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1. Introduction

This is a sequel to a recent paper [1] on the construction by the hodograph
method of trans-sonic nozzle-flows of a perfect gas. At the end of that paper
it was shown how we can obtain regular flows that are ultimately uniform
(as required in the test section of a supersonic wind tunnel), and the object
now is to give some quantitative examples of such flows. The gas is supposed
to have the polytropic equation of state Pp~y = constant, and the calcula-
tions have been made for the case y — 1.4, with the Mach number M = 2.25
at the test section. The results, which are exhibited graphically, are indicative
of what may be expected for other supersonic values of M, and it is hoped
that they may be significant for the design of wind tunnels.

In the hodograph method we regard the stream function tp and the position
coordinates x, y as functions of the magnitude q and the direction-angle 0
(from Ox) of the velocity. The field equations are linear, and a solution of
them determines three related functions ip(q, 6), x(q, B), y(q, 6). The solutions
which are to be considered are to have 0 = 0 as an axis of symmetry, so
that x is an even function of 6 and y, ip odd, with the properties that near
the axis

(i) x increases steadily as q increases from 0 to a supersonic value q0,
(ii) as q decreases to 0, x decreases to — oo,
(iii) as q increases to q0, x tends to a limit which is + oo, or (exceptionally)

finite.
A family of such solutions, depending on two parameters a, b, may be

specified in the form

(1) y = yT — ayR + by>Ut x = xT — axR + bxv, y = yT — ayR + byv,

where the suffixes T, R, U indicate three standard solutions with the
distinctive properties that T gives a trans-sonic flow, R radial flow and U a
flow that is ultimately uniform. Our object is to survey the flow patterns
given by this family.
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2. The basic solutions

R is the solution for radial flow. Its Legendre potential is

(2)

and

cos 0 sin 6
ipR=-6,

where (3 = l/(y — 1) and q is the dimensionless measure of speed such that
q = I gives the limiting speed at which p — 0, M = oo.

The specification of the solutions T, U involves a fair amount of detail,
which is available in [2] and is suppressed from what follows: Trans-sonic
nozzle flows are best handled with the aid of a transformation

<7sin <b
(3) 0 = <f> — 2a arc tan * r

1 — q cos <£

where a is the positive root of 2a(1 + a) = /5 = l/(y — 1). This trans-
formation has a branch locus

0=± co{q),

where co (q) is a function which is real positive for supersonic q and imaginary
for subsonic q; to a given (^, 0) correspond three points (q, <f>), which are all
real if |0| 5^ co (q) but of which only one is real if |0| > co(q) or if q is subsonic.
The locus is characteristic for the hodograph equation, and hence (essen-
tially) a trans-sonic nozzle flow in the a^-plane is in one-one correspondence
with the <7<£-plane near the axis, whereas the correspondence with the
g-0-plane is 3 : 1 for |0| < co(q). The loci 0 = constant in the g^-plane are
sketched in figure 2R.

In [2] a set of single valued functions Qv{q, <f>), P = 0, 1, 2, • • •, has been
defined.

T denotes the solution whose Legendre potential is Re O2(q, <f>), where <f> is
the real root of (3). I t has been tabulated in [2], and its general character
can be seen from figures 1 and 2T below; it is regular for all q, <f> tha t here
come into question, and dxT/dq is strictly positive for (f> = 0 and 0 < q < 1.

To define the solution U we start with the function Qx(q, <f>') where, for
subsonic q or supersonic q with co(q) > |0|, cf>' is the unreal root of (3) whose
imaginary part is positive. By (3) we can write

a function with lines of singularity 0 = ±(o{q). Then if q0 is the chosen
ult imate speed for the nozzle flow, we define 0O = co{q0), and the solution U
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is the one whose Legendre potential is

(4) Qa = - Re {f(q, 60 + 6>) + f(q, d0 - 6)}

where the constant c is so chosen that d^Qu/dq3 = 0 at the axial sonic point
<7 — <ls> Q — 0; the adjunction of the term cQR is for the purposes of the
superposition (1) trivial, but it serves to give the solution U the clear-cut
properties exhibited in figures 1 and 2U, where the level curves of ipu{q, 6)
have been transferred via (3) to the ^-plane. The curve ipv = 0 has 3
branches through the axial sonic point, and in this neighbourhood we have
the approximation ipu = C(q — qs)B, which is connected with the approxi-
mation xv — C'(q — qs)

3 by the formulae of [1], § 2. On the characteristic
loci q0AB and CD, whose equation is o)(q) — 6 = 60, the function ipv

becomes positive infinite like {d-\-60—(o(q)}~y2; and on BC, co(q)-\-d = 60,
it becomes negative infinite; and xv, yv have similar singularities.

