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Abstract

Expectations of unbounded functions of dependent nonnegative integer-valued random
variables are approximated by the expectations of the functions of independent copies of
these random variables. The Lindeberg method is used.
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1. The main results

Let ξ1, ξ2, . . . , ξn be nonnegative integer-valued random variables, and let η1, . . . , ηn be
independent copies of ξ1, . . . , ξn, respectively (i.e. ηj coincides in distribution with ξj for
each j ). Our main goal is to approximate EF(ξ1, . . . , ξn) by EF(η1, . . . , ηn), where the
function F can be unbounded.

An example where this problem occurs is as follows. Consider a point process � on an
interval [A,B]. If we want to construct a compound Poisson approximation for �([A,B]),
we can use the Bernstein block technique. In order to do this, we present �([A,B]) as the
following sum:

�([A,B]) =
n∑
j=1

�(Uj ),

where the Uj are intervals such that [A,B] = ⋃n
j=1 Uj and Uj ∩ Ui = ∅ for i �= j .

Our next step is to approximate each ξj = �(Uj ) with γj = �(Vj ), where Vj ⊂ Uj ,
γ1, . . . , γn are weakly dependent, and P(ξj �= γj ) is small. Then

∑n
j=1 γj can be approximated

by the corresponding compound Poisson distribution. Barbour et al. (2002) employed this
technique for approximation in terms of the total variation distance and some Kantorovich
(Wasserstein) distances (in fact, not only was �([A,B]) approximated, but a more complex
approximation was built). However, this approach becomes unsuitable if we have to approxi-
mate EF(ξ1, . . . , ξn) for unbounded functions F , because even if

∑n
j=1 P(ξj �= γj ) is small,

the contribution of �(Uj \ Vj ) to the expectation may be large. In the present paper we
show that, for unbounded functions, the Lindeberg method can be applied. Example 1, below,
illustrates which sort of conditions can be used in this case.

To state the main result, we need the following notation. As above, let ξ1, . . . , ξn be (depen-
dent) nonnegative integer-valued random variables, and let the random variables η1, . . . , ηn be
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independent, independent of ξ1, . . . , ξn, and such that, for each j , ηj coincides in distribution
with ξj . We will use the difference operator �f (j) ≡ �jf (j) := f (j + 1) − f (j) and the
so-called ‘factorial power’ a[r] := a(a − 1) · · · (a − r + 1), where we assume that a[0] = 1.
We denote by I (A) the indicator of an event A. The main result of the present paper is the
following theorem.

Theorem 1. If, for some k ≥ 1, the expectations below exist, then the following equality holds:

EF(ξ1, . . . , ξn)− EF(η1, . . . , ηn) =
n∑
j=2

( k∑
r=1

1

r! cov(�rFj (0), (ξj )[r]I (ξj ≤ k))

+ EFj (ξj )I (ξj > k)− EFj (ηj )I (ηj > k)

)
,

where
Fj (i) = F(ξ1, . . . , ξj−1, i, ηj+1, . . . , ηn).

To prove this theorem, we need the following lemma.

Lemma 1. For any function f , and all integers k ≥ 0 and j ≥ 0,

k∑
r=0

1

r!�
rf (0)j[r] = f (j) if k ≥ j, (1)

k∑
r=0

1

r!�
rf (0)j[r] = j[k+1]

k! �ks

(
f (s)

j − s

)∣∣∣∣
s=0

if k < j,

where, for a function g, �sg(s) := g(s + 1)− g(s).

Proof. We can assume that k ≤ j , because j[r] = 0 for r > j . We have

k∑
r=0

1

r!�
rf (0)j[r] =

k∑
r=0

r∑
s=0

(−1)r−sCsr f (s)Crj

=
k∑
s=0

f (s)

k∑
r=s

(−1)r−sj !
s! (r − s)! (j − r)!

= 1

k!f (k)j[k] +
k−1∑
s=0

f (s)Csj

k−s∑
t=0

(−1)tCtj−s ,

where in the last equality we have used the change of variable t = r − s. To prove (1), it
remains to note that

∑k−s
t=0 (−1)tCtj−s = 0 if j = k.

