Computing cardinalities of \mathbb{Q}-curve reductions over finite fields

François Morain, Charlotte Scribot and Benjamin Smith

Abstract
We present a specialized point-counting algorithm for a class of elliptic curves over \mathbb{F}_{p^2} that includes reductions of quadratic \mathbb{Q}-curves modulo inert primes and, more generally, any elliptic curve over \mathbb{F}_{p^2} with a low-degree isogeny to its Galois conjugate curve. These curves have interesting cryptographic applications. Our algorithm is a variant of the Schoof–Elkies–Atkin (SEA) algorithm, but with a new, lower-degree endomorphism in place of Frobenius. While it has the same asymptotic asymptotic complexity as SEA, our algorithm is much faster in practice.

1. Introduction
Computing the cardinalities of the groups of rational points on elliptic curves over finite fields is a fundamental algorithmic challenge in computational number theory, and an essential tool in elliptic curve cryptography. Over finite fields of large characteristic, the best known algorithm is the Schoof–Elkies–Atkin (SEA) algorithm [20]. A lot of work has been put into optimizing the computations for prime fields of large characteristic (see [26] for the most recent record). Many of these improvements carry over to the case of more general finite fields. In this article, we define a specialized, faster SEA algorithm for a class of elliptic curves over \mathbb{F}_{p^2} that have useful cryptographic applications. These curves have low-degree inseparable endomorphisms that can be used to accelerate scalar multiplication in elliptic curve cryptosystems [23, 24]; here, we use those endomorphisms to accelerate point counting. Going beyond cryptography, this class of curves also includes reductions of quadratic \mathbb{Q}-curves modulo inert primes, so our algorithm may be useful for studying these curves.

Let q be a power of a prime $p > 3$ (in our applications, $q = p^2$ and p is large). Let

$$\sigma(\cdot) : x \mapsto x^p$$

be the Frobenius automorphism on \mathbb{F}_q. We extend the action of Frobenius to polynomials over \mathbb{F}_q by acting on coefficients, and thus to curves over \mathbb{F}_q by acting on their defining equations: for example, an elliptic curve E/\mathbb{F}_q and its Galois conjugate curve $\sigma E/\mathbb{F}_q$ would be defined by

$$E : y^2 = x^3 + Ax + B \quad \text{and} \quad \sigma E : y^2 = x^3 + A^p x + B^p.$$

If E/\mathbb{F}_q is an elliptic curve, then there is a p-isogeny $\pi_p : E \to \sigma E$ defined by $\pi_p : (x, y) \mapsto (x^p, y^p)$. If $q = p^n$, then composing $\pi_p, \sigma \pi_p, \ldots, \sigma^{n-1} \pi_p$ yields the Frobenius endomorphism $\pi_q : (x, y) \mapsto (x^q, y^q)$ of E. Being an endomorphism, π_q has a characteristic polynomial

$$\chi_{\pi_q}(T) = T^2 - t_E T + q$$

such that $\chi_{\pi_q}(\pi_q) = [0]$ in $\text{End}(E)$; the trace t_E satisfies the Hasse bound

$$|t_E| \leq 2\sqrt{q}.$$
Knowing the cardinality of \(\mathcal{E}(\mathbb{F}_q) \) is equivalent to knowing the trace \(t_\mathcal{E} \), since

\[
\#\mathcal{E}(\mathbb{F}_q) = \chi_\pi_q(1) = q + 1 - t_\mathcal{E}.
\]

Schoof’s point-counting algorithm [18] determines \(t_\mathcal{E} := t_\mathcal{E} \pmod{\ell} \) for small primes \(\ell \neq p \) by examining the action of \(\pi_q \) on \(\mathcal{E}[\ell] \), the \(\ell \)-torsion subscheme of \(\mathcal{E} \): thus

\[
\pi_q^2(P) - [t_\ell]\pi_q(P) + [q \pmod{\ell}]P = 0 \quad \text{for } P \in \mathcal{E}[\ell].
\]

If we construct a general \(P \), as detailed in §2, then finding \(t_\ell \) boils down to a series of polynomial operations modulo the \(\ell \)th division polynomial \(\Psi_\ell \). Schoof’s algorithm tests these relations until \(\prod \ell > 4\sqrt{q} \), and then deduces \(t_\ell \) from the \(t_\ell \) using the Chinese remainder theorem (CRT). To completely determine \(t_\mathcal{E} \), we need to compute \(t_\ell \) for \(O(\log q) \) primes \(\ell \), the largest of which is in \(O(\log q) \); fast polynomial evaluations add some more \(O(\log q) \) factors, and the final cost is \(O(\log^8 q) \) with classical arithmetic (or \(O(\log^6 q) \) with fast arithmetic). This basic algorithm was subsequently improved by Atkin and Elkies; the resulting SEA algorithm (see §4) is now the standard point-counting algorithm for elliptic curves over large characteristic fields.

