r − dc)

2 if r < dc,

0 if r ≥ dc,
(3.1)

where r is the inter-particle distance, dc is a critical distance characterising the radius of
the interaction (see figure 1b), and α is a spring constant that characterises the strength
of the interaction. Note that α > 0 corresponds to repulsive interactions, while α < 0
corresponds to attractive interactions. We use a soft-core potential (instead of a hard-core
potential as in e.g. Bénichou et al. 2013; Suárez, Hoyuelos & Mártin 2015) as it facilitates
numerical integration over long time scales, which is necessary to obtain reliable statistics
on the diffusion coefficient. Soft-core potentials are used commonly and also simplify
analytic treatments (Pàmies, Cacciuto & Frenkel 2009; Démery et al. 2014; Antonov,
Ryabov & Maass 2021). We will show later that the numerical results are well reproduced
by our theory, whose predictions are robust to strong changes of the interaction potential.
The mix of interacting particles and the surrounding (compressible) fluid forms a fluid of
interacting particles, and we study its properties below.

The choice of interactions is well adapted to tune the compressibility χ�T of the fluid
of interacting particles, and hence probe different compressibility regimes, in between the
ideal gas and incompressible fluid cases. Indeed, χ�T is related to the structure factor Sf (k)
of the gas at zero wavelength (Hansen & McDonald 2013):

χ�T(ρ0, α) = χ id
T lim

k→0
Sf (k), (3.2)

where χ id
T = 1/(ρ0kBT) is the compressibility of the ideal gas, which is infinite when

ρ0 → 0. In the so-called and broadly used random phase approximation, one can relate
the structure factor Sf (k) to the interaction potential as

Sf (k) = 1

1 − ρ0

(
− 1

kBT
Ṽint(k)

) . (3.3)

We calculate

lim
k→0

Ṽint(k) =
∫∫

Vint(x, y) dx dy = π

6
αd4

c . (3.4)

We therefore obtain the compressibility of the fluid of interacting particles as

χ�T(ρ0, α) = χ id
T

1 + π

6
ρ0αd4

c

kBT

≡ χ id
T

1 + E0

kBT

, (3.5)

where we introduced E0 = (π/6)αd4
cρ0, which can be understood as the energy

contribution of interactions contained in a typical volume dd
c , with d the dimension of

space (here, d = 2). For α < 0, one has E0 < 0, and the fluid of particles ends up with a
higher compressibility than the one of the ideal gas. In what follows, we will focus mainly
on repulsive interactions (α > 0), but we keep in mind that our analytic computation does
not assume the sign of α. For α > 0, the compressibility χ�T(ρ0, α) decreases with the gas
density ρ0 and with increasing interaction strength. Therefore, either of the parameters
ρ0 and α is a good candidate to probe the intermediate regime between the ideal gas and
the incompressible fluid for which χ�T → 0. In the next subsection, we explore varying
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0) Pe = ω0/(D�0k2

0)

Figure 3. Transport properties of a fluid of interacting particles: (a) effective diffusion and (b) mean drift, for
a compressible fluid of soft-core interacting Brownian particles with varying density ρ0. Numerical parameters
used here are similar to those in figure 2, with additionally L = 200dc, dc = 21/6�0 � 1.12�0 and α = 1kBT/�2

0.
Error bars correspond to one standard deviation over 10 independent runs. Error bars for lower-density values
are larger due to a smaller number of tracked particles (see table 1). Theory curves for the ideal gas and
incompressible fluid are the same as for figures 2(a,b). Theory curves for the fluid of interacting particles
correspond to (4.19) and (4.20).

values of the density ρ0, and we will find similar results when varying α (reported in
Appendix D).

Finally, it is known that the long-time self-diffusion coefficient of interacting particles,
in the bulk, i.e. in an open domain, D0(ρ0), is decreased in a crowded environment in
equilibrium, compared to the infinitely dilute case (Démery et al. 2014) (although it may be
non-monotonic at high densities as the energy landscape is flattened when the local density
is large for soft interactions; see figure 7). We therefore first perform simulations within
fixed flat walls (h0 = 0, vwall = 0), where the system is in equilibrium at temperature T .
The confinement plays no particular role in that case because our channels are wide enough
compared to the typical size of a particle (dc � H). We measure the diffusion coefficients
D0(ρ0) for various particle densities in the channel ρ0 and interaction strengths α, and
our results agree well with existing theories (Démery et al. 2014; see Appendix A.4). We
can thus now measure changes in the self-diffusion coefficient when there are fluctuations
relative to this bulk value D0(ρ0).

3.2. Increasing interactions enhances diffusion and drift
We perform simulations of interacting particles in fluctuating channels (h0 = H/4, varying
vwall > 0). We present our numerical results for the long-time self-diffusion coefficient
Deff /D0(ρ0) and mean drift Veff /vwall with increasing particle density ρ0 in figures 3(a,b).
We find striking variations with increasing density. At low Pe, systems of interacting
particles differ very little from systems with no interactions: we still observe entropic
slow-down. Interestingly, at intermediate Pe, the enhancement of the diffusion coefficient
increases with particle density ρ0. The turnaround point at a critical value of Pe increases
also with increasing particle density. Similarly, mean particle drift is significant at larger
values of Pe, the more so with increasing particle density. Increasing particle density thus
does appear to bridge the gap between the ideal gas case and the incompressible fluid.
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Figure 4. Particle distribution within the channel for varying particle densities. (a,b) Particle distribution in a
fluid of interacting particles at high density ρ0 = 10�−2

0 : (a) for intermediate wall velocity vwall = 0.1�0/τ0,
and (b) for high wall velocity vwall = 0.5�0/τ0. The colour scale for the density profiles is shared between
(a) and (b), and yellow (purple) regions indicate regions of high (low) density. (c,d) Marginal density p(x) =∫
ρ(x, y) dy of particles in the channel, calculated by integrating the two-dimensional density profile in (a) over

vertical slabs as with the dashed grey box: (c) p(x) for different values of vwall, and (d) for different values of
particle density ρ0. Numerical parameters used here are similar to those in figure 3. Theory curves correspond
to (4.10).

