# POSITIVE VALUES OF INHOMOGENEOUS QUINARY QUADRATIC FORMS OF TYPE $(4,1)$ 

R. J. HANS-GILL and MADHU RAKA

(Received 17 December 1979, revised 14 October 1980)
Communicated by A. J. van der Poorten


#### Abstract

Here it is proved that if $Q(x, y, z, t, u)$ is a real indefinite quinary quadratic form of type (4, 1) and determinant $D$, then given any real numbers $x_{0}, y_{0}, z_{0}, t_{0}, u_{0}$ there exist integers $x, y, z, t, u$ such that $$
0<Q\left(x+x_{0} y+y_{0} z+z_{0,} t+t_{0} u+u_{0}\right)<(8|D|)^{1 / 5} .
$$

All critical forms are also obtained.


1980 Mathematics subject classification (Amer. Math. Soc.): 10 E 20.

## 1. Introduction

Let $Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a real indefinite quadratic form in $n$ variables with signature $(r, n-r), 0<r<n$ and determinant $D \neq 0$. It is known (see Blaney (1948)) that there exists a real number $\kappa$, depending upon $n$ and $r$ only, such that given any real numbers $c_{1}, c_{2}, \ldots, c_{n}$ the inequality

$$
0<Q\left(x_{1}+c_{1}, x_{2}+c_{2}, \ldots, x_{n}+c_{n}\right) \leqslant(\kappa|D|)^{1 / n}
$$

has a solution in integers $x_{1}, x_{2}, \ldots, x_{n}$. Let $\Gamma_{r, n-r}$ denote the infimum of all such numbers $\kappa$. Davenport and Heilbronn (1947) proved that $\Gamma_{1,1}=4 . \Gamma_{2,1}=4$ was proved by Barnes (1961) and $\Gamma_{1,2}=8$ was obtained by Dumir (1967). Dumir (1968a, b) has also shown that $\Gamma_{3,1}=16 / 3$ and $\Gamma_{2,2}=16$. The authors (1980) proved that $\Gamma_{3,2}=16$. In this paper we prove that $\Gamma_{4,1}=8$. All the critical forms are also obtained. More precisely we prove:

Theorem. Let $Q(x, y, z, t, u)$ be a real indefinite quinary quadratic form of type $(4,1)$ and determinant $D(<0)$ then given any real numbers $x_{0}, y_{0}, z_{0}, t_{0}, u_{0}$, there exist integers $x, y, z, t, u$ such that

$$
\begin{equation*}
0<Q\left(x+x_{0}, y+y_{0}, z+z_{0}, t+t_{0}, u+u_{0}\right)<(8|D|)^{1 / 5} . \tag{1.1}
\end{equation*}
$$

The sign of equality in (1.1) is necessary if and only if either

$$
\begin{equation*}
Q(x, y, z, t, u) \sim \rho Q_{1}=\rho\left(x y+z^{2}+t^{2}+u^{2}+z t+t u+u z\right) \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
Q(x, y, z, t, u) \sim \rho Q_{2}=\rho\left(x^{2}+y^{2}+z^{2}+t^{2}-4 u^{2}\right) \tag{1.3}
\end{equation*}
$$

where $\rho>0$.
For $Q_{1}$, the sign of equality in (1.1) is necessary if and only if $\left(x_{0}, y_{0}, z_{0}, t_{0}, u_{0}\right)$ $\equiv(0,0,0,0,0)(\bmod 1)$ while for $Q_{2}$ it is needed if and only if $\left(x_{0}, y_{0}, z_{0}, t_{0}, u_{0}\right) \equiv$ $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)(\bmod 1)$.

## 2. Some lemmas

In the course of the proof we shall use the following lemmas:
Lemma 1. If $Q$ is as in the theorem, there exist integers $x_{1}, y_{1}, z_{1}, t_{1}, u_{1}$ such that

$$
\begin{equation*}
0<Q\left(x_{1}, y_{1}, z_{1}, t_{1}, u_{1}\right)<(8|D|)^{1 / 5} \tag{2.1}
\end{equation*}
$$

The sign of equality in (2.1) is necessary if and only if $Q \sim \rho Q_{1}, \rho>0$.
This follows from some results of Watson (1968), Jackson (1969) and Oppenheim (1953a). Also see Watson (1958).

Let $\varphi(y, z, t, u)$ be a real indefinite quaternary quadratic form of type $(3,1)$ and determinant $D(<0)$. We need the following results:

Lemma 2. Given any real numbers $y_{0}, z_{0}, t_{0}, u_{0}$, there exist $(y, z, t, u) \equiv$ $\left(y_{0}, z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
\begin{equation*}
|\varphi(y, z, t, u)|<(|D| / 3)^{1 / 4} . \tag{2.2}
\end{equation*}
$$

This is a theorem due to Dumir (1967).
Lemma 3. There exist integers $y_{2}, z_{2}, t_{2}, u_{2}$ such that

$$
\begin{equation*}
0<\varphi\left(y_{2}, z_{2}, t_{2}, u_{2}\right)<(4|D|)^{1 / 4} \tag{2.3}
\end{equation*}
$$

except when $\varphi(y, z, t, u) \sim \rho \varphi_{1}=\rho\left(y^{2}+y z+z^{2}+t u\right)$ and $\varphi(y, z, t, u) \sim \rho \varphi_{2}$ $=\rho\left(y^{2}+z^{2}+t u\right), \rho>0$.

This is Theorem 2 of Oppenheim (1953b).

