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Abstract
Evaluation of the power required in level flight is essential to any new or modified helicopter performance flight-
testing effort. The conventional flight-test method is based on an overly simplification of the induced and profile
power components required for a helicopter in level flight. This simplistic approach incorporates several drawbacks
that not only make execution of flight sorties inefficient and time consuming, but also compromise the level of
accuracy achieved. This paper proposes an alternative flight-test method for evaluating the level-flight performance
of a conventional helicopter while addressing and rectifying all identified deficiencies of the conventional method.
The proposed method, referred to as the corrected-variables screening using dimensionality reduction (CVSDR),
uses an original list of 36 corrected variables derived from basic dimensional analysis principles. This list of 36
corrected variables is reduced using tools of dimensionality reduction to keep only the most effective level-flight
predictors. The CVSDR method is demonstrated and tested in this paper using flight-test data from a MBB BO-
105 helicopter. It is shown that the CVSDR method predicts the power required for level flight about 21% more
accurately than the conventional method while reducing the required flight time by an estimate of at least 60%.
Unlike the conventional method, the CVSDR is not bounded by the high-speed approximation associated with the
induced power estimation, therefore it is also relevant to the low airspeed regime. This low-airspeed relevancy allows
the CVSDR method to bridge between the level-flight regime and the hover. Although demonstrated in this paper
for a specific type of helicopter, the CVSDR method is applicable for level-flight performance flight testing of any
type of conventional helicopter.

Nomenclature
Ad Main-rotor disk area
b Main-rotor number of blades
c̄ Averaged chord length (main-rotor blades)
Cd0 Zero-lift drag coefficient (main rotor blades)
CP = P

ρaAd (ωR)3 Coefficient of power (non-dimensional)

CW = W
ρaAd (ωR)2 Coefficient of weight (non-dimensional)

�Er

∣∣∣
i

Prediction error vector; difference between model (i) to actual measured power

ER(j) Mean of absolute power prediction errors for sortie (j)
fe Fuselage equivalent flat-plate area for drag
P Total power required for level flight
Pa Ambient air static pressure
Po Standard sea-level air pressure (14.7psi)
rx,y Linear correlation coefficient between two variables x, y
R Main-rotor radius
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Rair Specific gas constant for air
Sxi Standard deviation in sampled variable X i

ti Test statistics of model (i) prediction errors
Ta Ambient air static temperature
To Standard sea-level static air temperature (288.15K)
VT True airspeed
W Helicopter gross weight
Xcg Helicopter longitudinal centre of gravity location{
γ i

}
Generic multivariable polynomial coefficients

δ = Pa

/
P0 Static pressure ratio (non-dimensional)

θ = Ta

/
T0 Static temperature ratio (non-dimensional)

μ≡ VT

�R
Advance ratio (non-dimensional)

ρa Ambient air static density
ρo Standard sea-level static air density (1.225kg/m3)
σ = ρa

/
ρ0 Static density ratio (non-dimensional)

σ i (i=1,2,...,r) Singular values of a generic matrix of rank ‘r’

σ R = bc̄
πR

Main-rotor solidity ratio (non-dimensional)
ψ i Generic non-dimensional (ND) variable
ψ

∗
i Generic corrected variable (ND for a specific helicopter type)

�, ω Main-rotor angular speed

1.0 Introduction
The helicopter spends most of its flying time in the level flight regime. The relative time while cruis-
ing varies based upon the type and the specific mission the helicopter was designed for. Porterfield and
Alexander [1] analysed data from various types of helicopters and proclaimed that on average the heli-
copter spends 71% of its flight time in level flight. The FAA [2] provides different estimates for two
exemplary turbine helicopters. The first example is a utility-business-type helicopter that is estimated
to spend 61% of its flight time while cruising, and the second example presented is for a transport heli-
copter which is estimated to spend 73% of its flight time in level flight. Regardless of where this value
for relative time spent in level flight truly resides, the helicopter spends most of its flight time while
cruising.

The helicopter performance flight test team may be tasked to execute a level flight performance test
campaign for various reasons; it might be for a limited-scope validation of existing performance charts
for certification purposes; or it might be for the task of updating performance charts due to external
configuration modification; or it even be required for a full-scope level flight performance campaign,
for which a complete set of charts and/or tables is required to specify the level flight performance of a
brand new helicopter type. Whatever the reason is, the performance flight test team has a need for an
efficient and accurate method to evaluate the helicopter performance in level flight.

The conventional flight-test method for helicopter level flight performance is based on a simplification
of the equation for the power required to sustain a helicopter in level flight. This method is thoroughly
discussed in the literature [3–7] and is demonstrated in numerous flight test reports [8–10]. This method
is further explained and demonstrated in Section 2 of the paper using flight-test data of a MBB BO-105
helicopter. Although widely used, common practice shows that this flight-testing method is inefficient,
time consuming and includes few drawbacks that seriously compromise the accuracy of the empirical
power model it yields. The following is a list of the main disadvantages of the conventional flight-testing
method, a list thoroughly discussed in the next sections.

First, the conventional method reduces a multi-dimensional physical problem into a three non-
dimensional variable one. The three non-dimensional variables are the coefficient of power, Cp, the
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advance ratio, μ and the coefficient of weight, Cw. The conventional method provides no comprehen-
sive tools for addressing the effect of rotor blades compressibility on the power required for level flight.
Boirun [11] addresses the compressibility effect in his work but his approach does not determine a
decisive unified empirical model to include compressibility effects. Instead, various curves for different
values of main-rotor tip Mach numbers are presented in the format of a carpet plot. Obtaining an accu-
rate and unified empirical model to predict the level flight performance is highly desirable since it can
also be easily used and implemented for real-time applications.

Second, the current method requires executions of various airspeed runs at constant coefficients
of weight (Cw). This requirement makes the method inefficient, cumbersome and time consuming.
Moreover, the resulting empirical model is prone to elevated levels of inaccuracy since it is merely
a set of single power curves for constant Cw, rather than a unified empirical model, which accounts for
the entire range of coefficients of weight.

Third, the conventional method takes the high-speed approximation for which the induced velocity of
the air through the main-rotor disk is assumed negligible compared to the airspeed the helicopter flies
at. By adopting this approximation, the conventional method becomes irrelevant for the low airspeed
regime.

Fourth, the current method has no analytical means to account for the helicopter centre of gravity
location although numerous flight-test campaigns show substantial dependency between the helicopter
longitudinal centre of gravity and the power required for level flight. For example, Buckanin et al.
[9] present an increase of about 10 square-feet in the equivalent flat-plate drag area of a Blackhawk
helicopter resulting from a 15 inches forward migration of the centre of gravity in level flight.

Finally, the conventional method requires the flight test crew to precisely control the main rotor-
speed. This requirement makes the current flight-test method unsuitable for helicopters for which their
main-rotor speed control system cannot be easily overridden by the pilot.

Arush et al. [12–14] presented an alternative approach to helicopter performance flight testing, using
multivariable polynomials as empirical models. This approach was proven more accurate (in excess
of 300%) in the prediction of the available power of a helicopter under a wide range of atmospheric
conditions, as compared to the conventional flight test method [12]. This multivariable approach was
also used successfully in the prediction of the helicopter hover performance [13]. Taking this multi-
variable approach reduced the average prediction error by about 47% compared to the conventional
flight test method for hover performance. The systematic procedure to screen between candidate mul-
tivariable predictors is discussed in Ref. [14]. The goal of the current paper is to implement this
multivariable polynomial approach for the greater benefit of improving the level-flight test method.
The proposed CVSDR method is aimed at addressing all identified drawbacks of the conventional
method, specified as items (1) to (5) above, while providing an even more accurate prediction for power
required in level flight. The CVSDR method is expanded to accommodate a more complicated heli-
copter performance problem than the hover performance [13]. Abstractly, the current paper can be
regarded as a rigorous expansion of hover CVSDR method into a higher dimensional space of level-flight
performance.

The paper is structured as follows: after the short introduction, the conventional flight-test method for
level-flight performance is explained and demonstrated by using flight-test data from a MBB BO-105
helicopter. Flight-test data obtained from four distinct sorties totaling 44 data points are used to generate
four empirical models. Each empirical model is then used to predict the power required for the other
three sorties. This process is implemented for evaluating the level of accuracy one can expect by using
the conventional flight-test method. Next, in Section 3, an alternative analysis to the CVSDR method
is proposed. This method is demonstrated by using the same flight-test data used with the conventional
method. In Section 4, the level of accuracy achieved using the proposed CVSDR method is analysed.
This analysis includes all four sorties used with the conventional method and another sortie (number five)
that was executed under arbitrary conditions for which the conventional method does not apply. Section 5
of this paper provides a comprehensive comparison between the conventional and the proposed CVSDR
methods. Final conclusions and recommendations complete the paper.
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2.0 The conventional flight-test method for level-flight performance
2.1 Introduction
The conventional flight-test method for determining level-flight performance of a helicopter is based
on finding an empirical relationship between the coefficient of power (Cp) and the advance ratio of the
helicopter (μ) for various discrete values of the coefficient of weight (Cw). This method is thoroughly
discussed in the literature [3–7] and is derived from the fundamental equation to describe the compo-
nents of power in level-flight (see Equation (1)). The power required for level flight is composed out of
three main components: (1) the induced power required to overcome the induced drag of the main rotor
blades; (2) the profile power required to compensate for the profile drag between the main and tail rotor
blades and the air; and (3) the parasitic power required to overcome the drag between the fuselage of the
helicopter and the air.