3.3. Increasing interactions impacts the density profile
To understand the behaviour of Deff and Veff , we need to understand first how particles
rearrange due to inter-particle forces. Typically, a tracer particle will be forced down
density gradients because of repulsive pairwise interactions. We therefore measure and
analyse the particle density distributions in the channel for various average densities (see
figures 4a,b). First, we find that the particle distribution is uniform in the vertical direction,
as expected within the lubrication approximation: particles diffuse sufficiently fast on the
vertical axis compared to all other relevant time scales. Second, compared to the ideal
gas case at the same wall speed (figure 2(c) versus figure 4(a)), the particle distribution is
also quite homogeneous on the horizontal direction, much like in the incompressible case
(figure 2d). However, at higher wall velocities (figure 4b), particles accumulate again at the
bottleneck region. Such accumulation in narrow channels is also observed in simulations
of driven, interacting tracers in corrugated channels (Suárez et al. 2015; Suárez, Hoyuelos
& Mártin 2016), which share a similar geometry in the reference frame where the wall is
static.

To further quantify the particle distributions, we study the marginal distribution profiles
p(x) = ∫∞

−∞ ρ(x, y) dy along the channel, obtained in the simulations. As expected, p(x)
presents a peak, which indicates particles accumulating near the bottleneck. We find again
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Interactions enhance dispersion in fluctuating channels

that the profile p(x) is more peaked with increasing wall velocity (figure 4c). It flattens out
with increasing particle density ρ0 (see figure 4d), indicating that density profiles indeed
converge to the incompressible fluid case.

4. Analytic theory with pairwise interactions

4.1. Model for particle density profiles along the channel
To understand how the average density profile depends on interaction parameters, we
expand our analytical theory. Our starting point is the equation governing the evolution of
the density of particles ρ(x, y, t), which can be written formally as (Dean 1996; Kawasaki
1998)

∂ρ

∂t
= D0 ∇2ρ + D0

kBT
∇ · (ρ∇(Vint ∗ ρ))+ ∇ · (√2D0ρ ξ), (4.1)

where ξ is a two-component Gaussian white noise field, such that 〈ξμ(x, y, t)〉 =
0 and 〈ξμ(x, y, t) ξν(x′, y′, t′)〉 = δμν δ(x − x′) δ( y − y′) δ(t − t′). Here, the convolution
product is (Vint ∗ ρ)(x, y) = ∫∫

dx′ dy′ Vint(
√

x′2 + y′2) ρ(x − x′, y − y′), where Vint is any
pairwise interaction potential. The term D0 represents the microscopic diffusion constant
of the individual Brownian particles. In an infinite domain and in the absence of
interactions, the long-time diffusion constant of a tracer will be identical to D0. The effects
of interactions and geometry in the problem at hand here both play a role in modifying the
late-time diffusion constant with respect to the microscopic one.

To make progress, we first decompose the density into average and fluctuating
components:

ρ(x, y, t) = ρ̄(x, y, t)+ ψ(x, y, t), (4.2)

where ψ(x, y, t) is the noise field such that 〈ψ(x, y, t)〉 = 0. The noise perturbation
ψ(x, y, t) can be inferred, as in Démery et al. (2014), by assuming a large, flat, fixed
environment and in the case where the background concentration ρ̄(x, y, t) = ρ0 is
uniform. The short distance fluctuations in the density field can then be absorbed into
a renormalization of the diffusion constant, which now depends on the average density.
We will denote by D0(ρ0) the diffusion coefficient renormalised by the interactions. Here,
we will assume that the density fluctuations are short enough in time and space, such that
ρ̄(x, y, t)may be treated as a constant, and such that the same renormalisation applies here
quickly enough to yield a local diffusion constant depending on the local average density
D0(ρ̄). This assumption is basically the same as that used in the macroscopic fluctuation
theory by Bertini et al. (2015), where it is argued that a coarse-grained hydrodynamic
description of a system simply leads to an equation of the type (4.1), but with a local
diffusion constant and mobility (that should be coupled to the external forces) that depends
on the local density field. Here, we assume that we can write a coarse-grained equation for
the evolution of the average density ρ̄ as

∂ρ̄

∂t
= −∇ ·

(
−D0(ρ̄)∇ρ̄ − D0(ρ̄)

kBT
ρ̄∇(Vint ∗ ρ̄)

)
. (4.3)

As the field ρ̄(x, y, t) is smooth and the interaction is short-range compared to all the other
length scales in the system, we can make the local approximation

Vint(x, y) = E0

ρ0
δ(x) δ( y), (4.4)
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such that the Fokker–Planck equation for the particle density simplifies to

∂ρ̄

∂t
= −∇ ·

(
−D0(ρ̄)∇ρ̄ − D0(ρ̄)

E0

kBT
ρ̄

ρ0
∇ρ̄

)
, (4.5)

which is nonlinear in ρ̄.
Our goal is now to obtain an expression for the average density ρ̄(x, y, t). We seek a

solution beyond the trivial mean field (where ρ̄(x, y, t) = ρ0), which makes our approach
similar in essence to other derivations of particles on lattices (Illien et al. 2018; Rizkallah
et al. 2022). Notice that for the height fluctuation profile considered here, the density field
is stationary in the frame of reference where the wall is static; i.e. making the change of
variables x′ = x − vwall t and dropping the prime signs yields

0 = vwall
∂ρ̄(x, y)
∂x

− ∇ ·
(

−D0(ρ̄)∇ρ̄(x, y)− D0(ρ̄)
E0

kBT
ρ̄

ρ0
∇ρ̄

)
. (4.6)

Integrating vertically, and using exactly the same arguments as in § 2.2.2 for the boundary
conditions, shows that

J =
∫ h(x,t)

0
dy

(
−vwall ρ̄(x, y)− D0(ρ̄)

∂ρ̄(x, y)
∂x

− D0(ρ̄)
E0

kBT
ρ̄(x, y)
ρ0

∂ρ̄(x, y)
∂x

)
,

(4.7)

where J, the vertically integrated longitudinal flux, is a constant to be determined.
To solve (4.7), we first assume that we can make the Fick–Jacobs approximation

ρ̄(x, y) � ρ̄(x), where the density profile depends only on the longitudinal coordinate,
which is correct to first order in H/L and can be demonstrated using lubrication theory.
Second, we assume that the average density profile has only small variations around
its mean value ρ0, and that the variations are of order ε = h0/H. We therefore seek a
perturbative solution as ρ̄(x, y) � ρ0 + ε ρ1(x)+ · · · , where ρ0 = N/(LH) is the mean
particle density in the simulation. We can then expand (4.7) in powers of ε. At the lowest
order, we find the value of the vertically integrated drift J = −vwall ρ0H. At the next order,
we obtain a closed set of equations for the perturbation ρ1,

−H vwall ρ0ε cos(k0x) = H
[
−D0(ρ0)

(
1 + E0

kBT

)
∂ρ1(x)
∂x

− vwall ρ1(x)
]
,

∫ L

0
ρ1(x)H dx = 0,

ρ1(x + L) = ρ1(x),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.8)

with relevant periodic boundary conditions, and vanishing integral of ρ1 since the average
density should be conserved. We abbreviate D0 = D0(ρ0) in the following.