Lemma 4. There exist $(y, z, t, u) \equiv\left(y_{0}, z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
\begin{equation*}
0<-\varphi(y, z, t, u)<(22|D|)^{1 / 4} \tag{2.4}
\end{equation*}
$$

This follows from Theorem 1 of the authors (1980).

Lemma 5. Let $\psi(z, t, u)$ be a real indefinite ternary quadratic form of type $(2,1)$ and determinant $D(<0)$. Then given any real numbers $z_{0}, t_{0}, u_{0}$ there exist $(z, t, u)=\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
\begin{equation*}
|\psi(z, t, u)| \leqslant(27|D| / 100)^{1 / 3} \tag{2.5}
\end{equation*}
$$

This is a theorem due to Davenport (1948).

Lemma 6. Let $\psi(z, t, u)$ be as in Lemma 5. Let $c=\frac{9}{8}, \frac{1}{2}$ or $\frac{1}{3}$. Then given any real numbers $z_{0}, t_{0}, u_{0}$ there exist $(z, t, u) \equiv\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
\begin{equation*}
-c(f(c)|D|)^{1 / 3}<\psi(z, t, u) \leqslant(f(c)|D|)^{1 / 3} \tag{2.6}
\end{equation*}
$$

where $f\left(\frac{9}{8}\right)=\frac{512}{2187}, f\left(\frac{1}{2}\right)=\frac{256}{429}$ and $f\left(\frac{1}{3}\right)=\frac{27}{32}$. The sign of equality in $(2.6)$ is necessary if and only if $c=\frac{1}{3}$ and $\psi \sim \rho \psi_{1}, \rho>0$ where $\psi_{1}=z^{2}+t^{2}-4 u^{2}$. For $\psi_{1}$ the equality is needed if and only if $\left(z_{0}, t_{0}, u_{0}\right) \equiv\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)(\bmod 1)$.

For $c=\frac{9}{8}$ and $\frac{1}{2}$, the result follows from a theorem of Dumir (1969). For $c=\frac{1}{3}$, it is due to the authors (1979).

Lemma 7. Let $\alpha, \beta$, and $d$ be real numbers with $d \geqslant 1$. Then given any real number $x_{0}$, there exists $x \equiv x_{0}(\bmod 1)$ such that

$$
\begin{equation*}
0<(x+\alpha)^{2}-\beta^{2}<d \tag{2.7}
\end{equation*}
$$

provided

$$
\beta^{2} \begin{cases}<(d-1)^{2} / 4 & \text { if } d \text { is an integer }  \tag{2.8}\\ <[d]^{2} / 4 & \text { if } d \text { is not an integer. }\end{cases}
$$

Further strict inequality in (2.8) implies strict inequality in (2.7).

This is Lemma 6 of Dumir (1968a).

Lemma 8. Let $n$ be an integer $>1$. If $f(d)$ is an increasing function of $d$ for $d>n$ and if

$$
\begin{equation*}
f(d)<(d-1)^{2} / 4 \quad \text { for } d>n+1 \tag{2.9}
\end{equation*}
$$

then for $n<d<n+1$,

$$
\begin{equation*}
f(d)<[d]^{2} / 4 \tag{2.10}
\end{equation*}
$$

This obvious lemma is useful in many calculations.

## 3. Proof of the theorem

Let

$$
\begin{equation*}
m=\inf _{\substack{x, y, z, t, u \in Z, Q(x, y, z, t, u)>0}} Q(x, y, z, t, u) . \tag{3.1}
\end{equation*}
$$

By Lemma 1,

$$
0<m<(8|D|)^{1 / 5}
$$

If $m=0$, the result follows from a result of Watson (1960). So we can suppose that $m>0$ in the rest of the paper. Let $0<\varepsilon_{0}<\frac{1}{16}$ be a sufficiently small number. Then we can find integers $x_{1}, y_{1}, z_{1}, t_{1}, u_{1}$ such that

$$
Q\left(x_{1}, y_{1}, z_{1}, t_{1}, u_{1}\right)=\frac{m}{1-\varepsilon} \leqslant(8|D|)^{1 / 5}
$$

where $0 \leqslant \varepsilon<\varepsilon_{0}$ and g.c.d. $\left(x_{1}, y_{1}, z_{1}, t_{1}, u_{1}\right)=1$. By a suitable unimodular transformation we can suppose that

$$
Q(1,0,0,0,0)=m /(1-\varepsilon)
$$

and write

$$
Q(x, y, z, t, u)=m(1-\varepsilon)^{-1}\left\{\left(x+h y+g z+h^{\prime} t+g^{\prime} u\right)^{2}+\varphi(y, z, t, u)\right\}
$$

where $|h| \leqslant \frac{1}{2},|g| \leqslant \frac{1}{2},\left|h^{\prime}\right| \leqslant \frac{1}{2},\left|g^{\prime}\right| \leqslant \frac{1}{2}$ and $\varphi(y, z, t, u)$ is a real indefinite quadratic form of type $(3,1)$ with determinant

$$
\begin{equation*}
D(m /(1-\varepsilon))^{-5}<-\frac{1}{8} \tag{3.2}
\end{equation*}
$$

Equality in (3.2) occurs if and only if $Q \sim \rho Q_{1}$ (by Lemma 1). Also by definition of $m$, we have, for any integers $x, y, z, t, u$ either $Q(x, y, z, t, u)<0$ or $Q(x, y, z, t, u) \geqslant m$. Because of homogeneity it suffices to prove:

