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ABSTRACT

The paper deals with the renewal equation governing the infinite-time ruin
probability. It is emphasized as intended to be no more than a pleasant ramble
through a few scattered results. An interesting connection between ruin probability
and a recursion formula for computation of the aggregate claims distribution is
noted and discussed. The relation between danger of the claim size distribution
and ruin probability is reexamined in the light of some recent results on stochastic
dominance. Finally, suggestions are made as to the way in which the formula
for ruin probability leads easily to conclusions about the effect on that probability
of the long-tailedness of the claim size distribution. Stable distributions, in
particular, are examined.
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1. INTRODUCTION

Subsequent sections of this paper examine various aspects of ruin theory from
viewpoints which are very much heuristic. They contain very little original
material. Rather are they concerned with modes of thought which may be applied
to the various aspects of ruin theory considered in order to yield a better
understanding of them than is obtained by concentration on the mathematical
detail. From this point of view, the paper possibly has some didactic value and
indicates lines of thought which can lead to valuable conjectures—these latter
to be tested subsequently of course by rigorous mathematics.

Of course, ruin theory has been with us for the best part of the present century,
dating back to LUNDBERG (1909). However, the recent past has brought a number
of new techniques which facilitate manipulation of the theory, or indeed coherent
and suggestive thought on the subject. A number of the references given at the
end of the paper are quite modern, indicating the extent to which these new
techniques have been developing.

The particular aspect of ruin theory which has been selected to form the subject
of this paper is the renewal equation governing the infinite-time ruin probability.
The form of this equation is set out in Section 2. Subsequent sections derive from
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74 TAYLOR

that equation a few results on computation of ruin probabilities (Section 3), the
effect of danger of the claim size distribution (Section 4), and the effect of long
and short tailed claim size distributions (Section 5).

Undoubtedly, other topics could have been covered. However, it is to be
emphasised that the present paper is intended to be no more than a pleasant,
and slightly different, ramble through a few scattered results.

2. THE BASIC EXPRESSION FOR RUIN PROBABILITY

Consider the classical ruin process. That is, an initial reserve of x > 0 is increased
by premium income at the rate of c per unit time and decreased at random epochs
by claim payments.

These claims are generated by a Poisson process with a mean density of 1
claim per unit time. The sizes of the claims are i.i.d. with d.f. (B-) whose mean
is 1.

Write c = 1 +1), where r\ is the safety loading per unit of risk premium.
Define

(2-1) h(y)

and

F(x)=\ h(y)dy.
Jo

Note that F( •) is a defective d.f. It is possible to rewrite it as:

(2.2) F(x) = G(x)/c,

where

G(x)=i"g(y)dy,
Jo

with

(2.3) g(y) = l-B(y) = ch(y).

Since the mean associated with B( •) is unity, G is a non-defective d.f.
Now, let <f>(x) denote the probability that the free reserve generated by the

initial reserve x and the claims process described above remains non-negative at
all times, i.e., <j>(x) is the infinite-time probability of non-ruin given initial reserve
x.

As any of the standard texts on ruin theory shows (BUHLMANN, 1970; FELLER,

1966; GERBER, 1979; SEAL, 1969), cf>(x) satisfies a renewal equation:

r(2.4) <f>(x) = r,/c+\ 4>(x-y)h(y)dy.
Jo

Finally, define the infinite-time probability of ruin given initial reserve x:

i/Kx) = !-</>(*)•
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Exact and approximate solutions to equation (2.4) appear in various forms (again
see the standard texts). The particular form of the solution with which the present
exposition will concern itself is the following:

(2.5) <t>(x) = (rj/c)U(x),

where

"*((2.6) U(x)= I F"*(x),

the F"*( •) being defined in the usual way as a convolution:

(2.7) F"*(x) = I F<-1)*(x-y)dF(y)
Jo

= | F(n~l)*{x-y)h{y)dy.
Jo

By (2.5) and (2.6), the probability of non-ruin (j>(x) involves a sum of d.f.'s. It
is inconvenient for some purposes that these d.f.'s are defective. They may be
converted to non-defective by means of (2.2) and (2.3). Thus, (2.6) and (2.7)
may be replaced by the following:

(2.8) U(x)= I c-G"*(*),
n=0

with

(2.9) G"*(x)= I G("-m(x-y)dG(y)
Jo

= \X
 G^l)*(x-y)g(y)dy.