Interestingly, we find in (4.8) that the density profile relaxes with an effective diffusion
coefficient

D� ≡ D0

(
1 + E0

kBT

)
= D0

χ id
T
χ�T

(4.9)

that is the collective diffusion coefficient, as it characterises how the fluid of interacting
particles relaxes, not how a single particle diffuses. Equation (4.9) is also expected
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Interactions enhance dispersion in fluctuating channels

for hard spheres (Hess & Klein 1983; Lahtinen et al. 2001). If interactions are
repulsive (i.e. E0 > 0), then the fluid becomes more incompressible with χ�T < χ id

T , and
density inhomogeneities relax faster than they would in the ideal gas, since D� > D0.
Conversely, attractive interactions (i.e. E0 < 0) increase compressibility and stabilise
density inhomogeneities. This property is absolutely essential to understand the long-time
transport properties in a fluctuating medium.

Solving (4.8), we find

ρ̄(x) = ρ0 + ε ρ1(x) = ρ0

(
1 − h0

H
Pe�

1 + (Pe�)2
[
sin(k0x)+ Pe� cos(k0x)

])
, (4.10)

and a new and natural Péclet number characterising the fluctuations emerges,

Pe� = vwall

D�k0
= ω0

D�k2
0
, (4.11)

and takes into account the enhanced collective diffusion D� due to repulsive interactions.
Notice that the solution can be rewritten further as

ρ̄(x) = ρ0 + ε ρ1(x) = ρ0

(
1 + h0

H
Pe�√

1 + (Pe�)2
cos(k0x + ϕ)

)
, (4.12)

where ϕ = π − arctan(1/Pe�). This shows that the perturbation in the density of particles
due to the fluctuating interface propagates with a phase ϕ that is characterised by how fast
particles relax as a group.

We plot the resulting longitudinal probability density profiles p(x) = [ρ0 + ε ρ1(x)]/Lρ0,
where ρ1(x) is given by (4.10), in figures 4(c,d), and find excellent agreement with
the numerical results. More specifically, particles accumulate at the constriction at high
forcings vwall (figure 4c, light purple) or at low particle densities (figure 4d, yellow
and orange). If collective effects are weak, then the time scale for density fluctuations
to diffuse across a bulge 1/D�k2

0 is larger than the time that it takes a bulge to move,
1/vwall k0 = 1/ω0, or equivalently, Pe� � 1. Clearly, from (4.12), the phase is ϕ � π and
the interface squeezes particles exactly out of phase, i.e. in the constriction. This can also
be understood in the conservation of mass (4.8), where at large vwall, we simply have
(H − h(x)) vwall ρ0 = ε ρ1(x) vwall such that ρ1(x) ∼ 1/h(x). Similarly as for the isolated
particles in § 2, this is a ‘traffic jam’ effect: in the referential where the wall is fixed,
particles trying to move with the fast velocity −vwall accumulate where the road is narrow,
i.e. at the constriction.

However, there is a trade-off between accumulation due to wall speed, and increased
local repulsion of particles in the accumulation region. We observe that at higher particle
densities ρ0, the accumulation effect is tempered (figure 4d, orange to purple). When
particle repulsion increases (due to either increased particle density ρ0 or interaction
strength α > 0), the local repulsion dominates, resisting compression of the gas in
the narrow constriction. This is coherent with the fact that the compressibility χ�T/χ

id
T

decreases with particle density ρ0 (or with the strength of the repulsive interactions α).
As a result, collective effects are strong, Pe� � 1, density fluctuations relax faster than the
interface’s motion, and the density profile flattens out.

We now turn to understand how this local distribution of particles affects the long-time
transport properties of a tracer.
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4.2. Effective diffusion and drift with interacting particles

4.2.1. Equation for the diffusion of the tracer
We now consider the motion of a tracer in this gas of soft-core interacting Brownian
particles, and we infer how the confined fluctuating environment modifies the long-time
tracer motion. Based on reasoning similar to that given above, the probability distribution
ρtr(x, y, t) of finding the tracer particle at position (x, y) at time t satisfies

∂ρtr(x, y, t)
∂t

= −∇ ·
(

−D0(ρ̄)∇ρtr − D0(ρ̄)
E0

kBT
ρtr

ρ0
∇ρ̄

)
. (4.13)

Again looking at the longitudinal transport within the Fick–Jacobs framework, the
equation on the marginal distribution ptr(x, t) = ∫ h(x,t)

0 ρtr(x, y, t) dy is given by (2.10):

∂ptr(x, t)
∂t

= − ∂

∂x

(
−D0(ρ̄)

∂ptr

∂x
+ D0(ρ̄) ptr

∂ln h(x, t)
∂x

− D0(ρ̄)
E0

kBT
ptr

ρ0

∂ρ̄

∂x

)
. (4.14)

To understand how the tracer’s motion is modified by interactions with other particles
and by the fluctuating boundary, we expand (4.14) in powers of ε = h0/H, and obtain
the particle’s long-time diffusion coefficient and drift, at order ε2, as was done in § 2.3.
Since the average particle density depends on space, the local diffusion coefficient of the
tracer also depends on space as D0(ρ̄(x, t)) = D0(ρ0)+ εD

′
0(ρ0) (ρ1(x, t)/ρ0)+ O(ε2).

Here, since the prescribed wall fluctuations h(x, t) are periodic in space, it is possible
to obtain implicit expressions for the long-time effective diffusion coefficient Deff and
drift Veff using the approach reported in Reimann et al. (2001) and in Guérin & Dean
(2015), and resolve their explicit expressions after cumbersome expansions in the small
parameter ε (see § 3 of the supplementary material). In the cases explored here, the
local change in diffusion coefficient is small, D

′
0(ρ0)/D0(ρ0) ρ0 � 1, and we find that

its impact on the tracer dynamics can be neglected. We can therefore use the explicit
perturbation theory results in § 2.3, assuming D0(ρ̄(x, t)) � D0(ρ0) ≡ D0. As expected,
the perturbation theory and the periodic framework approach of Reimann et al. (2001)
provide exactly the same results, to leading order in ε. For the sake of completeness, we
will nonetheless derive, in a future work, a general perturbation theory with explicit results
for Fokker–Planck equations with diffusion and drift with arbitrary dependence on space
and time in any dimension.