In this article, we present an algorithm that was designed to compute \(\#\mathcal{E}(\mathbb{F}_{p^2}) \) when \(\mathcal{E} \) is the reduction of a low-degree quadratic \(\mathbb{Q} \)-curve modulo an inert prime. In fact, our algorithm applies to a larger class of curves over finite fields, which we will call admissible curves.

First, recall that every \(d \)-isogeny \(\vartheta : \mathcal{E} \to \mathcal{E}' \) has a dual \(d \)-isogeny \(\vartheta^\dagger : \mathcal{E}' \to \mathcal{E} \) such that \(\vartheta^\dagger \vartheta = [d]_{\mathcal{E}} \) and \(\vartheta \vartheta^\dagger = [d]_{\mathcal{E}'} \). Also, \(\sigma \) acts on isogenies by \(p^\ell \)th powering the coefficients of their defining polynomials; so every isogeny \(\vartheta : \mathcal{E} \to \mathcal{E}' \) has a Galois conjugate isogeny \(\sigma \vartheta : \sigma \mathcal{E} \to \sigma \mathcal{E}' \).

Definition 1. Let \(d \) be a squarefree integer with \(p \nmid d \). An elliptic curve \(\mathcal{E}/\mathbb{F}_{p^2} \) is \(d \)-admissible if it is equipped with a \(d \)-isogeny

\[
\phi : \mathcal{E} \to \sigma \mathcal{E} \quad \text{such that } \sigma \phi = \epsilon \phi^\dagger \text{ where } \epsilon = \pm 1.
\]

Composing \(\pi_p : \mathcal{E} \to \sigma \mathcal{E} \) with \(\sigma \phi : \sigma \mathcal{E} \to \mathcal{E} \), we obtain the associated endomorphism

\[
\psi := \sigma \phi \circ \pi_p \in \text{End}(\mathcal{E})
\]

of degree \(dp \). Note that the requirement \(p \nmid d \) implies that both \(\phi \) and \(\sigma \phi \) are separable.

We are particularly interested in curves that are \(d \)-admissible for small values of \(d \). When \(d \) is extremely small, the associated endomorphism can be evaluated very efficiently, and thus used to accelerate scalar multiplication on \(\mathcal{E} \) for more efficient implementations of elliptic curve cryptosystems (as in [3, 4, 10, 23, 24]). Constructing cryptographically secure curves equipped with efficient endomorphisms is one major motivation for our algorithm; the other is the principle that the presence of special structures demands the use of a specialized algorithm.

From a practical point of view, suitable modifications of the SEA algorithm gives us a very fast probabilistic solution to the point-counting problem for admissible curves. The essential idea is to use SEA with the associated endomorphism \(\psi \) in place of \(\pi_q \). While the asymptotic complexity of our algorithm is the same as for the unmodified SEA algorithm when \(d \) is fixed, there are some important improvements in the big-\(O \) constants. Asymptotically, when \(d \) is small, our algorithm runs four times faster than SEA (and even faster for smaller \(p \)).

It is not hard to see that of the \(p^2 \) isomorphism classes of elliptic curves over \(\mathbb{F}_{p^2} \), only \(O(p) \) classes correspond to \(d \)-admissible curves for any fixed \(d \). But while \(d \)-admissible curves with small \(d \) may be relatively rare, they appear naturally ‘in the wild’ as reductions of quadratic \(\mathbb{Q} \)-curves of degree \(d \) (elliptic curves over quadratic number fields that are \(d \)-isogenous to their Galois conjugates) modulo inert primes. For some small \(d \), these \(\mathbb{Q} \)-curves occur in one-parameter families; so our algorithm allows the reductions of these families modulo suitable primes to be rapidly searched for cryptographic curves. We explain this further in §9.
2. Computing with isogenies

We begin by recalling some standard results on isogenies, fixing notation and basic complexities in the process. A classical reference for all this is [7].