P = W2

2ρaAdVT︸ ︷︷ ︸
induced

+ 1

8
Cd0σRρaAd(�R)3

(
1 + kμ2

)
︸ ︷︷ ︸

profile

+ 1

2
ρafeVT

3︸ ︷︷ ︸
parasite

∴μ≡ VT

�R
. (1)

The induced power component in Equation (1) is assumed equal with the ideal power based on
Glauert’s high-speed approximation, which assumes the induced velocity through the main rotor is neg-
ligible compared to the airspeed the helicopter is flying at. This high-speed term is vaguely defined as it
depends on the specific helicopter disk-loading, ambient atmospheric conditions, and the targeted error
budget. For standard-day conditions and 2% estimation error, the high-speed approximation for a 3,000
pound Bell Jet-Ranger helicopter should be valid for airspeed above 33Kn. However, for a 42,000 pound
Sikorsky CH-53D helicopter this approximation should be valid only for airspeeds of 61Kn and above.
The significance of this high-speed approximation is that the current flight-test method is irrelevant to
the low airspeed regime of the helicopter. Flight-test campaigns for level flight performance intention-
ally omit the low airspeed regime due to this reasoning and focus on the high-speed regime, which starts
from a fairly vague airspeed value.

The profile power component in Equation (1) is merely an extension of the one estimated for the
hover but with a correction term making it relevant for the level-flight regime. The coefficient (k) is
multiplied by the advance ratio squared (μ2) to represent the increase in profile power at level flight.
The numerical values for this correction coefficient (k) were retrieved experimentally and vary between
4.65 (Refs. [3–6]) to 4.7 (Ref. [7]). The profile power component also assumes constant profile drag
coefficient (Cd0). This assumption breaks down in the presence of compressibility effects. References
[15–17] provide various empirical models to represent the increase in the profile drag coefficient once
the tip of the advancing blade reached the drag divergence Mach number. It is evident the current flight-
test method, based on Equation (1), comprises considerable estimation inaccuracies for high altitude
and low ambient temperatures, for which compressibility effects are more dominant.

Next, Equation (1) is normalised using (ρAd(�R)3) to yield a non-dimensional equation
(Equation (2)) which uses Cp, Cw and μ.

CP = C2
W

2μ
+ 1

8
Cd0σR

(
1 + kμ2

)+ 1

2

fe

Ad

μ3 ∴ CP ≡ P

ρaAd(�R)3 ∴ CW ≡ W

ρaAd(�R)2 . (2)

The coefficient of power is now dependent on only two variables – the coefficient of weight and the
advance-ratio. The conventional method seeks to simplify this non-dimensional relation even further-
more. This three-variable relation is reduced into sets of two-variable relations by presenting various
coefficients of power to advance-ratio curves as measured at constant values of coefficient of weights.
This requires the flight-test crew to execute speed runs while maintaining a constant coefficient of weight.
Keeping a constant coefficient of weight during a speed run can be achieved in one of the following two
ways:

(1) The foremost popular method is the constant weight over sigma, W/σ . In this method the flight-
test crew maintains the coefficient of weight at a certain value by keeping a constant angular
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speed of the rotor and maintaining the weight over relative density constant by adjusting the
cruise altitude as the helicopter becomes lighter with the burn of fuel. This constant W/σ method
is demonstrated mathematically as Equation (3).

CW ≡ W

ρaAd(�R)2 = W

σρoAd(�R)2 = W

σ
· 1

�2︸ ︷︷ ︸
held fixed

· 1

ρoAdR
∴ σ ≡ ρa

ρo

. (3)

The precise altitude change in between test points is calculated in real time by the test crew. This flight-
test method is cumbersome in nature and makes the level flight performance data gathering inefficient
and time consuming.

(2) The second approach of maintaining the coefficient of weight at a constant value as the helicopter
burns fuel and becomes lighter is known as the constant weight of delta, W/δ method. This
method is demonstrated mathematically as Equation (4).

CW ≡ W

ρaAd(�R)2 = W(
δpo

RairTa

)
Ad(�R)2

= W

δ
· Ta

�2︸ ︷︷ ︸
held fixed

· Rair

poAdR2
∴ δ ≡ pa

po

∴ ρ = δpo

RairTa

. (4)

Using the equation of state, the ambient air density can be related to the static temperature, pressure
and the specific gas constant for air. By holding a constant ratio of weight over relative air pressure (δ)
and a constant ratio of static ambient temperature (Ta) over the angular rotor-speed squared (�2), the
flight-test crew can ensure a constant coefficient of weight for those speed runs. Again, a cumbersome
method that makes the level flight performance data gathering inefficient and time consuming.

The conventional flight test method for level flight performance typically includes the execution
of five sorties, each conducted at a different constant coefficient of weight. The various coefficient of
weights should cover the entire certified flight envelope of the helicopter. For each coefficient of weight
the power required for level flight is measured at eight different airspeeds (as a minimum). This is defined
as a speed run at constant coefficient of weight. Since all data points for a speed run share the same coef-
ficient of weight and the gross weight of the helicopter reduces as fuel is burnt, the flight-test crew needs
to adjust the altitude accordingly. The desired altitude for the subsequent data point (while at the same
speed run) is calculated in real time by the flight-test crew, and it is common to encounter few iterations
before the accurate altitude is reached. The extent of altitude climb between consecutive data points
relates directly to the fuel consumption of the helicopter and the efficiency of the flight-test crew to
stabilise the helicopter in the desired conditions. This altitude climb is typically between a few tens to
a few hundred of feet. Once the new altitude is reached, the pilot needs to stabilise the helicopter at the
new airspeed and to validate (or to readjust) the main-rotor angular speed remains constant. Note that
the pilot is required to stay on-conditions for the entire duration necessary for the engine(s) to reach
thermal equilibrium, followed by the data gathering period of time.

This procedure illustrates how cumbersome and time consuming the conventional flight-test method
is. For small size and light helicopters, such as the BO-105, it takes about 5min to obtain one data
point. One should appreciate that out of those 5min, only about two are essential for engine(s) thermal
equilibrium attaining and data gathering. There is about 60% of time wasted due to the inefficiency of the
conventional flight test technique. The requirement of at least 8 data points (different airspeeds) for each
constant Cw and evaluating five different values of coefficient-of-weight translates into at least 3h and
20min of flight. This time duration should be regarded as an optimistic estimation based on small-sized
helicopters. Executing level flight performance flight-test campaign on a large and heavy helicopter
might even double this time duration. Proposing an alternative flight-test method that eliminates the
requirement for flying at constant coefficient of weight has the potential for saving at least 2h of flight
time for the same amount of required data points (60%).

https://doi.org/10.1017/aer.2023.57 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.57


The Aeronautical Journal 403

Table 1. Summary of flight-test conditions for sorties 1 through 4

Sortie Gross weight∗ Average long. Pressure altitude∗ Ambient air∗ Cw range∗ Average Cw
# [Lbs.) C.G. [In.] [ft.] temp. [◦C] [×10−3] [×10−3]
1 4,890–5,012 123.8 4,000–4,670 12 to 14 5.78–5.80 5.79
2 4,760–4,865 123.9 5,040–5,400 12 5.77–5.83 5.80
3 4,270–4,380 123.5 7,770–8,520 9 to 10 5.78–5.80 5.79
4 3,890–3,960 124.4 11,210–11,820 0 to 2 5.78–5.80 5.79
∗ values represent the range of change during the sortie.

Figure 1. Non-dimensional level flight performance of a MBB BO-105 helicopter (four distinct sorties).

According to the current flight-test technique, as long as the helicopter flies straight and level at a
constant Cw, its level flight performance can be uniquely represented by a single curve of Cp to μ.
One should question how extensively can the single variables that constitute the coefficient of weight
be varied, while keeping the coefficient of weight constant before an effect on the coefficient of power
is noticeable. In other words, how realistic is the assumption on which the conventional level-flight test
technique is built upon?

2.2 Example application
The conventional method is demonstrated within the context of deficiencies associated with the conven-
tional method, using flight-test data obtained from a MBB BO-105 helicopter used for training at the
National Test Pilot School (NTPS) in Mojave, CA. The power required to sustain level flight at various
airspeeds was recorded during four distinct sorties. All four sorties, totaling 44 stabilised level flight
points, were conducted at a targeted coefficient of weight (5.79 × 10−3) with a tight tolerance between
−0.3% to +0.7%. The main rotor angular speed was kept constant at 100% (423 RPM) throughout the
four sorties, as required by the conventional flight-test method. All physical values for gross-weights
and atmospheric conditions are summarised in Table 1. Figure 1 presents all 44 data points of sorties 1
through 4 as matching pairs of Cp and μ accompanied with third-order polynomial best-fit curves.