4.2.2. Local drift of a tracer in a bath of interacting particles
The equation of motion (4.14) can be simplified to

∂ptr(x, t)
∂t

= − ∂

∂x

(
−D0

∂ptr(x, t)
∂x

+ v(x, t) ptr(x, t)
)
, (4.15)

where the local longitudinal drift is

v(x, t) = D0
1
H
∂h(x, t)
∂x

− D0
E0

kBT
h0

H
1
ρ0

∂ρ1(x, t)
∂x

(4.16)

at lowest order in ε = h0/H. We can verify that terms of O(ε2) in the local drift vanish
when averaged over one period and hence do not contribute to the renormalization
of the long-time transport properties. The last term of (4.16) quantifies the effect of
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Figure 5. Local drift and particle density profiles within the channel for varying mean particle densities. (a–c)
Simulation results for increasing mean density for simulations with interacting particles. (d) Simulation results
for the incompressible fluid case. Note that (d) corresponds to figure 2(d) and is shown as a reminder. The
colour scale for the density profiles is shared between all plots. Yellow (purple) regions indicate regions of
high (low) density. The blue arrows correspond to the local velocity of particles (averaged over time), and the
length of the arrows is proportional to the magnitude of the velocity. The scale of the arrows is arbitrary but is
the same across all plots, hence small arrows in (a) indeed indicate very weak velocity fields compared to (c)
or (d). The interaction strength for (a–c) is α = 1kBT/�2

0, and other numerical parameters are similar to those
in figure 3. For all plots, vwall = 0.5�0/τ0.

interactions on local tracer motion, and was not present in the ideal gas case. It indicates
that particles drift away from accumulation regions because of repulsive interactions.
Finally, the magnitude of the effect is proportional to the interaction strength E0/kBT =
(χ id

T − χ�T)/χ
�
T , or to the relative compressibility of the fluid.

We compute in simulations the mean local particle velocity in the interacting gas of
particles; see figure 5. With increasing incompressibility (increasing ρ0 in figures 5a–c),
a local drift emerges that carries particles away from the accumulation region located
at the channel constriction. As expected with increasing interactions, the velocity field
approaches that of the incompressible fluid (reported for comparison in figure 5d, already
shown in figure 2d).

These results are confirmed by the analytical prediction, using the expression for ρ1
in (4.10). Recalling that the collective Péclet number is Pe� = ω2

0/D
�k0, and denoting

�Pe = ω2
0/D0k0 as the Péclet number of a tracer in medium of density ρ0, we obtain in

Fourier space

ṽ(k, ω) = h̃
H

iD0k(1 + Pe��Pe)+ (Pe�/�Pe − 1)ω/k
1 + (Pe�)2

. (4.17)

Equation (4.17) interpolates perfectly between the ideal gas and the incompressible
fluid. When interactions vanish, D� = D0 = D0 and Pe� = �Pe = Pe, which yields
the ideal gas expression for the local velocity (2.16), where ṽ(k, ω) = iD0kh̃/H.
Reciprocally, the incompressible fluid limit is D� → ∞, which implies Pe� → 0, hence
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ṽ(k, ω) = (iD0k − ω/k)h̃/H, as found already in (2.22) but with D0 instead of D0 since
the interactions have renormalised the bare diffusion coefficient of the tracer.

4.2.3. Effective long-time diffusion and mean drift
We use the perturbation results in (2.14) and (2.15) to obtain the long-time diffusion
coefficient and drift. From (4.17), the spectrum of the local velocity fluctuations is

S(k, ω) = D
2
0k2

(2π)2
1 + �Pe2

1 + (Pe�)2
h2

0
4H2 (δ(k + k0) δ(ω − ω0)+ δ(k − k0) δ(ω + ω0)) ,

(4.18)
and the long-time transport properties are

Dint. gas
eff

D0
= 1 − h2

0
2H2

1 − 3�Pe2

1 + �Pe2
1

1 + (Pe�)2
, (4.19)

Vint. gas
eff

vwall
= h2

0
2H2

1
1 + (Pe�)2

. (4.20)

Equations (4.19) and (4.20) form the main analytic result of the paper and give the
transport properties of tracers in a fluid with arbitrary compressibility. We recall that the
modified Péclet number is connected to the compressibility Pe� = �Peχ�T/χ

id
T , where �Pe is

the Péclet number characterising the fluctuations. For weak interactions, where ρ0, α → 0,
the compressibility is that of the ideal gas χ�T → χ id

T , and Pe� → Pe. In this limit,
we recover the ideal gas results (2.18) and (2.19). Reciprocally, for strong interactions,
ρ0, α → ∞, χ�T → 0, hence Pe� → 0 and we recover the incompressible fluid results of
(2.24) and (2.25). Note that in the limit ρ0 → ∞, D0(ρ0) is still finite; see § A.4. Equations
(4.19) and (4.20) therefore interpolate between the ideal gas and the incompressible fluid
cases.

Despite the mean-field-like assumptions made, our analytic theory summarised in (4.19)
and (4.20) perfectly captures the simulation results (see the solid lines in figures 3 and 10),
and confirms transport mechanisms in this complex environment. With increasing particle
density, particle collisions push particles away from the accumulation region, further
into the bulges. Particle–wall collisions then push and disperse particles. In this complex
environment, and in contrast with the paradigm where crowded environments slow down
diffusion (Lekkerkerker & Dhont 1984; Lowen & Szamel 1993; Dean & Lefèvre 2004),
here particle collisions or interactions favour mixing.

5. Discussion and conclusion

In this work, we have explored the impact of crowding on the long-time transport
properties of particles in fluctuating channels. Our simulation results show a broad range
of behaviours that are well captured by our explicit analytic theory based on a perturbation
expansion in the wall fluctuation amplitude h0/H. The results are best described in terms
of a Péclet number characterising the fluctuations, Pe = ω0/D0k2

0 = 2πvwall/D0L. At low
Pe � 1, corresponding to fixed interfaces, all fluids behave similarly: particles are slowed
down by constrictions, and the effective diffusion is decreased. At intermediate Pe � 1,
particle–wall collisions stir particles, and the effective diffusion is increased. This effect
persists until the wall moves so fast that particles no longer have time to reach the moving
bulges and accumulate in the constrictions. In this final regime, Pe � 1, the effective
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diffusion is unchanged. The accumulation regime arises for higher and higher Pe values for
increasing particle–particle interactions, i.e. for increasing incompressibility that resists
accumulation.