Theorem A. Let $Q(x, y, z, t, u)=\left(x+h y+g z+h^{\prime} t+g^{\prime} u\right)^{2}+$ $\varphi(y, z, t, u)$, where $\varphi(y, z, t, u)$ is a real indefinite quaternary quadratic form of type $(3,1)$ and determinant $D$ such that

$$
\begin{equation*}
D \leqslant-\frac{1}{8} \quad\left(D=-\frac{1}{8} \text { if and only if } Q \sim Q_{1}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|h| \leqslant \frac{1}{2}, \quad|g| \leqslant \frac{1}{2}, \quad\left|g^{\prime}\right| \leqslant \frac{1}{2}, \quad\left|h^{\prime}\right|<\frac{1}{2} \tag{3.4}
\end{equation*}
$$

Suppose further that for integers $x, y, z, t, u$ we have
(3.5) either $Q(x, y, z, t, u)<0$ or $Q(x, y, z, t, u) \geqslant 1-\varepsilon$, where $\mathrm{E}(>0)$ is sufficiently small. Let

$$
\begin{equation*}
d=(8|D|)^{1 / 5} \tag{3.6}
\end{equation*}
$$

Then given any real numbers $x_{0}, y_{0}, z_{0}, t_{0}, u_{0}$ there exist $(x, y, z, t, u) \equiv$ $\left(x_{0}, y_{0}, z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ satisfying

$$
\begin{equation*}
0<Q(x, y, z, t, u)<d \tag{3.7}
\end{equation*}
$$

The sign of equality in (3.7) is necessary if and only if $Q \sim Q_{1}$ or $Q_{2}$. For $Q_{1}$, equality occurs if and only if $\left(x_{0}, y_{0}, z_{0}, t_{0}, u_{0}\right) \equiv(0,0,0,0,0)(\bmod 1)$ while for $Q_{2}$ it occurs if and only if $\left(x_{0}, y_{0}, z_{0}, t_{0}, u_{0}\right) \equiv\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)(\bmod 1)$.

### 3.1. Proof of Theorem A.

Lemma 9. If $Q(x, y, z, t, u)$ is as defined in Theorem A , then for integers $y, z, t, u$ we have

$$
\begin{equation*}
\text { either } \varphi(y, z, t, u)<0 \text { or } \varphi(y, z, t, u)>\frac{3}{4}-\varepsilon . \tag{3.8}
\end{equation*}
$$

This result and its proof is similar to Lemma 4.1 of Dumir (1969).

Lemma 10. If $Q=Q_{1}$, then (3.7) is true with strict inequality unless $\left(x_{0}, y_{0}, z_{0}, t_{0}, u_{0}\right) \equiv(0,0,0,0,0)(\bmod 1)$, in which case equality is necessary.

Proof. Here $|D|=\frac{1}{8}$, so that $d=1$.
Case (i). $\left(x_{0}, y_{0}\right) \neq(0,0)(\bmod 1)$. Suppose without loss of generality that $x_{0} \neq 0(\bmod 1)$. Choose $(z, t, u) \equiv\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ arbitrarily, $x \equiv x_{0}$ $(\bmod 1)$ such that $0<|x|<\frac{1}{2}$ and then choose $y \equiv y_{0}(\bmod 1)$ to satisfy

$$
0<x y+z^{2}+t^{2}+u^{2}+z t+t u+u z<|x|<\frac{1}{2}<d=1
$$

Case (ii). $\left(x_{0}, y_{0}\right) \equiv(0,0)(\bmod 1)$. First we deal with the case when $\left(z_{0}, t_{0}, u_{0}\right)$ $\neq(0,0,0)(\bmod 1)$. Without loss of generality we can suppose that $z_{0} \neq 0$ $(\bmod 1)$. Choose $z \equiv z_{0}(\bmod 1)$ such that $0<|z|<\frac{1}{2}$. Now choose $t \equiv$
$t_{0}(\bmod 1)$ such that $0 \leqslant|t+z / 3| \leqslant \frac{1}{2}$ and $u \equiv u_{0}(\bmod 1)$ such that $0<$ $|u+t / 2+z / 2| \leqslant \frac{1}{2}$. Take $x=y=0$. So that

$$
\begin{aligned}
0 & <x y+z^{2}+t^{2}+u^{2}+z t+t u+u z \\
& =x y+(z / 2+t / 2+u)^{2}+3(t+z / 3)^{2} / 4+2 z^{2} / 3 \\
& \leqslant \frac{1}{4}+\frac{3}{4} \cdot \frac{1}{4}+\frac{2}{3} \cdot \frac{1}{4}=\frac{29}{48}<1 .
\end{aligned}
$$

Now let $\left(x_{0}, y_{0}, z_{0}, t_{0}, u_{0}\right) \equiv(0,0,0,0,0)(\bmod 1)$. Then equality is needed in (3.7) because $x y+z^{2}+t^{2}+u^{2}+z t+t u+u z$ takes integral values only.

Since from (3.3), $d=(8|D|)^{1 / 5} \geqslant 1$ and $d=1$ if and only if $Q \sim Q_{1}$, we can suppose that $d>1$ in the rest of the paper.

Lemma 11. Let $\nu_{1}=d-\frac{1}{4}$ and $\nu_{2}>0$ be a real number satisfying

$$
\nu_{2} \begin{cases}\leqslant(d-1)^{2} / 4 & \text { if } d \text { is an integer },  \tag{3.9}\\ <[d]^{2} / 4 & \text { if } d \text { is not an integer. }\end{cases}
$$

Suppose that we can find $(y, z, t, u) \equiv\left(y_{0}, z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
\begin{equation*}
-\nu_{2}<\varphi(y, z, t, u)<\nu_{1} \tag{3.10}
\end{equation*}
$$

then for any $x_{0}$, there exists $x \equiv x_{0}(\bmod 1)$ satisfying (3.7). Further strict inequality in (3.10) implies strict inequality in (3.7).

