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On Pseudo-Frobenius Rings

Mohamed F. Yousif, Yiqiang Zhou and Nasr Zeyada

Abstract. It is proved here that a ring R is right pseudo-Frobenius if and only if R is a right Kasch ring

such that the second right singular ideal is injective.

Throughout, rings R are associative with an identity and modules are unitary
R-modules. We write J(M) and soc(M) for the Jacobson radical and the socle of
the module M, respectively. For a submodule N of M, N ≤e M means that N is es-
sential in M. The singular submodule of the module M is defined by Z(M) = {m ∈
M : ∃ IR ≤e RR such that mI = 0}. For a ring R, Z(RR) and Z(RR) are called the right
singular ideal and the left singular ideal of R, respectively. The second right singular
ideal of R, denoted by Zr

2
, is defined by the equality Zr

2
/Z(RR) = Z(RR/Z(RR)) and

the second left singular ideal Zl
2

of R can be defined analogously. We write J(R), Sr, Sl

for the Jacobson radical, right socle and left socle of R, respectively. A ring R is called
right pseudo-Frobenius, briefly right PF, if every faithful right R-module is a genera-
tor of the category of all right R-modules; and the ring R is called right Kasch if every
simple right R-module embeds in RR. Analogously, one defines left PF and left Kasch

rings. It is a well-known result of Osofsky [6] that R is right PF if and only if R is
semiperfect, right self-injective with (Sr)R ≤e RR if and only if R is right Kasch, right
self-injective (see [1]). It is shown in [8] that a ring R is right PF if and only if (Zr

2
)R

is injective and the dual of every simple left R-module is simple. In [10], it is proved

that a ring R is a two-sided PF-ring if and only if R is a two-sided Kasch ring such that
(Zr

2
)R and R(Zl

2
) are both injective. However, it has been left open in [10] whether a

right Kasch ring R with (Zr
2
)R injective is necessarily right PF (also see [8]). In this

note, we answer this question affirmatively.

We start by proving the following result.

Theorem 1 A ring R is right PF if and only if R has a finitely generated projective,

quasi-injective right R-module containing a copy of every simple right R-module.

Proof One direction is clear. Let P be a finitely generated projective, quasi-injective

right R-module containing a copy of every simple right R-module. By [3, Theo-
rem 14], P has a finitely generated essential socle. Let {S1, . . . , Sn} be a complete
set of representatives of the isomorphism classes of simple submodules of P; it is ac-
tually a complete set of representatives of the isomorphism classes of simple right
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R-modules since P contains a copy of every simple right R-module. Since P is quasi-
injective, there exists a summand Q1 ⊕ · · · ⊕ Qn of P such that Si ≤e Qi for all

i = 1, . . . , n. Then, clearly Qi is Q j-injective for all 1 ≤ i, j ≤ n. Since Qi is inde-
composable quasi-injective, it has a local endomorphism ring. Thus, J(Qi) is maxi-
mal and small in Qi for each i by [5, Lemma 1.54]. Since Qi is projective, it follows
that Qi is a projective cover of the simple module Qi/ J(Qi). Since every module has

at most one projective cover up to isomorphism, we have Qi/ J(Qi) ∼
= Q j/ J(Q j) if

and only if Qi
∼
= Q j . On the other hand, Qi

∼
= Q j implies clearly that Si

∼
= S j and the

converse holds because of [4, Corollary 2.32]. Hence {Q1/ J(Q1), . . . , Qn/ J(Qn)} is a
complete set of representatives of the isomorphism classes of simple right R-modules.

Now one concludes that every simple right R-module has a projective cover, so R is
semiperfect; moreover, {Q1, . . . , Qn} is a complete set of representatives of the iso-
morphism classes of indecomposable projective right R-modules. Since R is semiper-
fect, write RR = e1R ⊕ · · · ⊕ emR where each eiR is indecomposable. So, for each

i, 1 ≤ i ≤ m, eiR ∼
= Qk for some k, 1 ≤ k ≤ n. It follows that eiR is e jR-injective for

all 1 ≤ i, j ≤ m. This shows by [4, Proposition 1.17] that RR is quasi-injective, and
hence is injective. So, being right Kasch, R is right PF.

Remark 2 The proof of Theorem 1 shows that if R has a finitely generated projec-
tive, quasi-injective right module P containing a copy of every simple right R-mod-
ule, then PR is injective (hence a cogenerator) and is a generator. In Theorem 1,
“projective” cannot be weakened to “quasi-projective”. To see this, let R = {( a x

0 a ) :

a ∈ Z2, x ∈ Z2 ⊕ Z2} and let P = {( 0 x
0 0

) : x ∈ (0) ⊕ Z2}. It can easily be seen that
PR is a finitely generated quasi-projective, quasi-injective module containing a copy
of every simple R-module, but R is not PF. The proof of Theorem 1 also shows that
a ring R is a right Kasch, right continuous ring if and only if R has a finitely gener-

ated projective, continuous right R-module containing a copy of every simple right
R-module; in this case R is semiperfect (for the definitions of continuous modules,
right continuous rings, and right CS-rings below, see [4]). We refer to [7] for the dis-
cussion of right Kasch right continuous rings. It is a result of Gómez Pardo and Guil

Asensio that every right Kasch, right CS-ring has a finitely generated essential right
socle, but it is unknown whether a right Kasch right CS-ring is always semiperfect
[3].