3. Singularities of the flow field

The equations (1) will specify a regular flow-field in the a?«/-plane in so far
as they give a regular one-one mapping between the qj>- and #2/-planes.
This condition is satisfied, for some strip of the ^-plane centred on the axis
<f> = 0, provided that dx/dq > 0 for 0 < q < q0, <f> = 0; and from figure 1 it
is seen that this will be so for a, b ^ 0, provided a is not too large.
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Fig. 1. a on axis, as function of q2, for solutions T, R, U.

A 'natural boundary' of the flow field will be given, in the ^-plane,
by the nearest level curve xp = constant to the axis on which the mapping
becomes singular. In a region where tp is regular (which is always here the
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case) two sorts of singularities may be encountered:
(i) a point P where y>Q = y)<l> = 0, which will be a minimax or extremum

of ip according as qP is subsonic or supersonic; in the present context only
the former case occurs;

(ii) a point P where a level curve tp = constant has inflexional contact with
a characteristic curve (i.e. the two curves touch and cross); this can occur
only when qP is supersonic; the level curves 'beyond' P map on to the
#?/-plane as curves with two cusps, and the loci of these cusps form limit-lines
which come together in a cusp at the map of P.

. 3 . 4

3 0

60

B

Fig. 2. Hodograph plane, with qi, <f> as cartesian coordinates.

T: Level curves of y>T

R: Level curves of — y)R, = 6
U: Level curves of y>y
H: Representative characteristics (thin), and hodographs of natural boundaries of solutions

I, II, IV.

Apart from these possible singularities it is not acceptable physically to
have, on the ideal fluid approximation to a real flow, a stretch of a bounding
wall where the acceleration is negative. It is therefore required that no level
curve should cross any locus q = constant more than once, so we reckon
amongst the singularities

(iii) a point P where a level curve y) = constant has inflexional contact with
a locus q = constant.
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The general character of the level curves of ip = \pT — a\pR + bipv can
be seen on considering figure 2. For b > 0 there must always be a col
(i.e. a minimax of ip), which is near C when b is small and near the axial
point qs when b is large. Also there must be an inflexional singularity near
A, when b is positive and not too large. For the 'accurate' placing of these
singularities we must of course plot the level curves (for which a prior
task is to tabulate ip(q, <f>)), and this serves also to place the inflexional
contact with a characteristic, which in practice always occurs. In this way
the natural boundary to the flow field is found, and from (1) the streamlines
can be plotted in the a^-plane. Examples are shown in figures 4, 5, and for
three of them the hodographs are shown in figure 2H.

We call the singularity which determines the natural boundary of the flow
field the dominant one. Numerical exploration shows that, according to the
values of a, b, the dominant singularity may be of any of the types (i), (ii),
(iii) set out above; the results in this matter are shown in figure 6 — where
the following comment on the case b — 0 is required.
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Fig. 3. x on axis, as function of q*, for solutions I, II, III, IV.
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4. The case b = 0

[6]

On account of the infinity of ipv on the fixed curve qQABCD the case 6 = 0
is to be distinguished from the limit of the case b > 0 as b -> 0; the two
cases can be symbolically distinguished as T — aR, T — aR + (0 +)£/.
If we think of the level curves of ip as contour lines of a surface, the surface
ipT — aipR is regular across the curve q0ABCD; but the surface
xpT — ay>R + (0 -\-)tpu runs smoothly up to vertically ascending cliffs along
qQAB and CD and to a descending cliff along CB, and where a regular contour
line abuts on one of these cliffs it is to be regarded as continued horizontally
across the cliff. This picture is instructive because there are limiting forms
of the formulae (1) which give a one-one mapping of the cliff face on to the
xy-plane — formulae which in fact give the 'simple wave' continuation of the
flow up to the cliff. For each streamline, so continued, the limits of x, y as
q -> q0 are finite, and 0 -> 0, so finally each streamline can be smoothly
continued parallel to the axis. The procedure hence gives the merging of a
throat-flow into a uniform supersonic stream via a simple wave, usually
performed by the method of characteristics.

Fig. 4. Streamlines and isovels for solutions I (above) and II (below).

It is of course at our choice whether a set of level curves of ipT — aipR,
on meeting a part of the singular curve, are to be continued regularly across
the curve or singularly along it. In the present context we naturally take the
regular continuation across CD and CB but the singular continuation along
BAq0> and the symbolism T — aR -f- (0 -f )C7 is to be taken as implying
this. For this solution it is clear that we must reckon the point A to be an
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inflexional singularity (iii), and a level curve abutting on BA will be outside
the natural boundary.