If j > k then
∑k−s
t=0 (−1)tCtj−s = (−1)k−sCk−sj−s−1. Thus, for j > k,

k∑
r=0

1

r!�
rf (0)j[r] =

k∑
s=0

f (s)(−1)k−sCsjC
k−s
j−s−1 = j[k+1]

k!
k∑
s=0

(−1)k−sCsk
f (s)

j − s
.

This completes the proof.
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Corollary 1. Let ψ be an arbitrary nonnegative integer-valued random variable, and let f be
an arbitrary function. If the expectation E f (ψ) exists then, for any k ≥ 0,

E f (ψ) =
k∑
r=0

1

r!�
rf (0)Eψ[r]I (ψ ≤ k)+ E f (ψ)I (ψ > k). (2)

Moreover,

E f (ψ) =
∞∑
r=0

1

r!�
rf (0)Eψ[r], (3)

if all these expectations exist and the series converges absolutely.

Proof. By Lemma 1 we have

E f (ψ) =
k∑
j=0

E f (ψ)I (ψ = j)+ E f (ψ)I (ψ > k)

=
k∑
j=0

k∑
r=0

1

r!�
rf (0)Eψ[r]I (ψ = j)+ E f (ψ)I (ψ > k).

This implies (2). Relation (3) follows from (2) because, as k → ∞,

Eψ[r]I (ψ ≤ k) → Eψ[r], E f (ψ)I (ψ > k) → 0.

This completes the proof.

The following corollary is an immediate consequence of Corollary 1.

Corollary 2. Let φ be an arbitrary random variable, letψ be an arbitrary nonnegative integer-
valued random variable, and let fy(j) ≡ f (y, j) be an arbitrary function. If, for some k ≥ 1,
all the expectations in (4) below exist then

E fφ(ψ) =
k∑
r=0

1

r! E�rfφ(0)ψ[r]I (ψ ≤ k)+ E fφ(ψ)I (ψ > k). (4)

Moreover,

E fφ(ψ) =
∞∑
r=0

1

r! E�rfφ(0)ψ[r],

if all these expectations exist and the series converges absolutely.

Theorem 1 follows immediately from relation (4) and the following identity, which is an
application of the Lindeberg method,

EF(ξ1, . . . , ξn)− EF(η1, . . . , ηn) =
n∑
j=2

(EFj (ξj )− EFj (ηj )).

The following corollary, which is presumably well known, will be used in Example 2, below.
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Corollary 3. If m ≥ 0 is an integer, and a and b are arbitrary real numbers, then

(a + b)[m] =
m∑
r=0

Crma[r]b[m−r]. (5)

Proof. Relation (5) for b ∈ {0, 1, . . . , m} follows from Lemma 1 if we set

f (j) = (a + j)[m], k = m.

Both sides of (5) are polynomials of b of order m; hence, (5) is valid for any real b. This
completes the proof.

Example 1. Set k = 1 in Theorem 1. We have

EF(ξ1, . . . , ξn)− EF(η1, . . . , ηn)

=
n∑
j=2

(cov(�Fj (0), I (ξj = 1))+ EFj (ξj )I (ξj ≥ 2)− EFj (ηj )I (ηj ≥ 2)).

In the last expression

cov(�Fj (0), I (ξj = 1))

= E(�Fj (0) | ξj = 1)P(ξj = 1)− E(�Fj (0) | ξj = 1)(P(ξj = 1))2

− E(�Fj (0) | ξj �= 1)P(ξj �= 1)P(ξj = 1)

= pj (1 − pj )(E(�Fj (0) | ξj = 1)− E(�Fj (0) | ξj �= 1)),

where pj = P(ξj = 1).
Now let

F(j1, . . . , jn) = (j1 + · · · + jn)[m].
Then �Fj(0) = m(ξ1 + · · · + ξj−1 + ηj+1 + · · · + ηn)[m−1]. We assume that