Proof. If $0<\varphi(y, z, t, u) \leqslant \nu_{1}$, choose $x \equiv x_{0}(\bmod 1)$ such that

$$
\left|x+h y+g z+h^{\prime} t+g^{\prime} u\right|<\frac{1}{2}
$$

so that

$$
0<Q(x, y, z, t, u)<\nu_{1}+\frac{1}{4}=d
$$

Strict inequality holds if we have strict inequality in (3.10). If $-\nu_{2}<\varphi(y, z, t, u)$ $\leqslant 0$, then the result follows from Lemma 7 with $\alpha=h y+g z+h^{\prime} t+g^{\prime} u$ and $\beta^{2}=-\varphi(y, z, t, u)$.

Lemma 12. If $d>11$, then (3.7) is true with strict inequality.
Proof. By Lemma 4, there exist $(y, z, t, u) \equiv\left(y_{0}, z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
0<-\varphi(y, z, t, u)<(22|D|)^{1 / 4}
$$

that is

$$
-\left(11 d^{5} / 4\right)^{1 / 4}<\varphi(y, z, t, u)<0 .
$$

Then the result will follow from Lemma 11, if we have

$$
\left(11 d^{5} / 4\right)^{1 / 4}< \begin{cases}(d-1)^{2} / 4 & \text { if } d \geqslant 12 \\ {[d]^{2} / 4} & \text { if } 11<d<12\end{cases}
$$

$f(d)=\left(11 d^{5} / 4\right)^{1 / 4}$ is an increasing function of $d$ for $d>1$. By Lemma 8 , it is enough to verify the above inequality for $d \geqslant 12$. This verification is easy and we omit the proof.

Lemma 13. If $4<d \leqslant 11$, then again (3.7) is true with strict inequality.

Proof. By Lemma 2, there exist $(y, z, t, u) \equiv\left(y_{0}, z_{0}, t_{0}, u_{0}\right)$ with

$$
|\varphi(y, z, t, u)| \leqslant(|D| / 3)^{1 / 4}=\left(d^{5} / 24\right)^{1 / 4}
$$

The result will follow from Lemma 11, if we have

$$
\begin{equation*}
\left(d^{5} / 24\right)^{1 / 4}<d-\frac{1}{4} \tag{3.11}
\end{equation*}
$$

and

$$
\left(d^{5} / 24\right)^{1 / 4}< \begin{cases}(d-1)^{2} / 4 & \text { if } 5 \leqslant d \leqslant 11  \tag{3.12}\\ {[d]^{2} / 4} & \text { if } 4<d \leqslant 5\end{cases}
$$

We observe that by Lemma 8, it is enough to verify (3.12) for $5<d \leq 11$. Verification of these inequalities is easy and is left to the reader.

Remark. For $1<d \leqslant 4$, we shall repeat the procedure of reduction described in Section 3. We shall use Lemma 3 on the homogeneous minimum of positive values of quaternary forms of type $(3,1)$. So we first dispose of the exceptional forms.

Lemma 14. If $\varphi(y, z, t, u) \sim \rho \varphi_{1}$ or $\rho \varphi_{2}, 1<d \leqslant 4, \rho>0$, then again (3.7) is true with strict inequality.

Proof. Case (i). $\varphi \sim \rho \varphi_{1}$. It is enough to consider

$$
\varphi=\rho \varphi_{1}=\rho\left(y^{2}+y z+z^{2}+t u\right)
$$

So that

$$
Q(x, y, z, t, u)=\left(x+h y+g z+h^{\prime} t+g^{\prime} u\right)^{2}+\rho\left(y^{2}+y z+z^{2}+t u\right)
$$

If $g^{\prime} \neq 0$, then by (3.4) we get $0<Q(0,0,0,0,1)=g^{2}<\frac{1}{4}<1-\varepsilon$. This contradicts (3.5). Therefore $g^{\prime}=0$. Similarly $h^{\prime}=0$. Consideration of the values of $Q$ at the points $(0,0,1,-1,1)$ and $(0,1,0,-1,1)$ gives $g=h=0$. Therefore
$Q(x, y, z, t, u)=x^{2}+\rho\left(y^{2}+y z+z^{2}+t u\right)$ and $|D|=3 \rho^{4} / 16$. Here $\rho=$ $(16|D| / 3)^{1 / 4}=\left(2 d^{5} / 3\right)^{1 / 4}<2 d$ for $d \leqslant 4$.

Subcase $(\mathrm{i}) .\left(t_{0}, u_{0}\right) \not \equiv(0,0)(\bmod 1)$. Without loss of generality we can suppose that $t_{0} \not \equiv 0(\bmod 1)$. Choose $(x, y, z) \equiv\left(x_{0}, y_{0}, z_{0}\right)(\bmod 1)$ arbitrarily, $t \equiv t_{0}(\bmod 1)$ such that $0<|t|<\frac{1}{2}$ and then choose $u \equiv u_{0}(\bmod 1)$ satisfying

$$
0<x^{2}+\rho\left(y^{2}+y z+z^{2}+t u\right)<\rho|t|<\rho / 2<d .
$$

Subcase (ii). $\left(t_{0}, u_{0}\right) \equiv(0,0)(\bmod 1)$. Take $t=u=0$. Choose $x \equiv x_{0}(\bmod 1)$ such that $|x|<\frac{1}{2}, z \equiv z_{0}(\bmod 1)$ such that $|z|<\frac{1}{2}$ and $y \equiv y_{0}(\bmod 1)$ such that $|y+z / 2|<\frac{1}{2}$. So that

$$
\begin{aligned}
0 & \leqslant x^{2}+\rho\left(y^{2}+y z+z^{2}+t u\right) \\
& =x^{2}+\rho(y+z / 2)^{2}+3 \cdot \rho z^{2} / 4+\rho t u<7 \rho / 16+\frac{1}{4}<d .
\end{aligned}
$$