5.1. Collisions enhance diffusion
One of the main findings of our work is that here, both numerically and analytically, we
have demonstrated that increasing repulsive interactions or collisions between particles can
enhance the late-time diffusion coefficient and the mean drift characterising the dispersion
of a tracer particle in fluctuating channels. This is in contrast with the intuition that
collisions in equilibrium reduce the diffusion coefficient (Lekkerkerker & Dhont 1984;
Lowen & Szamel 1993). The mechanism of diffusion enhancement is in fact rather simple:
collisions or repulsive interaction help to push particles closer to the walls. Eventually,
wall–particle collisions help mixing. Since this mechanism is rather straightforward, we
expect it to be broadly applicable – for example, beyond lubrication approximation or
for hard-core repulsive interactions. Such effects could be explored within our framework
or alternatively using dynamic density functional theory (Marconi & Tarazona 1999). In
more detailed physical settings, such as with hard-core interactions, other effects would
likely also come into play; for example, the accessible volume in the channel is smaller for
larger particles (Riefler et al. 2010; Suárez et al. 2015), and hydrodynamic effects become
important (Yang et al. 2017).

We now put our results in a broader context. In the Introduction, we recalled that
diffusion of a driven, out-of-equilibrium tracer in a bath of interacting particles is
enhanced by repulsive interactions (Bénichou et al. 2013, 2018; Démery et al. 2014;
Illien et al. 2018). In a confined channel, thermal fluctuations of the wall could possibly
enhance the diffusion coefficient of particles, as we have seen in the limiting case of an
incompressible fluid (Marbach et al. 2018). Another recent work finds that diffusion of
odd-diffusing interacting particles is enhanced with increasing densities (Kalz et al. 2022).
While the physical set-up in Kalz et al. (2022) is very different from ours, the mathematical
similarities that lead to diffusion enhancement are striking (for example, comparing their
Eq. (9) with our (2.24)), and one might speculate that there exists a universal framework
to understand these effects under the same light.

5.2. Open questions on fluctuating channels
Beyond the question asked here, namely of understanding how crowding affects transport
in fluctuating channels, there are many open fundamental questions. For example,
boundaries are not necessarily repulsive and smooth. Surface rugosity would lead to
Taylor dispersion in an incompressible fluid (Marbach & Alim 2019; Kalinay 2020), but
how would surface rugosity of the wall potential induce Taylor dispersion in the fluid
of interacting particles? Attraction at the boundaries also leads to surprising speed-up
of diffusion in corrugated static channels (Alexandre et al. 2022). Is this speed-up
enhanced further by fluctuations? Considering more complex fluids would likely modify
the distribution of particles along the channel, and hence the transport properties. For
example, normal stresses close to the boundaries in odd viscous fluids bring particles
close to the walls (Hargus et al. 2020; Fruchart, Scheibner & Vitelli 2023). Could this
phenomenon enhance dispersion? Down the scales, molecular (Yoshida et al. 2018) or
quantum (Kavokine, Bocquet & Bocquet 2022; Coquinot, Bocquet & Kavokine 2023)
effects enhance the mobility of individual molecules; how would these effects combine
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with mechanical fluctuations? With the advent of highly sensitive techniques to probe the
motion of particle near surfaces in soft and increasingly complex environments (Zhang
et al. 2020; Sarfati et al. 2021; Vilquin et al. 2022), one might expect to answer some of
these questions in the light of further experimental results.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.640

Acknowledgements. The authors are grateful for fruitful discussions with L. Bocquet, J.-P. Hansen,
P. Levitz, M.-T. Hoang Ngoc, G. Pireddu, B. Rotenberg, B. Sprinkle and A. Thorneywork. S.M., R.Z. and
Y.W. thank the Applied Math Summer Undergraduate Research Experience Program of the Courant Institute
for putting them in contact. S.M. would like to thank the Institut d’Études Scientifiques de Cargése for hosting
the Transport in Narrow Channels workshop that led to inspiring discussions for this work. R.Z. would like to
thank the Laboratoire MSC Paris and the Center for Data Science ENS Paris for hospitality.

Funding. This work was supported in part by the MRSEC Program of the National Science Foundation under
award number DMR-1420073. S.M. was also supported by the European Union’s Horizon 2020 research and
innovation program under the Marie Skłodowska-Curie grant agreement 839225 MolecularControl. R.Z. was
also supported by grant no. NSF DMR-1710163.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. The data that support the findings of this study are available upon reasonable
request to the author.

Author ORCIDs.
S. Marbach https://orcid.org/0000-0002-2427-2065;
R. Zakine https://orcid.org/0000-0002-5948-1051.

Appendix A. Simulation details

A.1. Simulation algorithm
All simulations are performed using a forward Euler stochastic scheme to discretise
the overdamped Langevin dynamics of the particles. For a particle i at position
X i(t) = (xi(t), yi(t)), the following position at time t +�t is computed as

X i(t +�t) = X i(t)+�t U i +�t
D0

kBT
(F i(t))+

√
2D0�t Gi(t), (A1)

where U i = U(xi(t), yi(t)) is the background flow field (which is non-zero only in the
incompressible case), F i = F wall + ∑

j /= i F int,ij is the sum of the forces exerted by the
channel walls, F wall, on the particle and by the neighbouring particles F int,ij when
interactions are present, and Gi(t) is a vector of two independent random numbers drawn
from a Gaussian distribution of mean 0 and variance 1. Note that our simulations have
been tested with a time step twice as small and yielded no significant difference.

Particles are confined in the channel by means of a potential that exerts a force on the
particles only if they reach the boundaries. More precisely, the force exerted by the wall
on a particle with coordinate (x, y) is given by F wall = −∇Vwall(x, y), with

Vwall(x, y) =

⎧⎪⎨
⎪⎩
λ( y − Yupper(x, t))4 if y > Yupper(x, t),
0 if Ylower(x, t) < y < Yupper(x, t),
λ( y − Ylower(x, t))4 if y < Ylower(x, t),

(A2)
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with λ > 0 a stiffness coefficient (with dimensions of energy over length to the power 4),
and where the boundary equations are given by

Yupper(x, t) = H + h0 cos
(

2π

L
(x − vwall t)

)
, (A3)

Ylower(x, t) = 0, (A4)

where H and h0 represent the average height and the variation amplitude of the channel
height, respectively. Using a soft confining potential to model the wall is convenient for
simulation purposes, as it avoids dealing with reflecting Brownian walks, which carries
some challenges (Scala, Voigtmann & De Michele 2007). It also allows one to keep a
rather large integration time step. Finally, this choice of boundary conditions bears a
physical meaning since it considers that the wall is likely made of a slightly penetrable
material that would interact with the particles/colloids, and is, therefore, more general than
a hard-reflecting boundary condition. Such boundary models have been used extensively
in theoretical active matter systems (Solon et al. 2015; Zakine et al. 2020; Ben Dor et al.
2022), and as our theory relies only on the presence of a boundary, the results are largely
unaffected by a change of potential, as long as the boundary layer of particles at the wall
and subjected to the potential repulsion is small compared to all other relevant length scales
in the system. The fact that our numerical results (and especially the two-dimensional
density profiles) are consistently in agreement with hard-reflecting boundary conditions
taken in the analytical computation shows that this choice of boundary conditions is fairly
equivalent to hard-reflecting boundaries.