Jo

3. AN AGGREGATE CLAIMS AMOUNT REPRESENTATION OF SURVIVAL PROBABILITY

3.1. The Representation

If we write p = 1/(1 + rj), then (2.8) takes the form:

U(x) = (l + V)r,-1 I (l-p)pnG"*(x),
n=0

and, by (2.5),

(3.1.1) <*>(*)= I (l~p)p"G"*(x).
n=0

This is an interesting representation of the survival probability because it can be
recognised as the d.f. of aggregate claims when the number of claims has a
geometric distribution (parameter p) and claim size has d.f. G( •)
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76 TAYLOR

This representation can be found in BOWERS, GERBER, HICKMAN, JONES and
NESBITT (1982, Section 12.6), though their development of it is a little different
from here. It is repeated in PANJER (1984).

It follows that any algorithm available for the evaluation of the aggregate
claims distribution (subject to geometric claim frequency) can be used immedi-
ately to evaluate ruin probability.

3.2. A Connection with Panjer's Recursion

Evaluation of the aggregate claims distribution is precisely the purpose of Panjer's
recursion (PANJER, 1981; SUNDT and JEWELL, 1981). This recursion can be
applied to various claim frequency distributions of which the geometric distribu-
tion is one.

Panjer's formula is:

•i:(3.2.1) g(x)=pJ(x)+\ (a + by/x)f(y)g(x-y)dy, x>0,
Jo

where g(-) is the (continuous) p.d.f. of aggregate claims; pn is the probability
of n claims in the time period under consideration; / ( • ) is the p.d.f. of individual
claim size; and a, b are parameters characterizing the claim frequency distribution
which must satisfy:

(3.2.2) p^p^ia + b/n).

For the geometric claim frequency distribution appearing in Section 3.1, a =p,
b = Q. Moreover, in the application of recursion (3.2.1) to (3.1.1) it is necessary
to replace / by g, the p.d.f. associated with G (N.B. this g is not the same as
that appearing in (3.2.1); and g by <f>', the derivative of <j>. In this last replacement,
<t>' plays the role of a notional p.d.f. associated with <f> when the latter is viewed
as a d.f.

With these replacements, (3.2.1) becomes:

f
Jo

(3.2.3) 4>'(x) = (l-p)pg(x)+p\ g(y)<t>'(x-y)dy.
Jo

3.3. Recovery of the Renewal Equation from Panjer's Recursion

The particular application (3.2.3) of Panjer's recursion provides <j>' rather
than </>. The survival probability may be obtained by integrating (3.2.3). First,
(3.2.3) is rewritten using the fact that g(y) = ch(y), by (2.3);

4>'(x) = (l-p)h(x)+\ h(yW(x-y)dy [pc=l]
Jo

= {d/dx) f Hy)<t>(x-y)dy,
Jo
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where the last step has used the fact that <£(0) = 77/c = 1 -p. Then

<£(*) = r?/c+ I h(y)<l>(x-y)dy,
Jo

again using the fact that <f>(0) = 77/c.
Thus, the basic renewal equation (2.4) has been recovered from Panjer's

recursion (3.2.3).
Though a little academic, it is perhaps fascinating to note that the above

argument could have been applied in reverse, beginning with the renewal equation
(2.4). From this could have been derived (3.2.3), and hence (3.2.1) for the special
case in which:

(i) claim frequency follows a geometric distribution;
(ii) d.f. of aggregate claims amount is the same as some survival probability

0(-).

In other words, Panjer's recursion formula for aggregate claims distribution might
easily have arisen as a conjecture derived from the basic renewal equation of
ruin theory.

3.4. Computation of Ruin Probability

As noted in Section 3.1, algorithms available for the evaluation of aggregate
claims amount distribution may be readily applied to the evaluation of ruin
probability. Formula (3.2.3) provides one such example.

Practical application of such techniques in general circumstances require that
formulas like (3.2.3) be discretized. The discrete version of Panjer's recursion
(3.2.1) is provided by PANJER (1981, p. 25):

(3.4.1) gi = pifigi-j,

where g,,/ are the same p.d.f.'s as in Section 3.2 except that the distributions are
now discrete with mass points 0, h,2h,..., ih,..., for some step h>0.