The first concern to be discussed is the uniqueness of the Cp to μ curve for the four sorties executed.
As previously noted, all four sorties were conducted at the same coefficient of weight and hence should
all generate a unique Cp to μ curve. One can immediately doubt it just from observing Fig. 1. It seems
quite evident that not all 44 flight-test data points belong to the same Cp to (μ) curve. As specified in
Table 1 the Cw was held constant within a tight tolerance range of 1%. The expected variance in the
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�Cp due to the variance in Cw (�Cw) can be estimated by a sensitivity analysis to Equation (2). This
derivation is presented explicitly as Equation (5).

�CP = ∂CP

∂CW

(�CW)= CW

μ
(�CW)∴ CW = 5.79 × 10−3. (5)

From this analysis it is evident that the actual 1% variance in Cw should only be responsible for a
�Cp of 0.02%, under a high advance ratio of 0.3. For a low advance ratio of 0.1 the expected variance in
Cp should reach up to only 0.06%. The actual variance in Cp during the four sorties reached 11% in low
advance ratios of about 0.1, and 9% for high advance ratios of about 0.3. This variance in (Cp) cannot
be entirely explained by the 1% variance in (Cw), therefore casting severe doubts on the soundness of
this conventional flight-test method.

The level of accuracy achieved using the conventional flight-test method was assessed in two ways.
The first and the foremost trivial assessment was to use each single sortie for the prediction of power
required in each one of the other three sorties, then comparing the prediction to the actual power mea-
sured. This simplistic approach is addressed hereinafter as the single sortie approach. The second
approach for accuracy assessment was to base the power prediction of each sortie on a conglomerate
of flight-test data from the other three sorties. This approach is referred-to hereinafter as the cluster of
sorties approach.

(1) The single-sortie approach: linear regressions were performed to retrieve four distinct third-
order polynomials to describe the non-dimensional level-flight performance of the BO-105
helicopter for the particular tested coefficient of-weight (Equation (6)).

CP(j) = aj
3μ

3 + aj
2μ

2 + aj
1μ+ aj

0 ∴ j = 1, 2, 3, 4. (6)

Each one of those four third-order polynomials (CP(1), CP(2), CP(3), and CP(4)) was used to predict the
power required for level flight under the conditions of the other three sorties. For example, the third-order
polynomial based on Sortie 1 was used to predict power required for level flight under the conditions of
sorties 2, 3 and 4. The third-order polynomial retrieved from Sortie 2 was used to estimate the power
required for level flight under the conditions of sorties 1, 3 and 4 and so on. Power estimations were
compared to the actual measured values and prediction errors for each data point were calculated as per
Equation (7).

�Er(j)i
= {

CP(j)i
− (

aj
3μ

3
i + aj

2μ
2
i + aj

1μi + aj
0

)}
ρiAd(�iR)

3 ∴ i = 1, 2, . . . . (7)

Figure 2 presents a summary of all prediction errors retrieved for all four sorties. These errors are
presented in horse-power units and as a function of the corresponding μ. It is worth noting that positive
prediction errors mean under estimation of the power required and a negative value represents an over
estimation of power. From an operator standpoint, underestimation is the worst-case scenario since the
helicopter demands for more power than predicted and planned for. This extra power needed might not
be available from the engine(s), jeopardising a successful execution of the mission. On the other hand,
overestimation of the power required can only contribute to inefficient planning and execution of the
mission.

The prediction errors presented in Fig. 2 reveal a dissatisfying accuracy performance of the conven-
tional method. For example, power prediction errors for Sortie 1 ranged between −20 hp (overestimate)
to +18 hp (underestimate) using flight-test data from Sortie 2. Using flight-test data from Sortie 4 to
predict power levels of Sortie 1 resulted in enormous overestimation errors that ranged between −50 and
−2 hp. The means of the absolute prediction errors for each sortie were calculated as per Equation (8)
and are presented in Fig. 3.
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Figure 2. Power prediction errors for all four sorties (single-sortie approach).

Figure 3. Mean of absolute power prediction errors (single-sortie approach).

ER(j) = 1

n

n∑
i=1

∣∣Er(j)i

∣∣ (8)

The average power prediction errors range from 7.2 to 28 hp and are considered by the authors
unacceptable for the task of level flight power prediction. It is worth noting that for the specific type of
helicopter tested, any power deviation above (or below) 4 hp from the expected value is clearly evident
to the aircrew. The BO105 helicopter (like many other types of helicopters) is not equipped with an
instrument that explicitly presents the engines output power in hp units; however, it is equipped with a
torque-meter gauge (steam-gauge style), installed on the instrument panel, that indicates both engines
output shaft torques. The smallest detectable resolution of this gauge translates into a 4 hp quantity.

One might debate whether these samples of prediction errors presented in Fig. 2 were drawn from
a normally distributed population. For this, a quantile-quantile (QQ) plot is presented in Fig. 4. This
plot compares the test data, the prediction errors samples in the case presented, to a theoretical sample
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Figure 4. Prediction errors quantiles to theoretical normal quantiles (QQ plot).

drawn from a normally distributed population. A sample of data that comes from a normally distributed
population would manifest itself as a straight line on the QQ plot. It is clear from Fig. 4 that all sampled
prediction errors for sorties 1 through 4 do not come from a normally distributed population. Taking
Sortie 1 as an example, the inflection of the curves might indicate that the largest (and smallest) estimate
errors are not as extreme as would be expected in a normal distributed population. The QQ plots for
Sortie 4 show a different behaviour than those of Sortie 1. The curves inflect in a way that might indicate
heavier tails of the probability density function (PDF) as compared to a PDF of a normally distributed
population. This means more extreme prediction errors are expected from both sides, underestimation
and overestimation, compared to a normal distributed population.

The correlation between the power prediction level and the advance ratio was studied. For this, the
correlation coefficient (r) between the prediction error and the advance ratio was calculated for each
combination of sortie predicted and sortie used to base the empirical prediction model on. The corre-
lation coefficient was calculated as per Equation (9), where (n) represents the number of data points
(sample size) and (S) stands for the standard deviation of the sample.

rEr,μ =
1

n − 1

n∑
i=1

(Er ·μ)i − n · Er ·μ
SErSμ

. (9)

Figure 5 presents these correlation coefficients for all four Sorties. Sorties number 1, 2 and 3 had 12
data points and Sortie 4 had only 8. The sample size affects the correlation coefficient value to be con-
sidered significant. At the accustomed 95% confidence level and for a sample size of 12, a correlation
coefficient of 0.58 (absolute value) and above indicates significant correlation between the two vari-
ables. For a smaller sample size of eight (Sortie 4), significant correlation between two variables (95%
confidence level) is indicated by a correlation coefficient of 0.71 and above. Figure 5 clearly indicates a
significant correlation between the power prediction errors and the advance ratio. The correlation value
peaks when sorties 1 and 2 are used to predict the power levels of sorties 3 and 4 (and vice versa). The
conclusion taken from this correlation analysis is there might be one (or few) latent dimensions, which
is (are) missed by the conventional flight-test method. The empirical prediction models based on the
conventional method fail to equally estimate power levels regardless of the advance ratio.
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Figure 5. Power prediction errors to advance ratio correlation (single-sortie approach).

Figure 6. Power prediction errors for all four sorties (cluster of sorties approach).

(2) The cluster of sorties approach: similarly to the single-sortie approach, four linear regressions
were performed to retrieve four distinct third-order polynomials to describe the non-dimensional
level-flight performance of the BO-105 helicopter for the particular tested coefficient of weight
(Equation (6)). The difference from the single-sortie approach is that data used for the regression
was based on a conglomerate of three distinct sorties. Each one of these third-order polynomials
was used to predict the power required for level flight under the conditions of the fourth sortie,
the one not used for the linear regression. For example, data measured in sorties 1, 2 and 3
was used to regress a third-order polynomial, which was used to predict the power required
of Sortie 4. Power estimation from each third-order polynomial were compared with the actual
measured values and the estimation errors were calculated as per Equation (7). Figure 6 presents a
summary of all prediction errors retrieved for all four sorties. The prediction errors are presented
in horse-power units and as a function of the corresponding advance-ratio.
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Figure 7. Mean of absolute prediction errors – single-sortie and cluster of sorties comparison.

Subscribing to the cluster of sorties approach slightly improves the prediction performance. The
power prediction errors of Sortie 1 ranged from −23 hp (overestimate) to 13 hp (underestimate). Using
flight test data measured in sorties 1, 3 and 4 to predict power levels of Sortie 2 yielded prediction errors
between 14 and 19 hp. The power predictions errors for Sortie 3 ranged between −27 and 5.5 hp and
power predictions for Sortie 4 were all underestimating the true measured power by up to 37 hp. The
four means of the absolute prediction errors for each sortie were calculated as per Equation (8) and
are presented in Fig. 7, alongside the absolute prediction errors yielded from the single-sortie approach
(Fig. 3). The averaged absolute power prediction errors ranged between 8.8 and 22.9 hp (mean of 13.4 hp
with a standard deviation of 6.5 hp).