(It can be easily checked that $7 \rho / 4<4 d-1$, for $d<4$.) Therefore (3.7) is satisfied with strict inequality unless $x=0, y+z / 2=0, z=0$. In this case change $x$ to 1 , then (3.7) is satisfied with strict inequality.

Case (ii). $\varphi \sim \rho \varphi_{2}, \rho>0$ is similar and is left to the reader.

### 3.2. Proof of Theorem A continued

From now on we can suppose that $1<d \leqslant 4$ and $\varphi(y, z, t, u) \nsim \rho \varphi_{1}$ or $\rho \varphi_{2}$, $\rho>0$. By Lemma 3, there exist integers $y_{2}, z_{2}, t_{2}, u_{2}$ with g.c.d. $\left(y_{2}, z_{2}, t_{2}, u_{2}\right)=1$ such that

$$
\begin{equation*}
0<a=\varphi\left(y_{2}, z_{2}, t_{2}, u_{2}\right)<(4|D|)^{1 / 4}=\left(d^{5} / 2\right)^{1 / 4} . \tag{3.13}
\end{equation*}
$$

Also from (3.8) we have $a>\frac{3}{4}-\varepsilon$. By a suitable unimodular transformation we can suppose that $\varphi(1,0,0,0)=a$. So we can write

$$
\varphi(y, z, t, u)=a\left\{\left(y+f z+f^{\prime} t+f^{\prime \prime} u\right)^{2}+\psi(z, t, u)\right\}
$$

where

$$
\begin{equation*}
\frac{3}{4}-\varepsilon<a<\left(d^{5} / 2\right)^{1 / 4} \tag{3.14}
\end{equation*}
$$

and $\psi(z, t, u)$ is a real indefinite ternary quadratic form of type $(2,1)$ and determinant $D / a^{4}$.

In view of Lemma 11, it is enough to prove that there exist $(y, z, t, u) \equiv$ $\left(y_{0}, z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
\begin{equation*}
-\nu / a<\left(y+f z+f^{\prime} t+f^{\prime \prime} u\right)^{2}+\psi(z, t, u)<(4 d-1) / 4 a, \tag{3.15}
\end{equation*}
$$

where

$$
v= \begin{cases}\frac{9}{4} & \text { if } 3<d \leqslant 4  \tag{3.16}\\ 1 & \text { if } 2<d \leqslant 3 \\ \frac{1}{4} & \text { if } 1<d \leqslant 2\end{cases}
$$

Let $\mu_{1}=(4 d-1-a) / 4 a$ and $\lambda=(4 d-1+4 \nu) / 4 a$. Using (3.14) one can easily verify that $\mu_{1}>0$ and $\lambda>1$.

Lemma 15. Let $\mu_{2}>0$ be a real number satisfying

$$
\mu_{2} \leqslant \begin{cases}(\lambda-1)^{2} / 4+\nu / a & \text { if } \lambda \text { is an integer } \\ {[\lambda]^{2} / 4+\nu / a} & \text { if } \lambda \text { is not an integer } .\end{cases}
$$

Suppose that there exist $(z, t, u) \equiv\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
\begin{equation*}
-\mu_{2}<\psi(z, t, u)<\mu_{1} \tag{3.17}
\end{equation*}
$$

Then we can find $y \equiv y_{0}(\bmod 1)$ satisfying (3.15). Further strict inequality in (3.17) implies strict inequality in (3.15).

The proof is similar to that of Lemma 11, so we omit it.

Lemma 16. If $3<d \leqslant 4$, then (3.17) and hence (3.15) holds with strict inequality.

Proof. In this case $\nu=\frac{9}{4}$, so that $\lambda=(d+2) / a$.
By Lemma 6, we can find $(z, t, u) \equiv\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
-\left(|D| / 3 a^{4}\right)^{1 / 3}<\psi(z, t, u) \leqslant \frac{8}{9}\left(|D| / 3 a^{4}\right)^{1 / 3}=\frac{8}{9}\left(d^{5} / 24 a^{4}\right)^{1 / 3}
$$

Then (3.17) will hold with strict inequality if we have

$$
\begin{equation*}
\frac{8}{9}\left(d^{5} / 24 a^{4}\right)^{1 / 3}<(4 d-1-a) / 4 a \tag{3.18}
\end{equation*}
$$

and

$$
\left(d^{5} / 24 a^{4}\right)^{1 / 3}< \begin{cases}(\lambda-1)^{2} / 4+\frac{9}{4} a & \text { if } \lambda \text { is an integer }  \tag{3.19}\\ {[\lambda]^{2} / 4+\frac{9}{4} a} & \text { if } \lambda \text { is not an integer. }\end{cases}
$$

A simple calculation yields the inequality (3.18). So we proceed to verify (3.19). Let $n<\lambda=(d+2) / a<n+1, n=1,2,3, \ldots$ Then (3.19) will be satisfied if
we have

$$
\begin{equation*}
\left.d^{5} / 24<a\left(\frac{9}{4}+n^{2} a / 4\right)^{3}=g(a) \quad \text { (say }\right) \tag{3.20}
\end{equation*}
$$