The recursion (3.4.1) may be adapted to the ruin probability case in the same
way as (3.2.1) yielded (3.2.3):

(3.4.2) (d<l>)i = p i gjid^t-j,

where g, now represents the discretized version of the p.d.f. g( •) defined by (2.3)
and (d<t>)i is the increase in the function $(x) over the interval ((i-l)h,(i+\)h).
Similarly, we adopt (d<f>)0 = <£(0) = 1 ~P-

Shortly after circulation of the announcement of this lecture, Prof. H. H. Panjer
advised that he had been working along similar lines. A formula corresponding
to (3.4.2) (in fact, a more refined version) can be found in PANJER (1984).

Similar procedures have also appeared recently in the work of GOOVAERTS

and DE VYLDER (1984a).
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78 TAYLOR

It should be noted that, by (2.3), the p.d.f. g(-) always exists and so the
corresponding distribution cannot in fact be discrete. The discretization (3.4.2)
is necessarily, therefore, an approximation only.

Some further difficulties occur in relation to the existence of some mass at the
zero point under the "distribution function" </>(•). As this paper is concerned
only with broad ideas, these difficulties are not pursued. The details of their
treatment are provided by PANJER (1984).

3.5. Lundberg-Type Approximation to Ruin Probability

Suppose that the distribution associated with g( •) is approximated by a distribu-
tion of a finite random variable. This is done by assuming that

Then (3.4.2) reduces to:

(3.5.1) W),= I W W n when i

This is a linear recurrence relation in the (d<j>)i with constant coefficients pgs. The
asymptotic solution of such a system for large i is well-known. It takes the form:

(3.5.2) {d<f>)i = const, x a' + o(ai),

for some positive constant a.
It follows that

4>{ih)= I (tU/>),

= const, x a1+ o(a'),

i.e., putting x = ih, a = exp (-Rh), R const. > 0 (provided p < 1),

(3.5.3) ijj(x)~Cexp(-Rx) forx^-oo,

where C is a constant > 0.
The result (3.5.3) is recognised as the usual ruin probability approximation of

the Lundberg type.

3.6. Finite-Time Ruin Probability

The great bulk of this paper is concerned with the infinite time probability of
ruin ip(x). However, there is one very simple application of Panjer's results to
the finite-time ruin probability.

Let 4>{x, t) denote the probability of survival over the time interval [0, t] when
the initial free reserve is x. Thus, <f>{x) = <j>(x, oo).

SEAL (1969, p. 98) shows that:

(3.6.1) 0(O,O = i7/c + (cr)"1 U-P(y,t)]dy,
(•oo

r1 [i-
J Cl
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where P(y, t) is the probability that aggregate claims in the time interval [0, t]
do not exceed y.

Note that P( • ,t) may be evaluated by means of Panjer's recursion. To the
extent that this recursion simplifies the computation of the distribution of aggre-
gate claims amount, it also simplifies computation of <£(0, *)•

4. RUIN PROBABILITY AND DANGER OF THE CLAIM SIZE DISTRIBUTION

The concept of danger of a claim size distribution is introduced after the manner
of BUHLMANN, GAGLIARDI, GERBER and STRAUB (1977). Thus, it is said that
one claim size distribution with d.f. B^ is more dangerous than another with d.f.
B2if:

(i) <x>> fii^ fi2, where /J.U fi2 are the means of B,, B2 respectively;
(ii) there exists a constant a such that:

B,(x)3=B2(x) f o r x < a ;

B,(x)«B2(x) for x & a.

The following proposition, proved by BUHLMANN, GERBER, GAGLIARDI and
STRAUB (1977, p. 80) establishes a connection between danger of a distribution
and stop-loss premium.

PROPOSITION 4.1. IfBu B2 are d.fis and B1 is more dangerous than B2, then,
for each real t:

(4.1) I (x-t)dBx(x)*> I (x-t)dB2(x).

i.e. for any given retention, B, generates stop-loss premiums at least as great as B2.

It is convenient to introduce the terminology of GOOVAERTS, DE VYLDER and
HAEZENDONCK. (1984), who refer to (4.1) as second-degree stop-loss dominance
of B, over B2. The general definition of stop-loss dominance of course encom-
passes nth degree dominance. Goovaerts, de Vylder and Haezendonck establish
relations between this type of dominance and stochastic dominance.