Corollary 3 Let RR = I⊕K where IR is injective and soc(KR) = 0. If R is right Kasch

then R is right PF.

Proof Clearly, IR is a finitely generated projective, injective module containing a

copy of every simple right R-module; so R is right PF by Theorem 1.

Theorem 4 If (Zr
2
)R is injective such that every simple singular right R-module embeds

in (Zr
2
)R, then R is semiperfect.

Proof This proof uses the same idea of the proof of Theorem 1. It follows from
[3, Theorem 14] that (Zr

2
)R has a finitely generated essential socle. Then, by hypoth-

esis, there exist simple submodules S1, . . . , Sn of (Zr
2
)R such that {S1, . . . , Sn} is a
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complete set of representatives of the isomorphism classes of simple singular right
R-modules. Since (Zr

2
)R is injective, there exist submodules Q1, . . . , Qn of (Zr

2
)R such

that Q1 ⊕· · ·⊕Qn is a direct summand of (Zr
2
)R and (Si)R ≤e (Qi)R for i = 1, . . . , n.

Since Qi is an indecomposable injective R-module, it has a local endomorphism ring,
and since Qi is projective, J(Qi) is maximal and small in Qi by [5, Lemma 1.54]. Then
Qi is a projective cover of the simple module Qi/ J(Qi). Note that Qi

∼
= Q j clearly

implies Qi/ J(Qi) ∼
= Q j/ J(Q j), and the converse also holds because every module

has at most one projective cover up to isomorphism. But it is clear that Qi
∼
= Q j

if and only if Si
∼
= S j if and only if i = j. Moreover, every Qi/ J(Qi) is singular.

Thus, {Q1/ J(Q1), . . . , Qn/ J(Qn)} is a complete set of representatives of the isomor-

phism classes of simple singular right R-modules. Hence every simple singular right
R-module has a projective cover. Since every non-singular simple right R-module is
projective, we conclude that R is semiperfect.

Theorem 5 A ring R is right PF if and only if R is a right Kasch ring such that (Zr
2
)R

is injective.

Proof One direction is clear. Suppose that R is right Kasch and (Zr
2
)R is injective.

Then every simple singular right R-module embeds in (Zr
2
)R. So it follows from

Theorem 4 that R is semiperfect. Let {S1, . . . , Sn} be a complete set of represen-
tatives of the isomorphism classes of non-singular simple right R-modules. Then
all (Si)R are projective. Write RR = Zr

2
⊕ N . There is an epimorphism f1 from

RR to (S1)R. By the choice of S1, f1|N : N → S1 is epic, so N = X1 ⊕ N1 where

X1
∼
= S1. There is an epimorphism f2 from RR to (S2)R. By the choice of S1 and

S2, f2|N1
: N1 → S2 is epic, so N1 = X2 ⊕ N2 where X2

∼
= S2. Continuing this pro-

cess, we have RR = Zr
2
⊕ X1 ⊕ · · · ⊕ Xn ⊕ Y where Xi

∼
= Si for i = 1, . . . , n. Let

Q = Zr
2
⊕ X1 ⊕ · · · ⊕ Xn. Then QR is a finitely generated projective, quasi-injective

module containing a copy of every simple right R-module. So R is right PF by Theo-
rem 1.

Remark 6 An example is provided in [8] of a left Kasch ring R with (Zr
2
)R injective

which is not right PF. However, it is still an open question whether a left Kasch, right
self-injective ring is necessarily right PF (see [2]).

Corollary 7 A ring R is two-sided PF if and only if R is a right Kasch ring such that

(Zr
2
)R and R(Zl

2
) are both injective.

Proof A right PF-ring must be left Kasch; so the claim follows from Theorem 5.

Corollary 8 Let RR = I ⊕ K where IR is injective and KR is semisimple. If R is right

Kasch then R is right PF.

Proof If RR = I ⊕ K where IR is injective and KR is semisimple, then Zr
2
⊆ I. So

(Zr
2
)R is a direct summand of IR since (Zr

2
)R is a closed submodule of IR (i.e., (Zr

2
)R

https://doi.org/10.4153/CMB-2005-029-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-029-5


320 M. F. Yousif, Y. Zhou and N. Zeyada

has no proper essential extensions within IR). So (Zr
2
)R is injective, and hence R is

right PF by Theorem 5.

The next corollary gives an answer to a question of R. Yue Chi Ming [9].

Corollary 9 If R is a right Kasch ring containing an injective maximal right ideal,

then R is right PF.
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