Fig. 5. Streamlines and isovels for solutions III (above) and IV (below).

An interesting corollary follows. At A the loci 0 = — co(q) and
a>(q) — 6 = co(q0) = 60 intersect, so 0 = — £0O. Also 0 > 0A throughout
the region of regularity of y>v, as is seen from figures 2U and 2R. Hence
in the supersonic expansion of a stream to the limiting speed q0 no streamline
can have a point where \0\ > %co(q0).*

Fig. 6. Dependence of dominant singularity on a, b: (c) col, (i) inflexion (I) incipient limit line.
(For b > 1 the boundaries are not placed with precision).

Returning now to figure 6, the points where b = 0 are to be taken as
referring to the solution T — aR + (0 -\-)U. For a = 0.895 the natural
boundary passes through both C and A; for 0.859 < a < 0.895 the natural
boundary passes through A but below C; while for 0 < a < 0.859 it passes

* By 'expansion' we mean to imply a restriction to points downstream from the locus
6 = 0. The vital fact is that no streamline can cross the characteristic q0AB and this
(and the assertion in the text) appears to hold irrespective of restriction to flows of the
family (1); for if a streamline finishing at q0 crossed q0AB there would be tangencies
between streamlines and characteristics, and hence limit-lines in the field.
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above A, and is determined by a (proper) inflexional singularity which the
solution T — aR 'happens' to have. For a > 2.292 the natural boundary is
determined by a limit-line singularity (ii) and passes above A.

The limiting forms of (1) for b = 0 + , referred to above, are obtained
from the formulae (24) of [1], which, writing

(5) x = X cos 0 — Y sin 0, y = X sin 0 + Y cos 0,

give the principal parts of Xv, Yv, \pv near the locus 0 + 0O = co(q) on
which f(q, 0 + 0O) is infinite. Since

2(1 + a)q cos a = 1 + (1 + 2a)?2

on the singular locus, these formulae are equivalent to

(1 _ g»yi+fi)/2 ft

(6) bYv = - r i ( l -q^brpu + 0(6)

w = wT — awR -f- bwrj, Y = YT — aYR + 0(b),
q(l-q2Y

where £ -> 0 as the singular locus is approached. Thus, before letting
6 -> 0, (1) are equivalent to

(7)

Now for following an assigned streamline along the singular locus (i,e. the
'cliff'), in the limiting case 6 = 0 + , y> has an assigned value and yT, xpR

have the determinate values appropriate to the current point on the locus.
Hence bipv has a determinate limit (which determines the limit of 6/£ in (6)
as 6, £ -> 0). The limiting values of X, Y now follow from (7)23 by omitting
the 0(6) terms, and x, y follow from (5).

It is of mathematical interest that the uniform stream with q — q0,
0 = 0, which is the final singular continuation of the flow, may be obtained
from limits (as 6 -> 0) at the axial point q = q0, 0 = 0 where both terms
f(q, 0O + 0), f(q, 0O — 0) in (4) are singular.

5. Discussion

The flow fields considered in this paper belong to the ideal fluid approxi-
mation. We may expect such an ideal field to give a good approximation to
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a flow of a real fluid in a nozzle except near the bounding walls (where the
real flow will have a boundary layer), provided that the first and second
spatial derivatives of the velocity do not become too large in the interior of
the field.

To minimize the disturbance from the boundary layer the relative length
of the nozzle, i.e. the ratio of its length to the breadth of its test section,
should be as small as possible. Since our ideal fields extend to infinity a
significant definition of relative length must depend essentially upon the
cut-off points chosen for the physical walls. For any likely choice of these
points it is plain (from the behaviour of xUt figure 1) that the relative length
will in general increase with the parameter 6, so that the relatively shortest
nozzles will be those with 6 = 0 + . However, for 6 = 0 + the first spatial
derivatives of the velocity field have finite discontinuities at the entrance
to the simple-wave region, whereas for 6 > 0 the field is everywhere regular,
with second derivatives which decrease in magnitude as b increases. The
solution T — 1.012.R + 0.0SU suggests that by suitably choosing b we may
obtain adequately small second derivatives at the cost of very little increase
in relative length.