Present interest is in only first-order stochastic domiance, defined as follows.
A d.f. Bj is said to have first-order stochastic dominance over d.f. B2 if B,(x) =e B2(x)
for all x.

Also of interest for present purposes are the following propositions
(GOOVAERTS, DE VYLDER and HAEZENDONCK, 1984, p. 308).

PROPOSITION 4.2. Stochastic dominance of nth degree is preserved under mixing
of distributions.

PROPOSITION 4.3. Stochastic dominance of nth degree is preserved under convol-
ution of distributions.
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80 TAYLOR

Now consider how these results bear upon the ruin probability given by (2.5)
and (2.8). It is seen that survival probability <f>(x) is obtained by:

(i) convolution of the d.f. G( •) ;
(ii) mixing of the resulting convolutions.

Now let G,, Uh & be associated with Bt, i = 1,2, through (2.3), (2.8) and (2.5)
respectively. Note that the stop-loss dominance (4.1) may be written equivalently

as:

i.e.,

[1-B2(x)]dx.

Jo Jo
B2(x)]dx,

when fiu fi2<<x>, and assuming that B,(0) = B2(0) = 0 (i.e., positive claim sizes).
Thus, if

(4.2) Mi = M2,

then, by (2.3), (4.1) is equivalent to

(4.3) Gi(x)=£G2(;c) for each x,

i.e. G, is first-degree stochastically dominant over G2.
The above results may be combined to yield the following:

more dangerous than B2

by (4.3)
(by definition, p,, = fj,2 = 1)

1
Gj first-degree stochastic

Propositions 4.

1
</>! first-degree stochastic

) 3= ip2(x)

dominance

2 and 4.3

dominance

for all x

over

over

G2

<^2
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Thus, the following result, originally proved by TAYLOR (1976, pp. 204-205) is
recovered.

PROPOSITION 4.4. If one individual claim size distribution B1 is more dangerous
than another B2, then the associated infinite-time ruin probabilities are related as
follows:

* , ( * ) * 02(x) for all x.

Moreover, it may be checked through the above proof that equality between ipi(x),
ij/2(x) for all x occurs only if Bu B2 are identical a.e.

Taylor obtained this result by means of integral inequalities. Here the same result
has been obtained by much simpler and more direct methods. Rather similar
methods are used by DE VYLDER and GOOVAERTS (1984b, Theorem 2) to establish
the same result.

As a final remark, brief reference is made to the discussion in Sections 4 and
5 of GOOVAERTS and DE VYLDER (1984b). It is pointed out there that the result
of Proposition 4.4 can be reversed in the case of finite-time ruin probabilities.

Indeed, it follows immediately from (3.6.1) that:

Bx more dangerous than B2

Proposition 4.1

Jl
Bt stop-loss dominant over B2

Px( •, t) first-degree stop-loss dominant over P2( •, t)

by

* (o . f

(3

Jl«
6.1)

2(o, 0 .

In this reasoning P,( •, t) denotes P(-,t) of (3.6.1) with B( •) replaced by B,( •),«' =
1,2. The first step in the chain of reasoning is easily derivable from results of
GOOVAERTS and DE VYLDER (1984a, Theorems 6 and 7) on preservation of
stop-loss dominance under mixing and convolution.

The above result is extended somewhat by GOOVAERTS and DE VYLDER (19846,
especially Theorem 4 and the diagram in Section 5).
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It is interesting to let t -> oo in the last result, and compare with Proposition
4.4. It then follows that

(4.4) </,,(()) = <A2(0)

regardless of the respective dangers of Bt and B2.
This result is consistent with the well-known general result:

5. INFLUENCE OF CLAIM SIZE DISTRIBUTION ON PROBABILITY OF RUIN

5.1. General

This section is intended to be no more than heuristic. The issues to be examined
briefly are:

(i) the reasons why \ji(x), as a function of x, differs so greatly according to
whether the distribution of individual claim size is long or short tailed;

(ii) the meaning of the terms long and short tailed in (i);
(iii) in the short tailed case, the insensitivity of the function i/»(x) to the detailed

shape of B(-).
To begin with it will be helpful to write Gn*( •) as the d.f. of the mean of n
drawings from the d.f. G( •), whereas G"* is the d.f. of the sum of the n drawings.
Thus,

(5.1.1) G"*(x) = Gn*(nx).