(ξ1 + · · · + ξj−1 | ξj = 1) ≤st (ξ1 + · · · + ξj−1 | ξj �= 1)+ c,

(ξ1 + · · · + ξj−1 | ξj �= 1) ≤st (ξ1 + · · · + ξj−1 | ξj = 1)+ c,

where c ≥ 1 is a constant, α | A denotes a random variable distributed by the conditional
distribution of the random variable α under condition A, and α ≤st β means that there can
be constructed on a common probability space random variables α̃ and β̃ such that α̃ ≤ β̃, α̃
coincides in distribution with α and β̃ coincides in distribution with β. Then

|E(�Fj (0) | ξj = 1)− E(�Fj (0) | ξj �= 1)|
≤ cm(m− 1)E(ξ1 + · · · + ξj−1 + ηj+1 + · · · + ηn + c − 1)[m−2].

Finally, we obtain

|EF(ξ1, . . . , ξn)− EF(η1, . . . , ηn)|

≤
n∑
j=2

cm2pj (1 − pj )E(ξ1 + · · · + ξj−1 + ηj+1 + · · · + ηn + c)[m−2]

+
∣∣∣∣
n∑
j=2

(EFj (ξj )I (ξj ≥ 2)− EFj (ηj )I (ηj ≥ 2))

∣∣∣∣.

https://doi.org/10.1239/jap/1276784912 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784912


598 P. S. RUZANKIN

2. Dependent Bernoulli random variables

In this section ξ1, . . . , ξn will be Bernoulli random variables with success probabilities
P(ξj = 1) = 1 − P(ξj = 0) = pj . Repeating the reasoning of Example 1 for this case we
obtain the following corollary.

Corollary 4. We have

EF(ξ1, . . . , ξn)− EF(η1, . . . , ηn)

=
n∑
k=2

pk{E(�Fj (0) | ξk = 1)− E(�Fj (0))}

=
n∑
k=2

pk(1 − pk){E(�Fj (0) | ξk = 1)− E(�Fj (0) | ξk = 0)},

where the random functions Fj are defined in Theorem 1.

Example 2. (Reliability systems.) Many reliability systems can be described as follows.
Consider m independent Bernoulli random variables ζ1, . . . , ζm with P(ζj = 1) = qj . Let
ξk, k = 1, . . . , n, be the products of the corresponding families of ζj s:

ξk =
d(k)∏
i=1

ζl(i,k).

Each of the random variables ξ1, . . . , ξn is responsible for the failure of the corresponding
element of the system: ξk = 1 if the kth element fails. Define

�(k) = {j : ξk depends on ξj }, pk = E ξk =
d(k)∏
i=1

ql(i,k).

Note that η1, . . . , ηn are the independent Bernoulli random variables with P(ηj = 1) = pk .
First let us consider the total variation distance between the distributions of (ξ1, . . . , ξn) and

(η1, . . . , ηn):

dTV(L(ξ1, . . . , ξn),L(η1, . . . , ηn)) := sup
{F : |F |≤1/2}

|EF(ξ1, . . . , ξn)− EF(η1, . . . , ηn)|.

Applying Corollary 4 we obtain

dTV(L(ξ1, . . . , ξn),L(η1, . . . , ηn)) ≤
n∑
k=2

∑
j∈�(k)∩{1,...,k−1}

E ξkξj . (6)

Note that

dTV(L(ξ1 + · · · + ξn),L(η1 + · · · + ηn)) ≤ dTV(L(ξ1, . . . , ξn),L(η1, . . . , ηn)),

and, hence, bound (6) can be applied to approximate the distribution of ξ1 + · · · + ξn. In
particular, applying the well-known estimate dTV(L(η1 +· · ·+ηn),P ) ≤ min {1, 1/λ} ∑

k p
2
k

(see Barbour and Hall (1984)), we can obtain bounds on dTV(L(ξ1 + · · · + ξn),P ), where
λ = ∑n