In § 3, we have performed simulations with pairwise interacting particles. The force on
particle i exerted by particle j is F int,ij = −∇Vint(rij), where rij is the distance between i
and j. We chose simple repulsive interactions described by the soft potential (3.1), which
we recall here as Vint(r) = α(r − dc)

2Θ(r < dc), where α is the interaction strength in
units of a spring constant, and dc is the typical particle diameter (see figure 6). For this
quadratic interaction Vint, the expression of its vertically integrated version is given by

Uint(x) =
∫ +∞

−∞
Vint(x, y) dy (A5)

= 2α

(
1
3
(d2

c + 2x2)

√
d2

c − x2 + dcx2 log

(
x√

d2
c − x2 + dc

))
Θ(dc > |x|).

(A6)

This expression is used to compute the density profiles ρ(x), but we always use the radial
potential Vint in the Monte Carlo simulations.

The system size along the x direction is L, and we take periodic boundary conditions in
the x direction. We keep track of the full dynamics of the N particles with their absolute
position X true to compute their mean-square displacement and mean drift, but interactions
are computed using the folded positions in the periodic domain [0, L)× (−∞,∞). The
mean density of particles is ρ0 = N/(LH). To access higher particle densities, we therefore
change the total number of particles N in the simulation (see table 1).

We initialise systems from a uniform distribution of particles in the bottom part
of the channel (0 < y < H − h0). We first let the system equilibrate for a time
teq ∼ H/D0 ∼ 100τ0 within a fixed undulated channel (vwall = 0). Then the actual
simulation starts with a positive value of vwall.
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Figure 6. Radial potential Vint (blue) and its one-dimensional smoothed out version Uint (red). Parameters are
dc = 1�0 and α = 2kBT/�2

0.

ρ (×�−2
0 ) N Niter

1 2400 107

5 12 000 2 × 106

10 24 000 106

Table 1. Typical simulation parameters for an interacting particle system.

A.2. Simulation parameters
The domain characteristics are L = 200�0, H = 12�0, h0 = 3�0 for all the simulations.
To simulate non-interacting particles, we take wall stiffness λ = 300kBT/�4

0, and the
integration time step is �t = 4 × 10−3τ0. For a typical simulation, the total number
of iterations is Niter = 5 × 106, and the number of particles is N = 105. To simulate
interacting particles, we take λ = 10kBT/�4

0, and the integration time step is �t = 4 ×
10−3τ0. Typical values of the number of particles N and total number of iterations Niter
are shown in table 1.

A.3. Simulation analysis
We perform multiple independent simulations to increase statistical resolution. For
each value of vwall, we perform 10 independent simulations starting from different
initial configurations (and different seeds). Symbols in all graphs represent the mean
value of the observable, and error bars correspond to one standard deviation over
these 10 independent measurements. The mean drift is calculated simply as Veff =
(1/N)

∑N
i=1〈(xtrue,i(t)− xtrue(0))/t〉t. The mean-square displacement of particles is

calculated as MSD(t) = (1/N)
∑N

i=1〈(xtrue,i(t + t0)− xtrue(t0))2〉t0 , where the average is
done over initial times t0. The self-diffusion coefficient is then obtained as a least
squares linear fit of the mean-square displacement. The parameters that we choose
allow us to neglect the finite size corrections due to periodic boundary conditions.
Indeed, such corrections scale as ∼ dc/L = 0.005 (Dünweg & Kremer 1991, 1993) or as
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–2

(×�0
–2) (×kBT/�0
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ρ0 = 1 × �0
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α

Theory (Démery et al. 2014)
Simulation

D� 0
(ρ

0
)/

D 0
(a) (b)

Figure 7. Effective diffusion of a tracer in a homogeneous bath of soft-core interacting particles as a
function of (a) the particle density ρ0, and (b) the interaction strength α. The tracer is identical to the
particles of the bath. Solid lines are obtained from the computation in Démery et al. (2014), and symbols
correspond to simulation results. For (a), we fix α = 1kBT/�2

0 and channel height H = 20�0, and we
simulate for N = [1, 2, 5, 10, 20, 10, 20] × 103 particles in a two-dimensional flat channel of length L =
[500, 500, 500, 500, 500, 100, 100]�0 with periodic boundary conditions. For (b), a couple of values of ρ0
(indicated in the legend) are used. Error bars correspond to one standard deviation over 10 independent runs.

∼ (H/L)2 = 0.004 (Simonnin et al. 2017), thus are negligible in the numerical
measurements performed here.

A.4. Simulation calibration: self-diffusion coefficient D0(ρ0) of soft-core interacting
particles

To calibrate our model, we calculate the long-time self-diffusion coefficient of particles
in a fluid of soft-core interacting particles. In figure 7, we report the results of the
computation of the diffusion coefficient D0(ρ0) for fixed flat walls according to different
parameters of the interaction: the particle density ρ0, and the interaction strength α.

As a self-consistent check, we also compare our simulations to the analytic mean-field
theory of Démery et al. (2014), and find good agreement between simulation and theory.
We recall briefly the analytic formula here. The correction to the bare diffusion coefficient
is given by

D0(ρ0)

D0
� 1 − 1

2dρ0

∫
(
ρ0 Ṽint(k)

kBT

)2

[
1 + ρ0 Ṽint(k)

kBT

][
1 + ρ0 Ṽint(k)

2kBT

] ddk
(2π)d

, (A7)

where ρ0 = N/V is the particle density, d is the number of spatial dimensions, and Ṽint(k)
is the Fourier transform of the interaction pair potential, here

Ṽint(k) =
∫

ddr e−ik·r Vint(r). (A8)
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Note that at large densities ρ0 or interaction strengths, (A7) is no longer valid, and it has
been argued that it should be approached by (Dean & Lefèvre 2004)

D0(ρ0)

D0
� exp

⎛
⎜⎜⎜⎜⎜⎝− 1

2dρ0

∫
(
ρ0 Ṽint(k)

kBT

)2

[
1 + ρ0 Ṽint(k)

kBT

][
1 + ρ0 Ṽint(k)

2kBT

] ddk
(2π)d

⎞
⎟⎟⎟⎟⎟⎠ . (A9)

In our set-up for d = 2 and k = |k|, we have

Ṽint(k) = 2παd2
c (−π H1(dck) J0(dck)+ π H0(dck) J1(dck)+ 2J0(dck)− 4J1(dck)/(dck))

k2 , (A10)

where Jν(z) is the special Bessel function, and Hν(z) is the Struve function

Hν(z) =
( z

2

)ν+1 ∞∑
n=0

(−1)n(z/2)2n

Γ (n + 3/2) Γ (n + ν + 3/2)
. (A11)

We plot (A7) in figure 7, and compare it to our numerical results. Unsurprisingly, the
mean-field approximation starts to fail as the interaction strength α increases and prevents
particles from overlapping. To present the results of the long-time diffusion coefficients
Deff in confined wiggling spaces relative to D0 (figures 3 and 10), we always use the
numerically calculated diffusion coefficient D0(ρ0) in the flat fixed space.