As regards the dependence of relative length on the parameter a we must
expect that, for the natural boundary, the relative length will show a non-
smooth variation as [a, b) crosses from one to another of the regions (c), (i),
(I) of figure 6. Moreover when (a, b) is in the region (c) or (/) the natural
boundary fails 'grossly' to attain the slope -|0O in the expanding part of the
nozzle, and this to an increasing extent as {a, b) moves away from the region
(i). On this account we may guess that the relative length will be least at
one of the points / , G in figure 6. To confirm this guess we must crystallize
the concept by a 'reasonable' quantitative definition, which I have
chosen as

(8) 1= relative length = XQ ~~ *E

V
where E is the axial point where q = 0.141, M = 0.32 and Q is the point on
the wall streamline, a little downstream from the test section, where
6 = 0°.34; the value of qQ is about 0.707 (depending slightly on the values of
a, b), which is to be compared with the limiting speed q0 = 0.709. Some
values of I are shown in the table below, and from these, together with a
detailed investigation of the cases 6 = 0 + which will not here be repro-
duced, it is verified that I is least at the point / in figure 6, with the value 4.36.

As regards relative length, therefore, the most favourable flows of our
family are those for which a is near 0.9 and 6 is small, two of which are
illustrated in figure 4.
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Data for figures 3, 4, 5

[10]

4

4

5
5

Fig.

upper

lower

upper
lower

Soln.

I

II

I I I
IV

V>

0.7827
0.7
0.7837
0.7
0.5003
0.7558
0.7

Rel. length, equn

xQ-xE

27.67
26.34
27.75
26.41
22.29
64
62

yQ

6.34
5.67
6.34
5.67
4.05
6.0
5.5

• (8 )

/

4.36
4.65
4.38
4.66
5.50
10.7
11.3

|0| at
'entrance'
q* = 0.02

50°. 11
44°.36
41°.47
36°.76
14°.81
16°.89
15°.64

max |0|

in expan-
sion sec11.

16°.5
16°.2
16°.4
16°.l
16°.5
15°.O
13°.3

throat (0 =

0.298
0.250
0.301
0.255
0.204
0.285
0.254

0) at

M

2.09
1.67
2.15
1.71
1.28
1.99
1.70

Notes:

(i) The limiting speed in each case is qQ = 0.709, Mo = 2.25, giving
0o = co(q0) = 33°.

(ii) Solution I is T — 0.859i? + (0 +)C7. Natural boundary y> = 0.7827
determined by two inflexions, one of them at A; hodograph in figure 2H.

Solution II is T — 1.0127? + 0.03£7. Natural boundary %p = 0.7837
determined by an inflexion at A and a col; hodograph in figure 2H; the loci
q = const, tend to lines x = const, as q increases from 0.707 to 0.709, but
the curtailment of the figure on the right hides this.

Solution III is T — 1.8422 + (0 +)U. Natural boundary ip = 0.5003
determined by an inflexion at A.

Solution IV is T — 1.84R + 0.93C7. Natural boundary y> = 0.7558
determined by an inflexion and an incipient limit line; hodograph in figure
2H.

(iii) In figures 4 and 5 the constant-speed loci are shown for

9
M

.02

.14

.32

.06

.24

.56

.12

.35

.83

.18

.42
1.05

.24

.49
1.26

.30

.55
1.46

.36

.60
1.68

.42

.65
1.90

.48

.69
2.15

.50

.71
2.24

In figure 4 lower the enlargement shows the 'col' singularity on the natural
boundary, with the loci q2 = .12, .14, .16, .18, .20, .22, .24.

6. Extensions

We may obtain a greater variety of flow fields by including further basic
solutions in the superposition (1), and two specific possibilities here may
be noted.

(i) For the 'Chaplygin set' of solutions, [1] § 3, the stream function is

(9) ipn(q) sin nd
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where n is an arbitrary parameter and ipn(q) essentially a hypergeometric
function. Starting from a solution (1) whose dominant singularity is at a
point P, we can make this singularity move away from the axis by super-
posing a small multiple of (9), with n remaining largely at our choice; and
by suitably choosing n we can do the same to two singularities in the case
where they are simultaneously dominant. In this way we can reduce the
relative length of a flow (1).

(ii) A new basic solution V analogous to U can be formed as in [2] by
starting with the potential Q%{q, 41') instead of Qx(q, <f>') and symmetrizing
it as in (4). Since Q2 is a ^-integral of Qx, tpv, xv, yv will have on the
locus q0AB of figure 2U a singularity whose principal part varies as
{6 + d0 — oi{q)}Vi. Accordingly, a combination y — ipT — arpR + c\pv will
give level curves which abut on the singular locus, and when c ^ 0 the d- and
^-derivatives of y will be dominated by those of cipv, so the level curves
will abut tangentially on the singular locus. Hence the solution

T - aR + cV + (0 +)U

will merge the flow T — aR -\- cV via a simple wave continuation into a
strictly uniform flow, such that the velocity field in the plane has continuous
first-order spatial derivatives. This method of smoothing the transition
might be preferable, in practice, to the use of a solution T — aR + bU
where b is small positive, as suggested in § 5.
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