Combination of (2.8) and (5.1.1) yields:

(5.1.2) U(x)= I c~"Gn*(x/n).
n=0

The two expressions for U(x), (2.8) and (5.1.2), show that the properties of tj/(x)
are determined by the properties of sums of drawings from the d.f. G( •), or on
the alternative view by the properties of means of drawings from G( •).

5.2. A Heuristic Argument

The final observation of Section 5.1 leads one naturally to consider application
of the central limit theorem.

We shall return shortly to the question of applicability of this theorem, but
suppose for the moment it can be applied to G"*(x/n) in (5.1.2). Then, as w->oo,

(5.2.1) G"*(x/n)^®(x/n;n,(T2/n),

the probability that a normal variate with mean /J, and variance cr2/ n assumes a
value of x/n or less, /J. and a2 being the mean and variance of G(-). The
convergence in (5.2.1) is convergence in measure.
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Note also that (5.1.2) may be rewritten as:

(5.2.2) U(x) = c/V - I c-"[l - G"*(x/n)],
n=0

and consider large x.
For small values of n, the convergence in (5.2.1) does not take effect, but the

summands in (5.2.2) are small anyway because of the largeness of x. As n becomes
large, (5.2.1) takes effect so that (5.2.2) gives U(x) approximately as:

(5.2.3) c/V-l c-"[l-<I>(x/n;M,a2/n)].

This is very much a heuristic result. There are two aspects of it which have not
been treated with care.

Firstly, no attention has yet been given to the validity of the convergence
(5.2.1). While quite mild conditions on G( •) enable the conclusion that G"*(xn) -*
3>(xn; /A, cr2/n), xn = /x + xa/sfn, as n-»oo, relation (5.2.1) is another matter
entirely. For in this latter case, the value of the argument of G"*(-) at which
convergence is sought is varying with n in another way; and in fact varying
further into the left tail of G"*( •).

Secondly, proper deduction of (5.2.3) from (5.2.1) and (5.2.2) would require
some investigation of effect of accumulating (by summation over n) the errors
of approximation of G"*(x/n) by <J>(X/M; fi,a2/n).

Neither of these matters has been treated above. Nor will any complete
treatment be attempted. However, it will become apparent in Section 5.4 that
(5.2.1) is not valid for certain distributions G(-) which are long tailed in the
sense described there. It will also appear in Section 5.3 that a rigorous evaluation
of (5.2.2) in the case of certain short tailed distributions (in the sense defined
there) leads to results broadly compatible with (5.2.3).

Thus it appears that the validity of (5.2.3) as a rough approximation to U(x)
for large x depends on the d.f. G( •) being sufficiently short tailed. The meaning
of "short tailed" will be considered further in Section 5.3. If G( •) is not sufficiently
short tailed, then the appearance of <P in the approximation (5.2.3) is not justified,
and one might suspect that U( •), and therefore t/»( •) undergoes radical change
as G( •) moves from distributions which are short tailed to those which are not.
It will be seen in Sections 5.3 and 5.4 that this is indeed the case.

5.3. Ruin Probability for Short Tailed Claim Size Distributions

For the moment, (5.2.3) continues to be taken on trust as an approximation to
U(x) for large x. Then, by (2.5),

(5.3.1) ^(X) = 1 - 0 ( X ) ~ ( T ? / C ) I c-"[l-*(x/fi;/t,<r2/B)].

This expression is not particularly easy to evaluate, but it does convey one
significant fact about i/Kx) for large x. Since the right side of (5.3.1) is determined
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by just 17, ft, a2, there must be an approximation to if/(x) also dependent on just
these quantities. By the definition of G( •) in Section 2,

(5.3.2) M = «2/2, o-2=a3/3-(a2/2)2,

where a^ denotes the fcth moment about the origin of claim size d.f. B( •); and
where (5.3.2) has been computed on the assumption that B(0) = 0, i.e., claim
sizes are positive. Note that, by assumption, a1 = l.

The conclusion from (5.3.2) and the paragraph preceding it is that there is a
reasonable approximation to \j/{x) for large x depending on just 17 and the first
three moments of the claim size distribution.

