CORRIGENDUM

NOTE ON A THEOREM OF MYRBERG*

By J. GILLIS

On p. 421, line 30, of that note I remark " $\delta(x)$ is a lower semi-continuous function of x". That statement is, in general, untrue. The proof should rather run as follows:

The subset $E_1^{(\alpha)}$ of E_1 where $\delta(x) \ge \alpha > 0$ is clearly closed and, as α tends to 0, $h - mE_1^{(\alpha)}$ tends to $h - mE_1$. Hence, by taking α sufficiently small, we find a closed subset of E_1 , of positive *h*-measure, every point *x* of which has the property that

 $h - m[E \times (x - d, x)] \leq 2h(d)$ and $h - m[E \times (x, x + d)] \leq 2h(d)$,

whenever $0 < d \leq \alpha$. We may call this subset again E_1 and the proof, from the top of p. 422, goes as before.

* Proc. Cambridge Phil. Soc. 33 (1937), 419-24.

502