One might ask how do those specific averaged prediction errors presented in Fig. 7 relate to the
general case? The conventional approach in flight-testing for inferring from a particular test to the gen-
eral case is based on hypothesis-testing. This approach, which follows from the central-limit theorem,
is thoroughly discussed in the literature (Refs. [18, 19]). In a nutshell, a hypothesis is set (the null-
hypothesis) and by using the test-statistics (Equation (10)) the validity of the null-hypothesis is assessed
against the alternative hypothesis. For the specific case presented, the null-hypothesis assigned is that
on-average the power required for level-flight as predicted by the conventional flight-test method (using
the cluster-of-sorties approach) and the empirical model obtained (Equation (6)) does not differ from
the true measured power by more than ±4 hp. This null hypothesis is tested against the alternative that
on-average the power required for level-flight as estimated by the conventional method differ from the
actual power by more than 4 hp (absolute value). The motivation for setting 4 hp as the threshold for
the null-hypothesis is based on the reasoning that for the BO105 helicopter any power deviation above
(or below) 4 hp is noticeable to the aircrew. As previously explained, the amount of power produced
by the engines is (implicitly) presented to the aircrew by the engines torques meter gauge. The smallest
detectable resolution of this gauge translates into a 4 hp quantity.

The relevant test statistic for this hypothesis testing is calculated per Equation (10). The symbol n
represents the number of sorties and S stands for the standard deviation of the averaged power prediction
errors which were calculated per Equation (8) and presented in Fig. 7.

t =
∣∣Ēr

∣∣− η0

S
/√

n
∴ η0 = 4 hp. (10)

The calculated value for the test statistic was 2.89. Inferential statistical analysis shows the probability
for making a Type-I error by rejecting the null hypothesis to be small (3%). This small probability for
a Type-I error fall below the 5% significance level accustomed in helicopter performance flight testing.
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The practicality of this test is that there is sufficient statistical evidence to reject the null hypothesis
and to adopt the alternative hypothesis instead. There is practically no statistical evidence to support
the null hypothesis assigned. Complementary statistical analysis shows that on-average and at the 95%
confidence level, the level-flight power predictions based on the current method and Equation (6) deviate
by ±5.8 hp from the actual measured power.

The poor power-prediction performance of the current flight-test method is to be expected. As dis-
cussed above, the current level-flight performance method assumes that for a constant coefficient of
weight the coefficient of power is solely dependent on the advance ratio, regardless of any compress-
ibility effects that might be present. Based on data and analysis presented above, this is clearly not a
sound assumption to make. Another potential contributor to the unsatisfactory power prediction might
be related to the change of the longitudinal centre of gravity. As mentioned in the introduction, a lon-
gitudinal migration in the centre of gravity should have an effect on the total drag area of the fuselage,
hence affecting the power required for level flight.

The next section of the paper presents an alternative flight-test method for level-flight performance.
This CVSDR method shows much improved prediction accuracy as compared to the current flight-
test method. The CVSDR method also addresses all of the current method deficiencies as listed in the
introduction section of the paper.

3.0 The corrected variables screening using dimensionality reduction method (CVSDR)
The CVSDR method aims to rectify all identified drawbacks of the existing method, while providing
better prediction accuracy as compared to the conventional method. The CVSDR method is presented
hereinafter in three phases. Employment of this method by flight testers will require recitation of only
the last two phases since the first phase is generic to all conventional helicopters. Phase 1 deals with the
generation of an original list of corrected variables for a multivariable analysis. In Phase 2 this list of
corrected variables is refined based on concepts of dimensionality reduction. Phase 3 of the proposed
method focuses on finding an empirical multivariable model using the bare-essential corrected variables
(regressors) which were identified in Phase 2. This list of corrected variables serves as an orthogonal
base for the specific helicopter level-flight performance. The complete CVSDR method is demonstrated
using the same MBB BO-105 helicopter flight-test data, already presented in Section 2 of this paper. A
practical and convenient summary of the method is presented in Section 3.4. This summary is intended
to serve as a guide for the flight testers who wish to evaluate the power required for level flight of a
conventional helicopter using the CVSDR method. This summary provides brief directions with regards
to level-flight data base establishment and analysis.

3.1 Phase 1 – Generating an original list of corrected variables to represent the level-flight
performance

The physical problem of the power required to sustain a helicopter in level-flight (out-of-ground effect)
was reevaluated using tools of dimensional analysis (Refs. [20, 21]). The procedure starts by proposing
variables that are expected to affect the power required in level flight. These are the ambient static
pressure, Pa, the ambient static temperature, Ta, the helicopter gross weight, W , the true airspeed the
helicopter flies at, VT , the main-rotor disk area, Ad , the main rotor angular speed, ω and the longitudinal
location of the centre of gravity, Xcg. The power required to hover, P, can be represented mathematically
as Equations (11) and (12) in implicit form.

P = f (Pa, Ta, W, VT , Ad,ω, xcg), (11)

f̂ (P, Pa, Ta, W, VT , Ad,ω, xcg) = 0. (12)

The dimensions involved are presented in Table 2. M represents mass, L represents length and T
represents time.
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Table 2. Summary of all variables and dimensions involved

# Physical variable Notation Dimension
1 Power required for level-flight P [M] [L]2[T]−3

2 Ambient static pressure Pa [M] [L]−1[T]−2

3 Ambient static temperature Ta [L]2[T]−2

4 Helicopter gross weight W [M] [L] [T]−2

5 True airspeed VT [L] [T]−1

6 Main-rotor disk area Ad [L]2

7 Main-rotor angular speed ω [T]−1

8 Longitudinal centre of gravity Xcg [L]

The physical problem of power required for level flight has eight variables involved with three dimen-
sions (L,M,T ). According to the Buckingham Pi-Theorem [20] the complexity of the problem can be
reduced from eight dimensional variables to only five non-dimensional (ND) variables. Following the
methodology presented by Buckingham [20] these five ND variables (denoted by ψ) are formed as
products of the dimensional variables. Since there are eight dimensional variables to construct five ND
variables, three dimensional variables were used as repeating variables in the ND products (ψ). There
are 56 different options to choose three variables out of eight for the case where the order does not mat-
ter (combinations). That requires a fairly tedious task of screening among 56 different options in order
to identify the best way of describing the non-dimensional level-flight performance. The following is a
demonstration of only one combination out of the 56 options available. In this particular demonstration,
the three repeating variables are the ambient static temperature (Ta), the helicopter gross weight (W )
and the main rotor disk area (Ad). The five ND products (ψ) are defined in Equation (13). According to
Buckingham [20], the repeating variables should be raised to some arbitrary powers, those are denoted
as a1, b1, c1,. . ., c5 in Equation (13). As demonstrated hereinafter, these arbitrary powers are identified
as those numeric values that make the ψ products non-dimensional.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψi = (Ta)
a1(W)b1(Ad)

c1 (P)
ψj = (Ta)

a2(W)b2(Ad)
c2 (Pa)

ψk = (Ta)
a3(W)b3(Ad)

c3 (ω)

ψm = (Ta)
a4(W)b4(Ad)

c4 (VT)

ψn = (Ta)
a5(W)b5(Ad)

c5
(
xcg

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (13)

Next, the procedure requires to replace each one of the dimensional variables with their correspond-
ing dimensions and to enforce each one of the five ψ products to be non-dimensional. This process
is demonstrated as per Equation (14). Each one of the ψ products yields three equations with three
unknowns, which are the exponents. Solving for the exponents of ψ i is demonstrated in Equation (15).
The same process is then repeated for each one of the other ND variables, ψj, ψk, ψm and ψn.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ψi] =
[

L2

T2

]a1[
ML
T2

]b1
[
L2
]c1
[

ML2

T3

]
= Mb1+1L2a1+b1+2c1+2 T−2a1−2b1−3 ≡ M0L0T0

[
ψj

]=
[

L2

T2

]a2[
ML
T2

]b2
[
L2
]c2
[

M
LT2

]= Mb2+1L2a2+b2+2c2−1 T−2a2−2b2−2 ≡ M0L0T0

[ψk] =
[

L2

T2

]a3[
ML
T2

]b3
[
L2
]c3
[

1
T

]= Mb3 L2a3+b3+2c3 T−2a3−2b3−1 ≡ M0L0T0

[ψm] =
[

L2

T2

]a4[
ML
T2

]b4
[
L2
]c4
[

L
T

]= Mb4 L2a4+b4+2c4+1 T−2a4−2b4−1 ≡ M0L0T0

[ψn] =
[

L2

T2

]a5[
ML
T2

]b5
[
L2
]c5 [L] = Mb5 L2a5+b5+2c5+1 T−2a5−2b5 ≡ M0L0T0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (14)
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⎧⎪⎨
⎪⎩

[M] : b1 + 1 = 0

[L] : 2a1 + b1 + 2c1 + 2 = 0

[T] : −2a1 −2b1 −3 = 0

⎫⎪⎬
⎪⎭⇒

⎡
⎣ 0 1 0

2 1 2
−2 −2 0

⎤
⎦
⎧⎨
⎩

a1

b1

c1

⎫⎬
⎭=

⎧⎨
⎩

−1
−2
3

⎫⎬
⎭⇒

⎧⎨
⎩

a1

b1

c1

⎫⎬
⎭=

⎧⎨
⎩

−1/2
−1
0

⎫⎬
⎭ . (15)

Based on Equation (15) the first ND variable (ψ i) can be written as Equation (16)

ψi = P

W
√

Ta

. (16)

This ND variable (Equation (16)) can be further simplified once the ambient static temperature is
represented using its relative value (Equation (17)). This gives a simplified expression for ψ i (Equation
(18)) denoted as ψ i

∗. Since this term indeed carries dimensions and is not a pure ND, it is better defined
as a corrected variable (CV).