Since $a \geqslant(d+2) / n+1$, we have

$$
g(a) \geqslant g((d+2) /(n+1))=(d+2)(n+1)^{-4} 4^{-3}\left\{9(n+1)+n^{2}(d+2)\right\}^{3}
$$

We shall have (3.20) if

$$
h(d)=d^{5} 4^{3} g((d+2) /(n+1))>\frac{8}{3}
$$

For fixed $n, h(d)$ is a decreasing function of $d$ and $d<4$, therefore

$$
h(d) \geqslant h(4)=6 \cdot 27 \cdot 4^{-5}(n+1)^{-4}\left\{3(n+1)+2 n^{2}\right\}^{3}>\frac{81}{16}
$$

because $n \geqslant 1$. This proves (3.20) and hence (3.19).

Lemma 17. If $2<d \leqslant 3$, then again (3.17) and hence (3.15) is satisfied with strict inequality.

Proof. In this case $\nu=1$, so that $\lambda=(3+4 d) / 4 a$. Let $n<(3+4 d) / 4 a \leqslant$ $n+1, n=1,2, \ldots$ In view of Lemma 15 , it is enough to prove that there exist $(z, t, u) \equiv\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
\begin{equation*}
-\left(n^{2} / 4+1 / a\right)<\psi(z, t, z)<(4 d-1-a) / 4 a \tag{3.21}
\end{equation*}
$$

Case (I). $n \geq 2$. By Lemma 5 , there exist $(z, t, u) \equiv\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
|\psi(z, t, u)| \leq\left(27|D| / 100 a^{4}\right)^{1 / 3}=\left(27 d^{5} / 800 a^{4}\right)^{1 / 3}
$$

Then (3.21) will hold if we have

$$
\begin{equation*}
\left(27 d^{5} / 800 a^{4}\right)^{1 / 3}<(4 d-1-a) / 4 a \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(27 d^{5} / 800 a^{4}\right)^{1 / 3}<n^{2} / 4+1 / a \tag{3.23}
\end{equation*}
$$

We omit the straightforward verification of these inequalities.
Case (II). $n=1$ that is $1<(3+4 d) / 4 a=\lambda \leqslant 2$. By Lemma 6, with $c=\frac{1}{2}$, we can find $(z, t, u) \equiv\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
-\frac{1}{2}\left(32 d^{5} / 429 a^{4}\right)^{1 / 3}<\psi(z, t, u)<\left(32 d^{5} / 429 a^{4}\right)^{1 / 3}
$$

Then (3.21) will hold if we have

$$
\begin{equation*}
\left(32 d^{5} / 429 a^{4}\right)^{1 / 3}<(4 d-1-a) / 4 a \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(32 d^{5} / 429 a^{4}\right)^{1 / 3}<2\left(n^{2} / 4+1 / a\right)=(a+4) / 2 a \tag{3.25}
\end{equation*}
$$

Since $(4 d-1-a) / 4 a<(a+4) / 2 a$ for $a \geqslant(3+4 d) / 8$ and $d<4$, it is enough to verify (3.24), which can be easily done.

Lemma 18. If $1<d \leqslant 2$, then again (3.17) and hence (3.15) is true.
Proof. In this case $\nu=\frac{1}{4}$, so that $\lambda=d / a$. Also from (3.13), $\lambda=d / a<$ $8 /(3-4 \varepsilon)<3$, on taking $\varepsilon$ sufficiently small. We distinguish two cases:

Case (i). $2<\lambda<3$. In this case $[\lambda]^{2} / 4+\nu / a=(1+4 a) / 4 a$. So we have to prove that there exist $(z, t, u) \equiv\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
\begin{equation*}
-(1+4 a) / 4 a<\psi(z, t, u)<(4 d-1-a) / 4 a . \tag{3.26}
\end{equation*}
$$

By Lemma 6, with $c=\frac{1}{2}$, there exist $(z, t, u) \equiv\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
-\frac{1}{2}\left(32 d^{5} / 429 a^{4}\right)^{1 / 3}<\psi(z, t, u)<\left(32 d^{5} / 429 a^{4}\right)^{1 / 3}
$$

Then (3.26) will hold with strict inequality if

$$
\left(32 d^{5} / 429 a^{4}\right)^{1 / 3}<\min \left(\frac{4 d-1-a}{4 a}, \frac{1+4 a}{2 a}\right)=(4 d-1-a) / 4 a
$$

This will be so if and only if

$$
g(a)=a(d-(1+a) / 4)^{3}>32 d^{5} / 429
$$

$g(a)$ is an increasing function of $a$ for $d / 3<a<d / 2$, therefore

$$
g(a)>g(d / 3)=\frac{1}{3} d\{d-(1+d / 3) / 4\}^{3}>32 d^{5} / 429
$$

if $h(d)=(11 d-3)^{3} d^{-4}>12^{3} \cdot 32 / 143$, which is true for $1<d<2$.
Case (ii). $1<\lambda<2$. In this case $[\lambda]^{2} / 4+\nu / a=(1+a) / 4 a$. By Lemma 15 , it is enough to prove that there exist $(z, t, u) \equiv\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
\begin{equation*}
-(1+a) / 4 a<\psi(z, t, u)<(4 d-1-a) / 4 a \tag{3.27}
\end{equation*}
$$