k=1 pk and P is the Poisson distribution with parameter λ.
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It is interesting to compare the estimate in (6) with the corresponding results that are derived
with the Stein–Chen method. Let us consider the so-called connected-s systems, i.e. when
d(k) = s for all k (and no other restrictions are imposed). In a number of works (see Barbour
and Chryssaphinou (2001) and the references therein), compound Poisson approximation for
the sum ξ1 + · · · + ξn was studied using the Stein–Chen method. When λ is upper bounded,
the estimates are of the following form:

dTV(L(ξ1 + · · · + ξn),Q) ≤ cqRmaxλ, (7)

where Q is the corresponding compound Poisson distribution, c is some constant, qmax :=
maxj qj , and the parameter R ≥ 1 corresponds to the complexity of the approximation (the
bigger R is, the more complex the distribution Q). If, roughly speaking, qRmax maxj pj >>
maxj �=k E ξj ξk then the bound in (6) turns out to be better than the bound in (7), despite the
more complex nature of the compound Poisson approximation.

Now let us, as in Example 1, consider the approximation for

F(j1, . . . , jn) = (j1 + · · · + jn)[m].

Note that EF(ξ1, . . . , ξn) ≥ EF(η1, . . . , ηn) by Corollary 3. We have

EF(ξ1, . . . , ξn)− EF(η1, . . . , ηn) =
n∑
k=2

pj (E(�Fk(0) | ξk = 1)− E(�Fk(0)))

≤
n∑
k=2

( ∑
j∈�(k)∩{1,...,k−1}

E ξkξj

)
E�2Fk(νk − 1),

where νj is the number of elements in the set �(j) ∩ {1, . . . , j − 1}. Furthermore,

E�2Fk(νk − 1) = m(m− 1)E(ξ1 + · · · + ξk−1 + ηk+1 + · · · + ηn + νk − 1)[m−2]
≤ m(m− 1)E(ξ1 + · · · + ξn + νk − 1)[m−2],

where the last inequality follows from Corollary 3. Hence, finally,

EF(ξ1, . . . , ξn)− EF(η1, . . . , ηn)

≤ m2
n∑
k=2

( ∑
j∈�(k)∩{1,...,k−1}

E ξkξj

)
E(ξ1 + · · · + ξn + νk − 1)[m−2].

3. Application to Poisson approximation

The results of the present paper can be applied to Poisson approximations. Firstly, we
approximate the random variables ξ1, . . . , ξn by their independent copies η1, . . . , ηn. Secondly,
we approximate η1, . . . , ηn by the accompanying compound Poisson random variables.

If ξ1, . . . , ξn are Bernoulli random variables then the following theorem (see Borisov and
Ruzankin (2002)) can be used.

Theorem 2. Let ζ1, . . . , ζn be independent Poisson random variables with parameters E ζj =
pj := P(ξj = 1). If E |F(ζ1, . . . , ζn)| < ∞ then

EF(ζ1, . . . , ζn)− EF(η1, . . . , ηn) =
n∑
j=1

∞∑
r=2

prj

r! E�r(j)F (η1, . . . , ηj−1, 0, ζj+1, . . . , ζn),

(8)
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where, for each j , the corresponding series in (8) converges absolutely. The notation �(j)
means that the corresponding difference is taken with respect to the j th argument.

Moreover, for k ≥ 2,

∣∣∣∣
∞∑
r=k

prj

r! E�r(j)F (η1, . . . , ηj−1, 0, ζj+1, . . . , ζn)

∣∣∣∣

≤ epj
pkj

k! E |�k(j)F (η1, . . . , ηj−1, ζj , . . . , ζn)|,

where the right-hand side is finite if and only if E ζ kj |F(η1, . . . , ηj−1, ζj , . . . , ζn)| < ∞.

If ξ1, . . . , ξn are not Bernoulli distributed, but have large atoms at 0, a compound Poisson
approximation can be used. First we apply Theorem 1. Then we approximate each ηj by the
compound Poisson distribution epj (Lj−1), where pj = P(ξj �= 0) and Lj is the conditional
distribution of ξj under the condition ξj �= 0. The error estimates (complete asymptotic
expansions) for this approximation can be found in Borisov and Ruzankin (2002) (see also the
references therein) and Barbour (1987).
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