Pa = P0 · δ ∴ Ta = T0 · θ , (17)

ψi = P

W
√

Ta

= P

W
√

T0θ
= 1√

T0

· P

W
√
θ

= Const · P

W
√
θ

⇒ . (18)

ψ∗
i = P

W
√
θ

A similar analysis was conducted to reveal the other four ND variables (ψ j, ψ k , ψm and ψ n). These
ND variables were further simplified to represent non-dimensional variables of a particular helicopter,
hence referred to as corrected-variables (CVs). The corresponding CVs are denoted with an asterisk and
presented as Equation (19).

ψ∗
j = W

δ
∴ψ∗

k = ω√
θ
∴ψ∗

m = VT√
θ
∴ψ∗

n = Xcg

R
. (19)

The procedure demonstrated above was repeated for all other 55 possibilities of choosing three vari-
ables out of eight. From all 56 options evaluated, 20 did not yield a unique solution, and a few other
returned repeating ND variables. Overall, the analysis yielded 36 distinct CVs that can be used for the
helicopter level-flight performance. Table 3 summarises all 36 CVs in an array form to indicate which of
the five dimensional variables (power, weight, true airspeed, main-rotor angular speed and\or longitudi-
nal centre of gravity location) are used in the specific CV. This list of CVs is also presented graphically
in Fig. 8, where one can clearly observe the number of dimensional variables involved in each CV. There
are 6 CVs that are based on only one dimensional variable (1-D), 16 CVs that include two dimensional-
variables (2-D), 13 CVs that employ three dimensional variables (3-D) and only 1 CV (ψ36

∗) which
involves four dimensional variables (4-D).

3.2 Phase 2 – Screening for effective corrected-variables (CV) using dimensionality reduction
The second phase of the CVSDR method requires the evaluation of the list of 36 CVs (Table 3) and
the determination of the most effective CVs in representing the level-flight performance of a specific
helicopter. A power-based corrected variable needs to be expressed as a function of few other CVs. For
this, the flight tester might be asking the following questions:

• How many CVs are required for a sufficient description of the level-flight performance?
• Which CVs should be used?

https://doi.org/10.1017/aer.2023.57 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.57


412
Arush

etal.

Table 3. Corrected-variables (CVs) to represent the level-flight performance

M/R angular-speed Airspeed Three-dimensional Four-dimensional
Power based based Weight based based C.G. based variables variables

Power based ψ∗
1 = P

δ
√
θ

ψ∗
4 = P

δω
ψ∗

5 = P

W
√
θ

ψ∗
11 = P

δVT

ψ∗
22 = P

X2
cgδ

√
θ 3 ψ∗

6 = P

ωW
ψ∗

36 = P

WωXcg

ψ∗
7 = Pω2

δ
√
θ 3

ψ∗
12 = P

W
ψ∗

23 = P

X2
cgδ

√
θ

ψ∗
9 = P

√
δ

ω
√

W3

ψ∗
20 = P√

δω
ψ∗

25 = P

WVT

ψ∗
21 = P

ω2δ
√
θ 3

ψ∗
26 = P · δ

ω
√

W3

ψ∗
24 = 1

θ

3

√(
Pω2

δ

)2

ψ∗
27 = VT

√
δ

ω
√

W

M/R
angular-speed
based

ψ∗
3 = ω√

θ
ψ∗

8 = Wω2

δθ
ψ∗

13 = VT

ω
ψ∗

16 = Xcg

ω
√
θ

ψ∗
28 = VTω

√
W√
δ

ψ∗
14 =ω2

√
θ ψ∗

17 = Xcgω√
θ

ψ∗
29 = Pω√

δV3
T
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Table 3. Continued

M/R angular-speed Airspeed Three-dimensional Four-dimensional
Power based based Weight based based C.G. based variables variables

Weight based ψ∗
2 = W

δ
ψ∗

18 = WX2
cg

δ
ψ∗

30 = Pω2

δV3
T

ψ∗
19 = W

δX2
cg

ψ∗
31 = P

ωXcgθ

Airspeed based ψ∗
10 = VT√

θ
ψ∗

32 = P

ωX3
cgδ

C.G. based ψ∗
15 = Xcg

R
ψ∗

33 = VT

ωXcg

ψ∗
34 = P

VTX2
cgδ

ψ∗
35 = PVT

X2
cgδ
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Figure 8. Graphical presentation of all 36 CVs for the level-flight performance.

These questions are addressed in this phase of the CVSDR method. The procedure of CVs selection,
both the quantity and types of CVs, is based on principals of dimensionality reduction and the correlated
mathematical procedure known as the singular value decomposition (SVD). This phase of the method
is demonstrated using the same MBB BO-105 level-flight test data presented in Section 2 above.

The SVD theorem
The theory and mechanics of the SVD are thoroughly discussed in literature [22]. In a nutshell, this
theorem states that any matrix from any size that holds real numbers as entries can be decomposed as a
product of three unique and special matrices, as shown in Equation (20).

Z = U�VT =

⎡
⎢⎢⎢⎢⎣

u1,1 u1,2 · u1,n

u2,1 u2,2 · u2,n

· · · ·
· · · ·

um,1 um,2 · um,n

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣
σ1

σ2

·
σr

⎤
⎥⎥⎦
⎡
⎢⎢⎣

v1,1 v2,1 · vn,1

v1,2 v2,2 · vn,2

· · · ·
v1,r v2,r · vn,r

⎤
⎥⎥⎦ . (20)

σ1 >σ2 > . . . > σr ≥ 0

Consider a real matrix Z to be of size m by n (denoted (m,n)) and rank r. Matrix Z can then be
expressed as a product of the three unique matrices:

(1) Matrix U called the left-singular-vectors” (LSV) is an orthonormal matrix of size (m,r). The
columns of this matrix are unity-norm vectors which are orthogonal to each other. This set of
vectors serves as a basis for the column-space of matrix Z.

(2) Matrix � is a diagonal matrix (size (r,r)) that holds the singular values of Z as entries along
its diagonal. The singular values are non-negative real numbers that can be arranged along the
diagonal in a descending order.

(3) Matrix V called the right-singular-vectors (RSV) is an orthonormal matrix of size (n,r). The
columns of this matrix (or the rows of VT) are unity-norm vectors, which are orthogonal to each
other. The set of these vectors serves as a basis for the row-space of matrix Z.

One should view this decomposition as a way of finding convenient orthogonal bases for both the
column space and the row space of an arbitrary real matrix.
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The SVD of a real matrix can alternatively be regarded as a spectral decomposition of any arbitrary
real matrix Z. A generic real matrix Z of rank r can be expressed as a linear combination of r rank-one
matrices as expressed in Equation (21).

Z = σ1

⎡
⎢⎢⎢⎢⎣

u1,1

u2,1

·
·

um,1

⎤
⎥⎥⎥⎥⎦
[

v1,1 v2,1 · vn,1

]+ σ2

⎡
⎢⎢⎢⎢⎣

u1,2

u2,2

·
·

um,2

⎤
⎥⎥⎥⎥⎦
[

v1,2 v2,2 · vn,2

]+ . . .+ σr

⎡
⎢⎢⎢⎢⎣

u1,n

u2,n

·
·

um,n

⎤
⎥⎥⎥⎥⎦
[

v1,r v2,r · vn,r

]
.

(21)
σ1 >σ2 > . . . > σr ≥ 0

The practicality of this approach is that any real matrix Z can be approximated as a lower ranked
matrix by using partial of its rows and columns basis. The proximity between the original matrix and
the approximated one can be assessed by the evaluation of each of the matrix’s norm. There is more than
one way to measure the magnitude of a matrix (various norms). The preferable norm for the proposed
CVSDR method is the Frobenius norm [23]. This norm is defined as the square root of the sum of all
squares of the elements of the matrix. This norm can be expressed, with few algebraic passages, as the
square root of the sum of all singular-values squares (Equation (22)).

‖Z‖F ≡
m∑

i=1

n∑
j=1

√(
zi,j

)2 =
√
σ 2

1 + σ 2
2 + . . .+ σ 2

r . (22)

The ability to approximate any arbitrary real matrix of rank r by an increasing sum of rank-one
matrices is the essence of the dimensionality reduction concept. Reducing the long list of 36 corrected
variables (Table 3) to a short and practical list of effective CVs for the level-flight performance is
precisely based on this concept of dimensionality reduction.