By Lemma 6, with $c=\frac{1}{3}$, there exist $(z, t, u) \equiv\left(z_{0}, t_{0}, u_{0}\right)(\bmod 1)$ such that

$$
-\frac{1}{3}\left(27|D| / 32 a^{4}\right)^{1 / 3}<\psi(z, t, u) \leqslant\left(27|D| / 32 a^{4}\right)^{1 / 3}
$$

Then (3.27) will follow if we have

$$
\left(27|D| / 32 a^{4}\right)^{1 / 3}=\left(27 d^{5} / 256 a^{4}\right)^{1 / 3}<\min ((4 d-1-a) / 4 a, 3(1+a) / 4 a)
$$

Now $(4 d-1-a) / 4 a \leq 3(1+a) / 4 a$ if and only if $d \leq 1+a$, which is true. (Strict inequality holds unless $d=2, a=d / 2=1$.) So it is enough to verify that

$$
\begin{equation*}
\left(27 d^{5} / 256 a^{4}\right)^{1 / 3}<(4 d-1-a) / 4 a \tag{3.28}
\end{equation*}
$$

We shall have (3.28) if and only if

$$
\begin{equation*}
g(a)=a(d-(1+a) / 4)^{3}>27 d^{5} / 256 . \tag{3.29}
\end{equation*}
$$

$g(a)$ increases or decreases according as $a<d-\frac{1}{4}$ or $a>d-\frac{1}{4}$ and since $d / 2<d-\frac{1}{4}, d / 2 \leqslant a<\left(\frac{1}{2} d^{5}\right)^{1 / 4},(3.29)$ will be true if

$$
\min \left\{g(d / 2), g\left(\left(d^{5} / 2\right)^{1 / 4}\right)\right\} \geqslant 27 d^{5} / 256 .
$$

Now $g(d / 2)=d(7 d-2)^{3} / 1024 \geqslant 27 d^{5} / 256$ if $f(d)=(7 d-2)^{3} d^{-4} \geqslant 108 . f(d)$ increases or decreases according as $d<\frac{8}{7}$ or $d>\frac{8}{7}$. Therefore

$$
f(d) \geqslant \min (f(1), f(2))=f(2)=108,
$$

and strict inequality holds unless $d=2$. The inequality $g\left(\left(d^{5} / 2\right)^{1 / 4}\right)>$ $27 d^{5} / 256$ can be easily verified.

Therefore (3.29) is satisfied with strict inequality unless $d=2, a=d / 2=1$. Hence (3.27) is true. Equality holds in (3.27) only if $d=2, a=1$, and $\psi, z_{0}, t_{0}$, $u_{0}$ are such that equality is needed in (2.6).

This completes the proof of Lemma 18.

## 4. The case of equality

Lemma 19. For $d>1$, the sign of equality in (3.7) is necessary if and only if $Q \sim Q_{2}$. For $Q_{2}$, it is so if and only if $\left(x_{0}, y_{0}, z_{0}, t_{0}, u_{0}\right) \equiv\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)(\bmod 1)$.

Proof. Equality can hold in (3.7) only if it holds in (3.15). This happens only if $d=2, a=1$ and $\psi, z_{0}, t_{0}, u_{0}$ are such that equality is necessary in (2.6) (see Lemma 18). Thus we must have $\psi \sim \rho \psi_{1}=\rho\left(z^{2}+t^{2}-4 u^{2}\right), \rho>0$ and $\left(z_{0}, t_{0}, u_{0}\right) \equiv\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)(\bmod 1)$. Then $4 \rho^{3}=|D| / a^{4}=d^{5} / 8 a^{4}=4$ so that $\rho=1$. Therefore $\varphi(y, z, t, u)=\left(y+f z+f^{\prime} t+f^{\prime \prime} u\right)^{2}+z^{2}+t^{2}-4 u^{2}$.

By a suitable unimodular transformation we can suppose that

$$
\begin{equation*}
|f| \leqslant \frac{1}{2}, \quad\left|f^{\prime}\right| \leqslant \frac{1}{2}, \quad\left|f^{\prime \prime}\right| \leqslant \frac{1}{2} . \tag{4.1}
\end{equation*}
$$

Again for equality to occur in (3.15), the following inequality

$$
\begin{aligned}
-\frac{1}{4}< & F(y, z, t, u)=\left(y+y_{0}+f\left(z+\frac{1}{2}\right)+f^{\prime}\left(t+\frac{1}{2}\right)+f^{\prime \prime}\left(u+\frac{1}{2}\right)\right)^{2} \\
& +\left(z+\frac{1}{2}\right)^{2}+\left(t+\frac{1}{2}\right)^{2}-4\left(u+\frac{1}{2}\right)^{2}<d-\frac{1}{4}=\frac{7}{4}
\end{aligned}
$$

should not have any solution in integers $y, z, t$, and $u$. Now

$$
-\frac{1}{4}<F(y, 0,0,0)=\left(y+y_{0}+\frac{f}{2}+\frac{f^{\prime}}{2}+\frac{f^{\prime \prime}}{2}\right)^{2}+\frac{1}{4}+\frac{1}{4}-1<\frac{7}{4}
$$

is solvable for integer $y$ unless

$$
\begin{equation*}
y_{0}+f / 2+f^{\prime} / 2+f^{\prime \prime} / 2 \equiv \frac{1}{2}(\bmod 1) \tag{4.2}
\end{equation*}
$$