This will now be shown consistent with the Lundberg type of approximation
(e.g., SEAL, 1969, p. 131, who also cites LUNDBERG, 1909, 1926):

(5.3.3) <Mx)~ const, xe"**,

where the "adjustment coefficient" R > 0 is the solution of the characteristic
equation:

(5.3.4) [ eKx[l-B(y)]dy = l + jl.
Jo

This solution has been shown (TAYLOR, 1974, p. 12) to take the form:

(5.3.5) R s s h . E ( + 0
a2 6 \a2/ \ a 2

Similar results have been obtained by DE VYLDER (1978).
It is clear that, as predicted, there is an approximation to tff(x) for large x

(namely (5.3.3)) which is essentially determined by 77 and the first three moments
of claim size distribution.

This observation tends to break down if 17 becomes too large in (5.3.5). This
is reasonable because, for large r) (i.e., large c), the higher order terms in (5.2.2)
assume reduced importance. Correspondingly, there is increased emphasis on
the lower order terms where the approximation (5.2.1) is poor. Hence (5.2.3)
cannot be expected to lead to a good approximation to tp(x).

Moreover, it must be noted that the adjustment coefficient R exists, i.e., (5.3.4)
has a solution, only if the moment generating function of [1 - B(y)] as a p.d.f.
exists. For positive claim sizes, this is the same as requiring that the m.g.f. of the
claim size distribution exist. This in turn is the same as requiring that the tail of
the claim size distribution converge to zero at least as rapidly as some negative
exponential distribution.

If this last requirement be taken as defining short tailed distributions, then it
is seen that:

(i) short tailed claim size distributions yield ruin probabilities quite compatible
with the heuristic result of Section 5.2;

(ii) such ruin probabilities ij/(x) may be approximated, for large x and 17 not
too large, by an expression depending on just rj and the first three moments
of the (short tailed) claim size distribution.
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5.4. Ruin Probability for Long Tailed Claim Size Distributions

5.4.1. General

Since Section 5.3 considered short tailed claim size distributions as those converg-
ing exponentially to zero, attention is now turned to others.

Recall from Section 5.1 that the properties of t/»(x) are determined by the
properties of sums of drawings from the claim size distribution. This suggests
examining two classes of distribution:

(i) the subexponential class;
(ii) the stable distributions.

5.4.2. Claim Size Distributions Related to the Subexponential Class

These are dealt with in the ruin theory context by EMBRECHTS and VERAVERBEKE
(1982). A d.f. G( •) on [0, oo) is said to be subexponential if

EMBRECHTS and VERAVERBEKE (1982, p. 62) point out that the m.g.f. of any
member of the subexponential class does not converge. Thus, such distributions
are indeed long tailed in the sense of Section 5.3. The cited authors point out
that the lognormal and Pareto distributions lie in this class.

As noted by EMBRECHTS and VERAVERBEKE (1982, p. 62),

(5.4.2.1) 1 - G"*(x) ~ n[l - G(x)] for large x

This has immediate consequences for (2.8). If this latter is rewritten as:

(5.4.2.2) U(x) = C/T, - I c - [ l - G-*(x)],

for G(-) subexponential, then substitution of (5.4.2.1) yields:

(5.4.2.3) U(x)~c/V- £ nc-"[l-G(x)] for large x,
n=0

= - [ l - G ( x ) ] for large x
V

Once again, quite inadequate attention has been given to convergence questions
in the cavalier substitution of approximation (5.4.2.1) under the infinite sum of
(5.4.2.2). Hence (5.4.2.3) can be viewed as no more than a heuristic result.

Nevertheless, at the heuristic level and by the very simple procedure illustrated
above, we have obtained precisely one of the main results of EMBRECHTS and
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VERAVERBEKE (1982, Theorem 4.6), viz. if G( •) as defined in Section 2 is in the
subexponential class, then (5.4.2.3) holds.

Note that, for large x, i/f(x) then follows the complementary d.f. of G( •). This
stands in contrast with th'e situation for short tailed claim size distributions whose
asymptotic ruin probabilities are essentially characterized by only 77 and the low
order moments of the claim size distribution. This is a manifestation of the
phenomenon, foreshadowed at the end of Section 5.2, whereby (•) undergoes a
radical change as claim size distribution changes from short tailed to long tailed.