SVD implementation for CV list refinement
The SVD theorem is used to identify which are the most effective CVs in representing the level-flight per-
formance of a specific helicopter. One should regard this procedure in linear algebraic terms as finding
an efficient orthogonal basis to represent the level-flight performance. A similar approach was presented
by the authors for the problems of gas-turbine empirical models [13] and power required to hover [14].
This screening procedure is demonstrated using the MBB BO-105 helicopter flight-test data presented
in Section 2. The procedure starts with filling matrix Z with numeral entries of all 36 CVs as measured
for the level-flight sorties. For this demonstration 36 stabilised level-flight points measured in sorties 1,
2 and 3 are used. The columns of the matrix represent the various CVs (ψ1

∗ to ψ 36
∗) and the 36 rows

represent the different test points measured. Next is to normalise all columns of Z to have a mean of
zero and a variance of 1 as presented in Equation (23). Once matrix Z contains normalised columns it
can be partitioned into the three unique matrices as per Equation (21).

ψ ′
i = ψ∗

i −ψ∗
i

Sψ∗
i

, i = 1, 2, . . . , 35, 36. (23)

The level-flight performance as appears in matrix Z is represented by all 36 CVs (ψ1
∗ to ψ 36

∗).
However, not all CVs possess the same significance in representing the variance captured in the flight-
test data. The singular values (σ i) that appear along the main diagonal of matrix � in a descending
order are key to understanding the level of importance each CV (i) holds. The conceptual interpretation
of the SVD of Z for the specific problem of level-flight performance is illustrated in Fig. 9 and is further
explained hereinafter.

https://doi.org/10.1017/aer.2023.57 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.57


416 Arush et al.

Figure 9. The conceptual interpretation of the SVD of matrix Z.

Figure 10. The singular-values of matrix Z (level-flight performance).

The 36 singular values of matrix � are normalised as per Equation (24) and are presented in Fig. 10
alongside a cumulative-sum plot of all normalised singular values.

σ̂i = σi∑36
k=1 σk

i = 1, 2, . . . , 35, 36. (24)
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Figure 11. Correspondence between CVs and level-flight dimensions (rows of the RSV).

One should deduce from Fig. 10 that the dimensionality of the level-flight problem can be signifi-
cantly reduced from a 36-dimension problem to only a 7-dimension. In linear-algebraic terms it can be
stated that the level-flight performance can be sufficiently described by a basis of only seven orthogo-
nal CVs. The cumulative sum plot presented in Fig 10 indicates that 96.7% of the total variance in the
flight-test data, as stored in matrix Z, can be presented by using the seven most significant CVs. Also
indicated by Fig. 10, the most significant dimension of the level-flight performance problem holds 35%
of the variance in the data. Comparing the Frobenius norm of matrix Z and its seventh order approx-
imation (the combination of the first 7 rank-1 matrices) reveals a practically similar norm of the two;
34.986 for Z and 34.983 for the seventh order approximation.

The identity of the seven most important CVs is solely indicated by the RSV matrix. As illustrated
in Fig. 9, each row of the RSV indicates the level of correspondence to a specific singular value or a
dimension of the problem. For example, the first row of the RSV specifies the level of correspondence
each one of the 36 CVs has to the first (and most significant) singular value. The second row of the
RSV indicates the correspondence between all 36 CVs to the second most significant dimension of the
problem, and so on. Since the dimensionality of the problem was reduced from 36 to 7, it is required to
evaluate only the first seven rows of the RSV matrix. For this, the elements along the first seven rows of
the RSV matrix are normalised as per Equation (25) and presented in Fig. 11. The significance of each
CV towards the seven substantial dimensions of the level-flight performance is then concluded.

V̂(i, j) = |V(i, j)|∑36
j=1|V(i, j)| i = 1, 2, . . . , 6, 7. (25)

The LSV matrix has no significant role in the type of analysis addressed in this paper since it only
indicates the level of correspondence between each one of the level-flight test points and the singular-
values of Z . This type of correspondence between particular test points and the various dimensions of
the level-flight performance was deemed irrelevant to the topic analysed.

The following conclusions can be drawn from Figs 10 and 11: (1) the first and most significant dimen-
sion of the level-flight performance holds for 35% of variance in the data and is best represented byψ1

∗.
This CV represents variance in power. (2) The second most significant dimension of the level-flight
performance holds for 21.7% of variance in the data and is best represented by ψ2

∗. This CV represents
the variance in gross weight of the helicopter. (3) The third dimension of the level-flight performance
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holds for 16.1% of variance in the data and is best described by ψ14
∗. (4) The fourth dimension of the

problem holds for 14.3% of variance in the data and is best represented by ψ3
∗. (5) The fifth dimension

of the problem holds for 5.1% of variance in the data and is best represented by ψ30
∗. This ψ 30

∗ involves
power and since the first dimension already yielded a power-based CV for the role of an independent
CV for the physical problem in hand this CV was renounced. Next in line (non-power related) to best
represent the fifth dimension were the two CVs ψ10

∗ and ψ 13
∗ which could not be differentiated with

respect to their representation of the fifth dimension. (6) The sixth dimension of the problem holds for
2.3% of variance in the data and is best represented by ψ15

∗. (7) the least significant dimension in the
truncated list of seven dimensions holds for only 2% of variance in the data and is best represented by
the same CV selected to represent the third dimension, which is ψ14

∗.
Finally, a conceptual empirical model to represent the level-flight performance of the MBB BO-105

helicopter, as resulted from the CVSDR method, can be stated as Equation (26). This relation involves
six independent CVs and one power-based dependent CV.

ψ∗
1 = f

(
ψ∗

2 ,ψ∗
14,ψ∗

3 ,ψ∗
10,ψ∗

13,ψ∗
15

)
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δ
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(
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δ
,ω2

√
θ ,

ω√
θ

,
VT√
θ

,
VT

ω
,

Xcg

R

)
. (26)

3.3 Phase 3 – From a conceptual model into a practical empirical model
Once the most influential CVs of the level-flight performance problem are exposed, a practical empir-
ical polynomial in the six independent CVs is pursued. The physical nature of the problem (Equation
(1)) suggests a third order as the highest degree to represent the power in level flight. This puts a cap
on the order of the empirical polynomials to be explored. As a guideline for simplicity the prospective
polynomial needs to refrain from employing any cross-products of CVs as regressors. Numerous con-
figurations involving the six independent CVs were evaluated for their power estimation accuracy using
the 36 stabilised data points from the first three sorties specified in Table 1. The particular polynomial
presented as Equations (27) and (28) was selected due to its best performance in representing the power
measurements in the first three sorties, i.e. yielding the least values for the mean and the variance of the
estimation errors. This empirical model is addressed hereinafter as Model 123 (M123) since it is based
on flight-test data from sorties 1, 2 and 3.
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Figure 12. CVSDR level flight performance sorties planning and execution sequence.

3.4 The CVSDR method for level flight performance – Summary and practical guidance
A performance flight-testing campaign starts with a careful planning of the required sorties. The power
required for level flight using CVSDR is no exception to this rule. The flight tester should plan for a set of
level-flight speed runs to cover the applicable and required flight envelope. With the aim of establishing
a sound data base to be analysed, the flight tester should gather level-flight performance that covers
the entire range of airspeed (VT ), gross-weight (W ), centre of gravity (Xcg), main-rotor angular speed
(ω) and ambient air properties of pressure and temperature. Figure 12 provides a methodical approach
for sorties planning and execution while using the CVSDR method. The flight-test campaign should be
executed in three configuration-based phases. Each phase includes a set of various speed-runs (denoted
as the numbers 1 to 9 in Fig. 12) conducted at various conditions of gross weight, altitude and main
rotor angular speed. Every single speed-run should be conducted from the lowest practicable airspeed
(hover if possible) to the highest attainable level flight airspeed, with about eight different intermediate
airspeeds.

At each stabilised airspeed point, the flight-tester needs to gather all data needed to compute the
corrected variables presented in Table 3. The flight-test campaign should start with a middle centre of
gravity (cg) configuration (the left chart in Fig. 12), followed by an aft cg configuration (the middle chart
in Fig. 12) and end with a forward cg configuration. The first sets of speed runs should be conducted
at high altitude and high gross weight; this would extend the range of many weight-based corrected
variables presented in Table 3. For helicopters that allow the crew to adjust the main rotor speed under
standard procedures, few sets of speed runs shall be repeated three times for three distinct values of
main rotor speed that span the governed range (see example denoted as 1a, 1b and 1c in Fig. 12). Note
that by following the directions of Fig. 12 closely, the flight-test team are expected to acquire a database
of 17 distinct speed runs, totaling about 136 stabilised level flight data points. This would constitute a
sound database to be analysed. Succeeding the establishment of this database, the flight test data analysis
should be conducted by following the sequential eight steps of Table 4. This table is intended to provide
a practical, step-by-step guidance, to realise the three phases of the CVSDR method as discussed in
Sections 3.1, 3.2 and 3.3 above.