Similarly considering $F(y,-1,0,0), F(y, 0,-1,0)$ and $F(y, 0,0,-1)$ for equality to occur we must have

$$
\begin{align*}
& y_{0}-f / 2+f^{\prime} / 2+f^{\prime \prime} / 2 \equiv \frac{1}{2}(\bmod 1)  \tag{4.3}\\
& y_{0}+f / 2-f^{\prime} / 2+f^{\prime \prime} / 2 \equiv \frac{1}{2}(\bmod 1)  \tag{4.4}\\
& y_{0}+f / 2+f^{\prime} / 2-f^{\prime \prime} / 2 \equiv \frac{1}{2}(\bmod 1) \tag{4.5}
\end{align*}
$$

Subtracting (4.3), (4.4) and (4.5) from (4.2) we get

$$
f \equiv f^{\prime} \equiv f^{\prime \prime} \equiv 0(\bmod 1)
$$

Then from (4.1) we have

$$
f=f^{\prime}=f^{\prime \prime}=0, \quad y_{0} \equiv \frac{1}{2}(\bmod 1)
$$

Therefore $\varphi(y, z, t, u)=y^{2}+z^{2}+t^{2}-4 u^{2}$, and $\left(y_{0}, z_{0}, t_{0}, u_{0}\right) \equiv\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ (mod 1). Hence

$$
Q(x, y, z, t, u)=\left(x+h y+g z+h^{\prime} t+g^{\prime} u\right)^{2}+y^{2}+z^{2}+t^{2}-4 u^{2}
$$

Again if equality is necessary in (3.7), the following inequality

$$
0<Q\left(x+x_{0}, y+\frac{1}{2}, z+\frac{1}{2}, t+\frac{1}{2}, u+\frac{1}{2}\right)<d=2
$$

should not have any solution in integers $x, y, z, t, u$. Proceeding as above, one can see that this is solvable unless

$$
h \equiv g \equiv h^{\prime} \equiv 0(\bmod 1)
$$

Since $|h|<\frac{1}{2},|g| \leqslant \frac{1}{2},\left|h^{\prime}\right| \leqslant \frac{1}{2},\left|g^{\prime}\right| \leqslant \frac{1}{2}$ from (3.4), we must have

$$
h=g=h^{\prime}=g^{\prime}=0 \quad \text { and } \quad x_{0} \equiv \frac{1}{2}(\bmod 1)
$$

Hence $Q(x, y, z, t, u)=x^{2}+y^{2}+z^{2}+t^{2}-4 u^{2}$ and $\left(x_{0}, y_{0}, z_{0}, t_{0}, u_{0}\right) \equiv$ $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)(\bmod 1)$. Considering congruences modulo 8 , one can see that the sign of equality is necessary in this case.

The proof of Theorem A follows from Lemmas 10-19, and thus our theorem is proved.

## Acknowledgements

The authors are very grateful to Professor R. P. Bambah and Professor V. C. Dumir for many useful discussions during the preparation of this paper.

## References

E. S. Barnes (1961), 'The positive values of inhomogeneous ternary quadratic forms', J. Austral. Math. Soc. 2, 127-132.
H. Blaney (1948), 'Indefinite quadratic forms in $n$ variables'. J. London Math. Soc. 23, 153-160.
H. Davenport (1948), 'Non-homogeneous ternary quadratic forms', Acta Math. 80, 65-95.
H. Davenport and H. Heilbronn (1947), 'Asymmetric inequalities for non-homogeneous linear forms', J. London Math. Soc. 22, 53-61.
V. C. Dumir (1967), 'Asymmetric inequalities for non-homogeneous ternary quadratic forms', Proc. Camb. Phil. Soc. 63, 291-303.
V. C. Dumir (1967), 'Inhomogeneous minimum of indefinite quaternary quadratic forms', Proc. Camb. Phil. Soc. 63, 277-290.
V. C. Dumir (1968a), 'Positive values of Inhomogeneous quaternary quadratic forms (I)', J. Austral. Math. Soc. 8, 87-101.
V. C. Dumir (1968b), 'Positive values of Inhomogeneous quaternary quadratic forms (II)', J. Austral. Math. Soc. 8, 287-303.
V. C. Dumir (1969), 'Asymmetric inequality for non-homogeneous ternary quadratic forms', J. Number Theory 1, 326-345.
R. J. Hans-Gill and Madhu Raka (1979), 'An a symmetric inequality for non-homogeneous ternary quadratic forms', Monatsh. Math. 87, 281-295.
R. J. Hans-Gill and Madhu Raka (1980), 'Some inequalities for non-homogeneous quadratic forms', Indian J. Pure Appl. Math. 11, 60-74.
R. J. Hans-Gill and Madhu Raka (1980), 'Positive values of inhomogeneous 5 -ary quadratic forms of type (3, 2)', J. Austral. Math. Soc., (Series A) 29 (1980), 439-453.
T. H. Jackson (1969), 'Small positive values of indefinite quadratic forms', J. London Math. Soc. (2) 1, 643-659.
A. Oppenheim (1953a), 'Values of quadratic forms II', Quart. J. Math. Oxford Ser. (2) 4, 60-66.
A. Oppenheim (1953b), 'One sided inequalities for quadratic forms (II), quaternary forms', Proc. London Math. Soc. 3, 417-429.
G. L. Watson (1958), 'One sided inequalities for integral quadratic forms', Quart. J. Math. Oxford Ser. (2) 9, 99-108.
G. L. Watson (1960), 'Indefinite quadratic polynomials', Mathematics 7, 141-144.
G. L. Watson (1968), 'Asymmetric inequalities for indefinite quadratic forms', Proc. London Math. Soc. (3) 18, 95-113.

[^0]
[^0]:    Centre for Advanced Study in Mathematics
    Panjab University
    Chandigarh-160014
    India