It is interesting to compare the approximation (5.4.2.3) with the inequality
derived by BROECKX, GOOVAERTS and DE VYLDER (1984):

(5.4.2.4) *(x)*-[l-G(x)-]p(x)
V

with /8 (*)-»• 1 as x-»oo. This bound on ruin probability applies to any claim size
distribution.

5.4.3. Claim Size Distributions Related to the Stable Distributions

Recall that the d.f. G( •) denned in Section 2 is said to be stable if:

(5.4.3.1) G"*(x) = G(a-l(x~bn)),

for some centralizing constants bn>0 and norming constants an>0.
A useful, somewhat weaker, concept is the following. The d.f. G( •) is said to

belong to the domain of attraction of another d.f. H{ •) if there exist constants
am bn > 0, such that:

(5.4.3.2) Gn*(x) + H(a-\x-bH)) as n-»co.

Only a stable distribution can have a domain of attraction (FELLER, 1966, p. 576).
A stable distribution H(-) is characterized by an exponent 0<a=s2 which

has the following significance (FELLER, 1966, p. 576):

(5.4.3.3) - l - / / (x )~cons t . [ (2 -a ) / a ]x~" for XH> 00.

Also, if G( •) is in the domain of attraction of H( •), then G( •) has the same tail:

(5.4.3.4) l -G(x)~cons t . [ (2-a) /a ]x~" for i->00.

The norming constants are related to this exponent (FELLER, 1966, p. 170):

(5.4.3.5) an = n1/a.

Moreover, it is known (FELLER, 1966, p. 171) that bn- b(an-n) for some
constant b.

Now suppose that the claim size distribution is such that G( •) lies in the
domain of attraction of a stable d.f. H( •). Substitution of (5.4.3.3) and (5.4.3.5)
in (5.4.3.2) gives, for large JC:

(5.4.3.6) 1 - G"*(x) -* const. [(2 - a) /a][rT1 / a (x - bn)Y"

= const. [(2-a)/a]nx~a(\-bn/xy as
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Note the tail form (5.4.3.4) of G( •), and hence of G"*( •) since G in the domain
of attraction of H implies the same G"*. Hence the requirement of large n may
be dropped from (5.4.3.6), i.e.,

(5.4.3.7) l - G " * ( x ) ~ [ ( 2 - a ) / a ] x n [ l - G ( x ) ] for large x.

Thus, for 0 < a < 2, self-convolution of a d.f. in the domain of attraction of a
stable d.f. produces the same result (i.e., (5.4.2.1)) as obtained with a subexponen-
tial d.f.

Now note that the right side of (5.4.3.7) vanishes when a — 2, which case
corresponds to the case of normal, and therefore short tailed, H( •). Thus, (5.4.3.7)
translates as:

(5.4.3.8) «A(x) ~ const. x [ l -G(x ) ] for large x,

in case the d.f. G( •) is stable with exponent 0 < a < 2.
It is interesting to remark that this result may be partially verified by other

means. BROECKX, GOOVAERTS and DE VYLDER (1984) show that, for any claim
size distribution, i/»(x) is subject to upper and lower bounds whose asymptotic
forms are:

f%dG(jo] and - [ l - G ( x ) ] ,
Jo J v

respectively for large x.
These may be rewritten as:

.xx-1 f [ 1 - .
Jo

(5.4.3.9) const, xx"1 | [1-G(y)]dy,

and

(5.4.3.10) const. x [ l -G(x ) ] ,

respectively for large x.
Now consider G( •) in the domain of attraction of a stable distribution with

exponent 0<a <1 .
By (5.4.3.4), the asymptotic forms of these bounds are both const. xx~a for

large x; which verifies (5.4.3.8) in this case.

5.4.4. Moderately Long Tailed Claim Size Distributions

Section 5.2 considered short tailed claim size distributions, i.e., those whose
m.g.f.'s converge.

Of those whose m.g.f.'s do not converge, essentially the subexponential family
was considered in Section 5.3. As remarked by EMBRECHTS and VERAVERBEKE
(1982, p. 62), these distributions are sufficiently long tailed that the aggregate of
n claims is likely to be dominated by one very large claim.
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Sections 5.2 and 5.3 indicate the radically different behaviour of (/>(•) under
the influence of these long and short tailed claim size distributions. It is perhaps
of interest to consider "moderately long tailed" claim size distributions, i.e., those
whose m.g.f.'s do not converge but are in some sense close to doing so.
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