4.0 Prediction accuracy achieved using the CVSDR method
The prediction accuracy achieved using the CVSDR method is evaluated hereinafter in a build-up
manner. First, it is evaluated against the conventional flight-test method by using the flight test data
from sorties 1 through 4, all conducted at the same targeted coefficient of weight. Next, the CVSDR
method is challenged to predict level-flight performance of a new sortie (Sortie 5), which was conducted
under arbitrary and varying (Cw). This evaluation is performed only for the purpose of challenging the
CVSDR-based empirical model and to experiment up to what extent it can predict (extrapolate) the
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Table 4. The CVSDR data analysis for level flight performance – a step-by-step guidance

Step Task description & instruction
Phase 1 – Establish an applicable list of CVs to represent the level-flight performance (Para. 3.1)

1 Compute all 36 CVs (Table 3) for each stabilised level-flight data point measured. There should
be 136 stabilised data points, if all sorties of Fig. 12 were closely executed.

2 Arrange the computed CVs in a matrix form (this is matrix Z). The rows of Z should represent
the different data points and columns of Z should represent the various CVs. If all sorties of
Fig. 12 were closely executed, matrix Z should be of size 136 × 36.

Phase 2 – Screening for the most effective CVs using dimensionality reduction (Para. 3.2)

3 Normalise all columns of matrix Z as per Equation (23) to have a zero mean and a variance
equals one.

4 Decompose the normalised matrix Z into its three unique matrices (U,� and V) using a
singular value decomposition (SVD) algorithm. Matrix U is also referred to as the left singular
vectors (LSV), matrix � is called the singular values and matrix V is called the right singular
vectors (RSV).

5 Normalise all singular values (entries along the main diagonal of matrix �) as per Equation
(24). The normalised values represent the relative strength of the various dimensions exist in
the data. Determine the number of significant dimensions involved in the specific level-flight
performance data, based on the cumulative sum of the normalised singular values (as presented
in Fig. 10).

6 Normalise the rows of matrix VT (RSV) as per Equation (25). This normalisation calls for the
absolute value of each element along the rows of RSV to be divided by the sum of all elements
absolute values along the corresponding row of RSV.

7 Identify the most significant CVs of the specific level-flight performance analysed. The level of
correspondence between each CV and an abstract dimension of the level-flight problem is
illustrated in Fig. 9. Note that only the first significant rows of the normalised matrix VT should
be evaluated. The number of significant rows of VT equals the number of significant
dimensions retrieved in sequential Step 5 above. Example for this step is presented in Fig. 11.

Phase 3 – Forming a practical empirical model (Para. 3.3)

8 Use the most significant CVs identified in sequential Step 7 to form a practical polynomial that
uses the relevant CVs as regressors in this empirical model.

level-flight performance of the same helicopter but under arbitrary conditions. Note the empirical mod-
els retrieved using the conventional method in Section 2 (Equation (6)) are irrelevant for the prediction
of Sortie 5. These empirical models represnt the level flight performance of the helicopter for a sin-
gle and specific Cw, the one targeted in sorties 1 through 4. For Sortie 5, the comparison between the
conventional and CVSDR methods is trivial since the conventional method immediately fails.

4.1 Prediction accuracy within the same coefficient of weight
The latter two phases of the CVSDR method, phases 2 and 3 as presented in Section 3, were repeated
by utilising the three other combinations available from the flight-test data of sorties 1 through 4. An
empirical model based on flight-test data from sorties 1, 3 and 4 (denoted M134) was used for the
prediction of the power levels in Sortie 2. This empirical model, which employs nine distinct regressors
and a constant, is presented in Equation (29) without the numeral coefficient. The same approach was
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Figure 13. Power prediction errors – conventional and CVSDR methods comparison.

repeated for the derivation of M234 and M124 (empirical models based on sorties 2, 3, 4 and 1, 2, 4
accordingly) for power levels predictions of sorties 1 and 3, respectively. The two models, M234 and
M124, employ (each) eight regressors and a constant and are presented in Equation (29). Mind that the
four empirical models (M123, M134, M234 and M124) share many of the same regressors but are not
exact. This is expected since they are based on slightly different flight test databases.
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{M234 : γ3 ≡ 0 ∴ M124 : γ4 ≡ 0}
Power prediction errors were calculated for all four sorties in the same manner demonstrated by

Equation (30), specifically for Sortie 4. Figure 13 presents these calculated prediction errors against
their corresponding advance ratios. For comparison purposes, Fig. 13 includes the prediction errors
obtained from the conventional flight-test method (cluster of sorties approach).
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The superiority of the CVSDR over the conventional method is immediately evident from Fig. 13.
Power prediction of Sortie 1 using M234 resulted in prediction errors that ranged from −12.6 hp (over-
estimate) to 9.9 hp (underestimate). The prediction errors mean was −1.7 hp with a standard deviation
of 7 hp. This compares to prediction errors ranging from −23.1 to 12.8 hp (averaged at −7.6 hp with
a wide standard deviation of 13 hp) achieved by using the conventional method. Comparing the two
methods for the other three sorties reinforces the prediction accuracy advantage of the CVSDR method:
for Sortie 2, the CVSDR prediction errors averaged at 0.2 hp with a standard deviation of 7.3 hp as
compared to a mean of −6.3 hp with a standard deviation of 9 hp, yielded by the conventional method.
For Sortie 3, the respective comparisons were prediction error means of 1.4 and −6.4 hp in favour of the
CVSDR and standard deviations of 5.8 and 10.8 hp in favour of the CVSDR. For Sortie 4, the CVSDR
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Figure 14. Mean of power prediction errors – CVSDR and conventional methods comparison.

method achieved a prediction error mean of only −1.5 hp, compared to an underestimation average of
22.9 hp. The CVSDR prediction errors for Sortie 4 were also less scattered as demonstrated by the two
standard deviations (8.1 hp compared to 11.5 hp).

Figure 14 presents an alternative view of the data displayed in Fig. 13. The means of the absolute
prediction errors for each sortie were calculated as per Equation (8) and are presented alongside the
corresponding values retrieved from the conventional method (cluster of sorties approach). Once more,
the CVSDR method performed better for this comparison. The means of absolute errors for sorties 1
through 4 were 6.3, 5.2, 5.1 and 7 hp accordingly. These means compare to 12.5, 9.5, 8.7 and 22.9 hp
resulted from the conventional method.

Inferring from the particular case of the four sorties to the general case is realised by using the hypoth-
esis testing, as demonstrated in Section 2 for the conventional method. The null hypothesis assigned is
that on-average the power required for level flight as predicted by the CVSDR method does not dif-
fer from the true measured power by more than ±4 hp (the least deviation noticeable to the BO-105
aircrew). This null hypothesis is tested against the alternative that on-average the CVSDR estimated
power for level-flight differ by more than 4 hp (absolute value) from the actual power. The relevant test-
statistic for this hypothesis testing is calculated per Equation (10). The symbol n represents the number
of sorties and S stands for the standard deviation of the averaged power prediction errors, calculated per
Equation (8) and presented in Fig. 14. The test statistic was fairly large (4.11), mainly due to the relative
low standard deviation. Inferential statistical analysis shows the probability of making a Type-I error by
rejecting the null hypothesis is very small (1.3%), hence does not support the null hypothesis. On aver-
age and at the accustomed 95% confidence level, the CVSDR power predictions deviate from the actual
measured power by ±4.8 hp. Although above the 4 hp threshold noticeable to the BO-105 crew, this
average prediction error is about 17% lower than the ±5.8 hp achieved using the conventional method.

The correlation coefficient between the prediction errors and the advance ratio was calculated for
all four sorties per Equation (9). Figure 15 presents these coefficients accompanied with those obtained
from the conventional method, cluster of sorties approach. It is evident the CVSDR prediction errors
do not significantly correlate to the advance ratio. As explained in Section 2, any correlation coefficient
above 0.58 (absolute value) for sorties 1 through 3, and above 0.71 for Sortie 4 indicates a statistically
significant correlation. It can be concluded that based on flight-test data from all four sorties, the power
prediction accuracy obtained from the CVSDR method is not related to the advance ratio. Similar
accuracy level is expected from the CVSDR method regardless of the corresponding advance-ratio.
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Table 5. Summary of flight-test conditions for Sortie 5

Gross weight∗ Long. C.G.∗ Pressure altitude∗ Ambient Cw range∗ Main rotor
[Lbs.] [In.] [ft.] temp. [◦C] [x10–3] speed∗[RPM]
3,920–4,080 125.6–125.8 5,980–6,050 8 4.81–4.95 421–425
∗ values represent the range of change during the sortie.

Figure 15. Prediction errors to advance-ratio correlation (CVSDR and conventional methods).

4.2 Prediction accuracy for a different coefficient of weight
One might wonder whether the adequate performance of the CVSDR method was made possible due
to the fact the power estimations were made for the same coefficient of weight. For this, another sortie
(number 5) was conducted under different values of coefficient of weight as specified in Table 5. Sortie 5
was executed without the cumbersome restriction imposed by the conventional method for maintaining
a constant coefficient of weight and a constant main rotor speed while gathering the power required to
sustain level flight at various airspeeds. The coefficient of weight varied between 4.8 × 10−3 to 4.95
× 10−3 and was significantly different from the value maintained constant during the first four sorties
(5.79 × 10−3).