In the main text, we investigate limit behaviours as ρ0 → ∞ and α → ∞. A convenient
Gaussian interaction potential can be considered to gain analytical insights into the
diffusion. With Vint(r) = α e−r2/(2d2

c ), we have Ṽint(k) = 2παd2
c e−d2

c k2
in dimension

d = 2, for instance. The integral in (A9) can thus be approximated when integrating only
in the range ρ0 Ṽint(k)/(kBT) � 1. The interaction-and-density-dependent cutoff is given
by Λ(ρ0) ∼ (1/dc)

√
ln(αd2

cρ0/kBT), and the diffusion is thus given by

D0(ρ0)

D0
� exp

(
− (2Λ)d

dρ0(2π)d

)
, (A12)

which yields, first, D0(ρ0) → D0 for ρ0 → ∞ and α fixed (as expected since the potential
landscape becomes flat), and second, D0(ρ0) → 0 for α → ∞ and ρ0 fixed (as expected
for jamming).

A.5. Simulation calibration: confinement with the soft wall potential
For each simulation type, we check the penetration depth of the particles in the confining
wall. With increasing repulsive interactions (with increased ρ0 or α), and since the wall
is ‘soft’, particles may be squeezed into the confining soft wall. We then estimate the
penetration depth of each fluid within the confining wall by looking at the probability
density at the centre of the channel where the constriction is (in the frame of reference
where the wall is fixed); see figure 8. We find that indeed, with increasing interactions the
penetration depth δh = (0.2 − 1)�0 increases. We record the penetration depth δh from
figure 8 for each set of numerical parameters, corresponding to the depth for which the
probability density is half of its bulk value (dashed black horizontal line). We then use
H = H + 2δh (since there is an upper wall and a bottom wall) in all analytical formulas.
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Figure 8. Vertical density profile near the repulsive confining wall of particle systems for (a) various particle
densities and (b) various interaction strengths. Numerical systems correspond to those detailed in figures 3
and 10, and the confining wall is set in both cases as y = h(x = L/2) = H − h0 = (12 − 3)�0 = 9�0. Hence
particle systems extend up to δh ∼ �0 into the confining wall.

Appendix B. Additional data for the ideal gas

To test the validity of the analytic derivation in § 2 for the transport of isolated particles,
we explore here a broader range of simulation parameters. In particular, we go beyond
the lubrication approximation and investigate systems for which H/L � 0.02 up to H/L �
0.1. We report the measured long-time diffusion coefficients Deff and mean drift Veff in
figure 9, along with representative plots of the density profile in the frame of reference
where the channel wall is fixed. We find that as the width H increases, a y dependence of
the stationary density emerges (see figure 9e). In fact, diffusion across the channel width
can no longer be considered fast with respect to diffusion along length x. This corresponds
to the progressive breakdown of the lubrication approximation.

Surprisingly, the analytic formulas (2.18) and (2.19) are still in remarkable agreement
with simulations, up to H/L � 0.1. Slight deviations may be observed for H/L � 0.1
(corresponding to H = 20 × �0) on the mean drift, where Veff /vwall > 0 even at large Pe.
This is due to accumulation of particles in the upstream bulge, as they collide and leave
a wake of particles, instead of having the time to distribute vertically. As a result, some
particles are still in the bulge even at large Pe, and are therefore carried, which produces
a net mean drift. Interestingly, at very small H/L � 0.02 (corresponding to H = 4 × �0),
we observe slight deviation from the theory this time at small Pe. This is due to the fact
that for such systems, the penetration depth in the wall, δh � 0.2�0, becomes more and
more comparable with the channel height H. The effective vertical accessible space H is
therefore larger, and the value in (2.18) and (2.19) should be modified appropriately (see
§ A.5).

Appendix C. Perturbation theory to obtain long-time transport coefficients

Here, we perform the perturbation theory to obtain the long-time transport coefficients
Deff and Veff of the general Fokker–Planck equation (2.12).

In the following, it will be easier to work in Fourier space, and we therefore define, for
any function f (x, t), the Fourier transform

f̃ (k, ω) =
∫

dx dt e−i(kx+ωt) f (x, t), (C1)
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Figure 9. Effective (a) diffusion and (b) advection normalised by wall velocity for an ideal Brownian gas as
a function of the Péclet number, for different values of the channel height H. Error bars correspond to one
standard deviation over 10 independent runs. Theory curves correspond to (2.18) and (2.19). Stationary density
profiles in the periodic channel for different values of H: (c) H = 4�0, (d) H = 12�0, and (e) H = 20�0. (c,d,e)
share the same colour scale, where yellow (purple) regions indicate regions of high (low) density, and are all
presented for vwall = 0.5�0/τ0, corresponding to Pe � 16. Numerical parameters are the same as for figure 2,
in particular L = 200�0.

where the
∫

sign encompasses integration over space and time. Conversely, the reverse
Fourier transform is given by

f (x, t) =
∫

dk dω
(2π)2

ei(kx+ωt) f̃ (k, ω). (C2)

Performing a Fourier transform on (2.12) yields

iω p̃(k, ω) = −D0k2 p̃(k, ω)+ 1 − i
∫

dk′ dω′

(2π)2
k ṽ(k′, ω′) p̃(k − k′, ω − ω′), (C3)

which can be written, using the notation 1/(D0k2 + iω) ≡ p̃0(k, ω), as

p̃(k, ω) = p̃0(k, ω)− i p̃0(k, ω)
∫

dk′ dω′

(2π)2
k ṽ(k′, ω′) p̃(k − k′, ω − ω′). (C4)

We would like to eventually simplify (C4) in a form where diffusion and advection
coefficients can be read easily, as suggested by the Fourier transform of (2.11) that yields

p̃eff (k, ω) = 1
Deff k2 + i(Veff k + ω)

. (C5)

The lubrication approximation enables us to simplify further the effective equation
on p̃(k, ω). Indeed, we consider that the fluctuations at the channel boundary are a
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perturbation, with small relative amplitude ε = h0/H. Hence the last term of (C4),
containing the advection v, can be considered as a perturbation. For example, in the case
of the ideal gas,

ṽ(k, ω) � iD0k
h̃(k, ω)

H
= O(ε), (C6)

where we denote h̃(k, ω) the Fourier transform of the non-constant part of h(x, t),
i.e. h(x, t)− H. We therefore seek a solution to (C4) as an expansion in ε, namely,
p̃(k, ω) = p̃0(k, ω)+ ε p̃1(k, ω)+ ε2 p̃2(k, ω)+ · · · .

