Remark on ordered abelian groups Donald P. Minassian

Let N be a subgroup of the torsion-free abelian group G. Then a partial order for N is contained in one, two or uncountably many full orders for G, and a full order for nonzero N is contained in one or uncountably many full orders for G.

Fuchs and Sasiada [2, Theorem 2] exhibit a group G with a proper subgroup N such that every full order for N can be extended to exactly two full orders for G. This fails in abelian G. (Henceforth $N \subseteq G$ are torsion-free abelian groups; thus G is an O^* -group - cf. [1, p. 39, Corollary 13] - and so every partial order for N, being a partial order for G, extends to some full order for G.) In fact, this comprehensive result holds:

THEOREM.

- (a) A partial order P(N) for N is contained in one, two or uncountably many full orders L(G) for G.
- (b) A full order L(N) for nonzero N is contained in one or uncountably many such L(G).

Proof (a). Let

 $S \equiv \{g \in G \mid mg \in P(N) \text{ for integer } m \text{ implies } m = 0\}$ If $S = \emptyset$, then every g in G has a nonzero multiple in P(N), and, trivially, exactly one L(G) extends P(N). If the set S has 'rank 1', that is, the largest independent subset (language of abelian groups) of G contained in S has one element, it is easily checked that

Received 26 July 1971.

411

exactly two L(G) extend P(N). Now suppose S has rank > 1, and without loss of generality let G be divisible; we test two cases:

Case 1: $G = R \oplus R$, where R is the additive rationals. Consider this simple geometric argument. Any L(G) consists, in usual Cartesian 2-space, of all rational pairs (x, y) in a half-plane T bounded by a line through the origin (and including one of the two rays from the origin which comprise the boundary); conversely, each such T induces a full order for G and distinct T induce distinct orders. Similarly, P(N)is a subset of a 'smallest wedge' W with vertex at the origin, where Whas some angle α in $[0, \pi]$. If $\alpha < \pi$, then clearly P(N) extends to continuously many T. But S has rank > 1, so $\alpha < \pi$.

Case 2: G has (finite or infinite) rank > 2. If $\{s, t\}$ is an independent subset of G in S, take $G = R_1 \oplus R_2 \oplus \ldots$ where every R_i is R, and R_1 (respectively R_2) consists of all rational multiples of s (respectively t). Now $P \equiv P(N) \cap (R_1 \oplus R_2)$ is a partial order for $R_1 \oplus R_2$ which by Case 1 extends to uncountably many full orders L_j for $R_1 \oplus R_2$. For each such j, $P_j \equiv P(N) + L_j$ is a partial order for G containing P(N), and the P_j are distinct and extend to distinct L(G).

(b). If $S = \emptyset$, then L(N) extends to exactly one L(G) as above (cf. Neumann and Shepperd [3, Lemma 2.9]). If $S \neq \emptyset$, let s be in S and h in $L(N) - \{0\}$. Now G contains $(s) \oplus (h)$, where () is 'subgroup generated by'. Let $(h) \subseteq (s) \oplus (h)$ bear the full order L((h)) induced by L(N) on (h). There are uncountably many full orders L_j on $(s) \oplus (h)$ which induce L((h)); for each such j let a partial order P_j for G be the subsemigroup $L_j + (0, L(N))$ of $(s) \oplus N \subseteq G$. Each P_j contains L(N), and the P_j are distinct and extend to distinct L(G).

References

[1] L. Fuchs, Partially ordered algebraic systems (Pergamon, Oxford, London, New York, Paris, 1963).

412

- [2] L. Fuchs and E. Saşiada, "Note on orderable groups", Ann. Univ. Sci. Budapest. Eötvös, Sect. Math. 7 (1964), 13-17.
- [3] B.H. Neumann and J.A.H. Shepperd, "Finite extensions of fully ordered groups", Proc. Roy. Soc. London Ser. A 239 (1957), 320-327.

Butler University, Indianapolis, Indiana, USA.