The four empirical models originated from the CVSDR method were used to predict the power levels
of ten stabilised data points of Sortie 5. These empirical models are M123 defined in Equations (27) and
(28), M234, M134 and M124 specified in Equation (29). Prediction errors were calculated by subtracting
the predicted power from the measured value; this way, a positive error represents an underestimation
of the actual measured power. All power estimation errors for Sortie 5 are presented in Fig. 16 against
the appropriate advance ratio. This figure also includes a presentation of the average estimation error of
the four models for each data point.

As expected, all four empirical models provided adequate prediction levels, even for different and
varying values of coefficient of weight. Prediction errors ranged from −11.1 to 10.1 hp for M134, −12.4
to 9.1 hp for M234, −9 to 12 hp for M124 and from −10.6 to 8.7 hp for M123. The prediction-error
means were all close to zero (−0.9, −1.3, −0.7 and −0.4 hp for M134, M234, M124 and M123 accord-
ingly) with relatively narrow standard deviations of 7.3, 8.6, 6.8 and 9.8 hp, respectively. Hypothesis
testing at the 95% confidence level shows no statistically significant difference between the prediction
performances of all four empirical models. Moreover, no statistical significance was found between the
performance of each empirical model when acted on sorties 1 to 4 (constant Cw) or when acted on
Sortie 5. That means one can expect adequate prediction performance when using the CVSDR method
for extrapolating to a different coefficient of weight.
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Figure 16. Power prediction errors for Sortie 5 using the CVSDR method.

The correlation coefficients (r) between the power-prediction errors of each empirical model and
the advance-ratio were calculated per Equation (9). The values were significantly low; 0.17 for M134,
0.25 for M234, 0.42 for M124 and 0.41 for M123. For the specific number of data points in Sortie 5
(10) and the accustomed 95% confidence level, only a value of 0.632 and above indicates a significant
correlation between the two variables. It can be concluded that based on flight-test data of Sortie 5 no
significant correlation was found between the power prediction errors using all four empirical models
(M134, M234, M124 and M123) and the advance ratio.

5.0 A comparison between the conventional and the CVSDR methods
The conventional flight-testing method for level-flight performance is based on a simplification of the
physical problem and comprises several drawbacks that affect the accuracy and efficiency of the method.
This section draws a comparison between the conventional and the proposed CVSDR methods by
dwelling on each one of the conventional method’s drawbacks specified in the introduction.

First and foremost, the prediction accuracy expected from each method is different. Figure 13 shows a
comprehensive comparison between the prediction errors attained from each method for all four sorties,
totaling 44 flight-test data points. Figure 14 compares the two methods by presenting the mean of the
absolute prediction errors for each sortie. The superiority of the CVSDR method over the conventional
method is clear. The conventional method was able to generate average absolute prediction errors of
12.5, 9.5, 8.7 and 22.9 hp compared to 6.3, 5.2, 5.1 and 7 hp (respectively) yielded by the CVSDR
method. Statistical analysis shows that on-average (at the 95% confidence level) the CVSDR power
predictions deviate by up to 4.8 hp (absolute value) from the actual measured power. The corresponding
deviation obtained from the conventional method is 5.8 hp, an increase of nearly 21%.

The prediction errors generated from the conventional method were significantly correlated with the
advance-ratio whereas the CVSDR method demonstrated prediction accuracy with no correlation to the
advance ratio. This correlation between the prediction error and the advance ratio might suggests there
is a latent phenomenon related to the advance ratio, which is missed by the conventional method and
the empirical model it yields.

The conventional method is aimed at constant coefficient of weight data. As such, the empirical mod-
els retrieved from the first four sorties were useless for the predictions of Sortie 5. The proposed CVSDR
method is more versatile in this manner and was successfully used for the predictions of Sortie 5. Besides
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the versatility aspect, the constant coefficient of weight restriction makes the execution of the conven-
tional flight-test method cumbersome and more time consuming compared to the CVSDR method. As
described in Section 2.1, the conventional method requires the flight-test crew to continuously calcu-
late and adjust the cruise altitude to maintain a constant coefficient of weight. For a small-sized and
light helicopter, this inflates the flight time required for each data point from about 2min to about 5min.
For large and heavy helicopters this inflation rate is even expected to increase more. On a flight-test
campaign that requires five different coefficients of weight, each including eight different airspeeds, the
CVSDR method is expected to save about 2h of flight time. This is about 60% reduction in the flight-
test duration required by the conventional method. Moreover, losing the requirement for a continuous
adjustment of the cruise altitude based on the helicopter weight can free up valuable crew resources and
promote flight safety.

There are two approaches of maintaining a constant (Cw during speed runs. The first is to keep
a constant ratio of weight over relative density (W/σ ) and a constant main-rotor angular speed. This
approach is discussed Section 2.1 and thoroughly demonstrated in Section 2.2. The second approach
for maintaining a constant coefficient of weight was not demonstrated in the paper but is discussed
in Section 2.1. This second approach requires the flight tester to maintain a constant ratio of static
ambient temperature (Ta) over the main-rotor angular speed squared (�2) during the speed-runs. These
requirements dictate a continuous involvement of the flight-test crew with the main rotor speed. For the
first approach of constant main rotor speed the crew need to continuously apply fine-tuning, either to
compensate for a non-perfect control system (M/R speed governor) functioning, or even to override an
inherent scheduling profile dictated by the govern control laws. When executing the second approach
the flight tester involvement with main rotor speed adjustments is even more challenging since they need
to maintain a constant value of Ta/�2. Besides the fact this main rotor speed continuous manipulation
during the test imposes inconvenience on the crew, there are types of helicopters (the MD-902 Explorer
as an example) that do not allow the crew to adjust the main rotor speed under standard procedures.
For these types of helicopters, a precise execution of the conventional level-flight performance testing
method is questionable, and undesirable scatter in the data is almost inevitable. The CVSDR method
does not force the test crew to follow any kind of main rotor speed profile, or to keep it fixed. Any
variation in the main rotor speed regardless of its initiation source (automatically by the control system
or manually by the flight-test crew) can be used as a valid flight-test data point. That said, the flight
tester should be reminded that flight-test data should be collected throughout the flight envelope of the
aircraft. For this reason, performance data should be collected for the entire range of main rotor angular
speed under normal operations (as presented in Fig. 12).

Another drawback inherent to the conventional method and efficiently addressed by the proposed
CVSDR method is the influence of the centre -of gravity on the power required for level flight. As
mentioned in the introduction, migration of the centre of gravity can affect the helicopter attitude, hence
alter the drag frontal area of the helicopter. Through this mechanism the power required to sustain level
flight is affected as well. Unlike the conventional method that neglects this influence, the CVSDR method
identified a corrected variable (ψ15

∗) that conveys the effect of centre of gravity migration into the
empirical power model. For the specific type of helicopter tested and the limited scope of tests, this
centre of gravity was identified as the sixth concept in the data (σ 6), responsible for 2.3% of variance in
the data (as presented in Fig. 11). Note that the specific data analysed covers a limited centre of gravity
travel range (between longitudinal stations 123.5 and 124.4 inch as per Table 1), which represents only
6.4% of the allowed longitudinal centre of gravity of the BO105 helicopter. Expanding the flight-test
database to include level flight performance data measured under a larger centre of gravity travel range
might have resulted in a larger significance of the relevant corrected variable (ψ15

∗).
The conventional method is bounded by the high-speed approximation, meaning it is relevant only

for airspeeds in which the induced velocity through the main-rotor disk is negligible as compared to
the airspeed the helicopter flies at. This makes the conventional method irrelevant for modeling and
estimating power required in the low-airspeed regime. The CVSDR method is by no means bound by
this high-speed approximation and is indeed relevant for the low-airspeed regime. As seen in Fig. 16,
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the CVSDR method was also applied to the low-airspeed regime and provided adequate power estima-
tions in this regime. Three power estimations were made for the advance ratios of 0.05, 0.07 and 0.08
representing true-airspeeds of 19, 30 and 35Kn, respectively. Those estimations were at a similar accu-
racy level as achieved for the high-speed regime. Nevertheless, statistical analysis for Sortie 5 and the
CVSDR method showed no significant correlation between the power prediction errors and the advance
ratio.

6.0 Conclusions
The conventional flight-test method to evaluate helicopter performance in level flight includes many
drawbacks that seriously compromise its accuracy and its execution efficiency. The proposed CVSDR
method aims at addressing those downsides of the conventional flight-test method. The CVSDR method
showed great potential as it was used successfully with level-flight test data obtained from a MBB BO-
105 helicopter. The power prediction accuracy achieved using the CVSDR method was nearly 21%
better than the level of accuracy yielded from the conventional flight-test method. Moreover, the CVSDR
method does not require the test crew to follow a strict and binding flight scheduling, as mandated by
the conventional method. This potentially makes the CVSDR more efficient and time conserving. The
CVSDR is estimated to reduce flight-time for data points gathering by at least 60%. The CVSDR method
is not restricted by the high-speed approximation and is therefore relevant to the low-airspeed regime,
as opposed to the conventional flight-test method. This low-airspeed regime relevancy can potentially
bridge the empirical-modelling gap between the two most important flight regimes of the helicopter –
the hover, and the level flight. Although demonstrated using flight-test data from a BO-105 helicopter,
the CVSDR method is applicable for any other type of conventional helicopter in level flight.
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