Additionally, since we seek the behaviour of the solution at long times, it is natural
to calculate the noise-averaged solution 〈p̃(k, ω)〉 where 〈·〉 denotes the usual average
over realisations of the noise. Note that we can also treat the propagating wave case,
which is deterministic, in terms of a random field. Consider that we define h(x, t) =
H + h0 cos(k0x − ω0t + θ), where θ is a random phase distributed uniformly on [0, 2π].
Clearly, the value of θ cannot affect the result at late times as it just fixes the initial
configuration of the height at time t = 0 when the advection diffusion process starts. This
choice of θ is also equivalent, for instance, to choosing an arbitrary initial time t0 = θ/ω0.
We thus define 〈·〉 here as a uniform average over θ on [0, 2π]. Using this convention,
we see immediately that 〈h〉 = H. Here, we consider additionally Gaussian fluctuations
with mean 0, i.e. the first two moments of the noise completely specify the problem. Thus
〈ṽ(k, ω)〉 = 0 and

〈ṽ(k, ω) ṽ(k′, ω′)〉 = S(k, ω) (2π)2δ(k + k′) δ(ω + ω′), (C7)

where S(k, ω) corresponds to the spectrum of the fluctuating advection, as defined in
(2.13). Of course, 〈p̃0(k, ω)〉 = p̃0(k, ω).

We now solve iteratively for p̃(k, ω). At first order in ε, we obtain

p̃1(k, ω) = −i p̃0(k, ω)
∫

dω′ dk′

(2π)2
k ṽ(k′, ω′) p̃0(k − k′, ω − ω′) (C8)

and 〈p̃1(k, ω)〉 = 0. At second order in ε, we have

p̃2(k, ω) = (−i)2 p̃0(k, ω)
∫

dk′ dω′

(2π)2
k
[
ṽ(k′, ω′) ∼ p0(k − k′, ω − ω′)

×
∫

dk′′ dω′′

(2π)2
(k − k′) ṽ(k′′, ω′′) ∼ p0(k − k′ − k′′, ω − ω′ − ω′′)

]
, (C9)

and averaging over noise gives

〈p̃2(k, ω)〉 = p̃0(k, ω)

(∫
dk′ dω′

(2π)2
k(k − k′) p̃0(k − k′, ω − ω′)

S(k′, ω′)
h2

0

)
p̃0(k, ω).

(C10)
We observe that we can define Σ(k, ω) such that

Σ(k, ω) =
∫

dk′ dω′

(2π)2
k(k − k′)

D0(k − k′)2 + i(ω − ω′)
S(k′, ω′)

h2
0

(C11)

and 〈p̃2(k, ω)〉 = p̃0(k, ω)Σ(k, ω) p̃0(k, ω).
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Pursuing the derivation, one can show that the full solution is a geometric series
〈p̃〉 = p̃0 + ε2 p̃0Σ p̃0 + ε4 p̃0Σ p̃0Σ p̃0 + · · · that can be re-summed to obtain

〈p̃(k, ω)〉 = p̃0(k, ω)
1 − ε2Σ(k, ω) p̃0(k, ω)

= 1
D0k2 + ω2 − ε2Σ(k, ω)

. (C12)

Additional steps may be found in the supplementary information of Marbach et al. (2018).

C.1. Long-time results
From the target long-time expression (C5) and from the re-summed propagator (C12), one
can read off the effective long-time diffusion coefficient as

Deff = D0 − ε2

2
lim
k→0

∂kkΣ(k, 0), (C13)

and the mean drift as

Veff = iε2 lim
k→0

∂kΣ(k, 0). (C14)

Injecting Σ(k, ω) from (C11) into (C13) and (C14) (and dropping the ′ in the integrals for
simplicity), we obtain

Deff = D0 − D0ε
2
∫

dk dω
D0(2π)2

D0k2 + iω
(D0k2 − iω)2

S(k, ω) (C15)

and

Veff = −iε2
∫

dk dω
(2π)2

k
D0k2 − iω

S(k, ω). (C16)

Now, assuming that the problem is translationally invariant in space and time (which is
reasonable considering that the channel is assumed to be infinitely long, and that such an
assumption still allows one to model many different situations), this implies that the height
correlations satisfy 〈h(x, t) h(x′, t′)〉 = C(|x − x′|, |t − t′|), hence S(k, ω) = S(−k,−ω).
In addition, as the correlation function C is real, the conjugate is S∗(k, ω) = S(−k,−ω).
Using time and space invariance, we obtain that also S is real. Using the fact that S is even
with respect to both its variables, and plugging back the expression of ε = h0/H, (C15)
simplifies to (2.14), and (C16) to (2.15), of the main text.

Appendix D. Additional data for a fluid of interacting particles

We present here additional data for interacting particles. We inspect various values of
the interaction strength α. We present in figure 10 the results of the normalised effective
diffusion Deff /D0(ρ0) and the normalised mean drift Veff /vwall. We find very similar
results whether probing increasing interaction strength α or probing increasing particle
density ρ0 (see figure 3). In fact, increasing α also increases the energy scale E0(α, ρ0)
contained in a volume dd

c (with d the dimension of space). Hence, since the theory depends
mainly on the value of E0 = (π/6)αd4

cρ0, similar effects are observed naturally when
increasing α or ρ0.
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Figure 10. Effective (a) diffusion and (b) mean drift for a compressible fluid of soft-core interacting Brownian
particles with varying interaction strength α. Numerical parameters used here are similar to those in figure 3,
and ρ0 = 1�−2

0 . Error bars correspond to one standard deviation over 10 independent runs. Theory curves
for the ideal gas and incompressible fluid are the same as for figures 2(a,b). Theory curves for the fluid of
interacting particles correspond to (4.19) and (4.20).
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