Remark on ordered abelian groups
 Donald P. Minassian

Abstract

Let N be a subgroup of the torsion-free abelian group G. Then a partial order for N is contained in one, two or uncountably many full orders for G, and a full order for nonzero N is contained in one or uncountably many full orders for G.

Fuchs and Sasiada [2, Theorem 2] exhibit a group G with a proper subgroup N such that every full order for N can be extended to exactly two full orders for G. This fails in abelian G. (Henceforth $N \subseteq G$ are torsion-free abelian groups; thus G is an O^{*}-group - cf. [1, p. 39, Corollary 13] - and so every partial order for N, being a partial order for G, extends to some full order for G.$) In fact, this comprehensive$ result holds:

THEOREM.
(a) A partial order $P(N)$ for N is contained in one, two or uncountably many full orders $L(G)$ for G.
(b) A full order $L(N)$ for nonzero N is contained in one or uncountably many such $L(G)$.

Proof (a). Let $S \equiv\{g \in G \mid m g \in P(N)$ for integer m implies $m=0\}$ If $S=\emptyset$, then every g in G has a nonzero multiple in $P(N)$, and, trivially, exactly one $L(G)$ extends $P(N)$. If the set S has 'rank l' , that $^{\prime}$ is, the largest independent subset (language of abelian groups) of G contained in S has one element, it is easily checked that

Received 26 July 1971.
exactly two $L(G)$ extend $P(N)$. Now suppose S has rank >1, and without loss of generality let G be divisible; we test two cases:

Case 1: $G=R \oplus R$, where R is the additive rationals. Consider this simple geometric argument. Any $L(G)$ consists, in usual Cartesian 2-space, of all rational pairs (x, y) in a half-plane T bounded by a line through the origin (and including one of the two rays from the origin which comprise the boundary); conversely, each such T induces a full order for G and distinct T induce distinct orders. Similarly, $P(N)$ is a subset of a 'smallest wedge' W with vertex at the origin, where W has some angle α in $[0, \pi]$. If $\alpha<\pi$, then clearly $P(N)$ extends to continuously many T. But S has rank >1, so $\alpha<\pi$.

Case 2: G has (finite or infinite) rank >2. If $\{s, t\}$ is an independent subset of G in S, take $G=R_{1} \oplus R_{2} \oplus \ldots$ where every R_{i} is R, and R_{1} (respectively R_{2}) consists of all rational multiples of s (respectively t) . Now $P \equiv P(N) \cap\left(R_{1} \oplus R_{2}\right)$ is a partial order for $R_{1} \oplus \cdot R_{2}$ which by Case 1 extends to uncountably many full orders L_{j} for $R_{1} \oplus R_{2}$. For each such $j, P_{j} \equiv P(N)+L_{j}$ is a partial order for G containing $P(N)$, and the P_{j} are distinct and extend to distinct $L(G)$.
(b). If $S=\varnothing$, then $L(N)$ extends to exactly one $L(G)$ as above (cf. Neumann and Shepperd [3, Lemma 2.9]). If $S \neq \emptyset$, let s be in S and h in $L(N)-\{0\}$. Now G contains $(s) \oplus(h)$, where () is 'subgroup generated by'. Let $(h) \subseteq(s) \oplus(h)$ bear the full order $L((h))$ induced by $L(N)$ on (h). There are uncountably many full orders L_{j} on $(s) \oplus(h)$ which induce $L((h))$; for each such j let a partial order P_{j} for G be the subsemigroup $L_{j}+(0, L(N))$ of (s) $\oplus N \subseteq G$. Each P_{j} contains $L(N)$, and the P_{j} are distinct and extend to distinct $L(G)$.

References

[1] L. Fuchs, Partially ordered algebraic systems (Pergamon, Oxford, London, New York, Paris, 1963).
[2] L. Fuchs and E. Sasiada, "Note on orderable groups", Ann. Univ. Sci. Budapest. Eötvös, Sect. Math. 7 (1964), 13-17.
[3] B.H. Neumann and J.A.H. Shepperd, "Finite extensions of fully ordered groups", Proc. Roy. Soc. London Ser. A 239 (1957), 320-327.

Butler University, Indianapolis, Indiana, USA.