First, let \(M(n) \) denote the cost in \(\mathbb{F}_q \)-operations (multiplications) of multiplying two polynomials of degree \(n \). Traditional multiplication gives \(M(n) = O(n^2) \); fast multiplication gives \(\tilde{O}(n) \). Dividing a degree-\(2n \) polynomial by a degree-\(n \) polynomial costs \(O(M(n)) \) \(\mathbb{F}_q \)-operations; the extended greatest common divisor (gcd) of two degree-\(n \) polynomials can be computed in \(O(M(n) \log n) \) \(\mathbb{F}_q \)-operations. The number of roots in \(\mathbb{F}_q \) of a degree-\(n \) polynomial \(F \) over \(\mathbb{F}_q \) is equal to \(\deg \gcd(x^q - x, F(x)) \), which we can compute in \(O((\log q) M(n)) \) \(\mathbb{F}_q \)-operations if \(n \ll q \) (this is dominated by the cost of computing \(x^q \) mod \(F \); see Appendix A).

We will make extensive use of modular composition: if \(F, G \) and \(H \) are polynomials over \(\mathbb{F}_q \) with \(\deg F = n \), \(\deg G < n \) and \(\deg H < n \), then we can compute \((G \circ H) \) mod \(F \) in \(O(n^{1/2} M(n) + n^{(\omega+1)/2}) \) \(\mathbb{F}_q \)-operations, where \(2 \leq \omega \leq 3 \) is the constant for linear algebra. Using the method of [13], the cost in \(\mathbb{F}_q \)-operations of performing \(r \) modular compositions with the same \(H \) and \(F \) is

\[
C_r(n) := O(r^{1/2} n^{1/2} M(n)) + r^{(\omega-1)/2} n^{(\omega+1)/2}).
\]

We will always work with elliptic curves \(\mathcal{E}/\mathbb{F}_q \) using their Weierstrass models,

\[
\mathcal{E} : y^2 = f_\mathcal{E}(x), \quad \text{where } f_\mathcal{E} \text{ is a monic cubic over } \mathbb{F}_q.
\]

For \(m > 0 \), the \(m \)th division polynomial \(\Psi_m(x) \) is the polynomial in \(\mathbb{F}_q[x] \) whose roots are precisely the \(x \)-coordinates of the points in \(\mathcal{E}[m]\mathbb{F}_q \).

If \(\ell \) is a prime, then the level-\(\ell \) modular polynomial \(\Psi_\ell(J_1, J_2) \) has degree \(\ell + 1 \) in both \(J_1 \) and \(J_2 \) and is defined over \(\mathbb{Z} \). If \(\Psi_\ell(J_1, J_2) = 0 \) for some \(J_1 \) and \(J_2 \) in \(\mathbb{F}_q \), then there is an \(\mathbb{F}_q \)-rational \(\ell \)-isogeny between the curves with \(j \)-invariants \(J_1 \) and \(J_2 \) (possibly after a twist). In particular, if we fix an elliptic curve \(\mathcal{E}/\mathbb{F}_q \), then the roots of \(\Psi_\ell(j(\mathcal{E}), x) \) in \(\mathbb{F}_q \) correspond to (the isomorphism classes of) the curves that are \(\ell \)-isogenous to \(\mathcal{E} \) over \(\mathbb{F}_q \).

We will need explicit forms for \(d \)-isogenies, where \(d \) is squarefree and prime to \(p \). Every such isogeny can be expressed as a composition of at most one 2-isogeny with at most one odd-degree cyclic isogeny over \(\mathbb{F}_q \). If \(\vartheta \) is a 2-isogeny, then it is defined by a rational map

\[
\vartheta : (x, y) \mapsto \left(\frac{N(x)}{D(x)}, y \frac{M(x)}{D^2(x)} \right),
\]

where \(N, M \) and \(D \) are polynomials over \(\mathbb{F}_q \) with \(\deg N = \deg M = 2 \) and \(\deg D = x - x_0 \), where \(x_0 \) is the abscissa of a 2-torsion point. If \(\vartheta \) is a \(d \)-isogeny where \(d \) is odd, squarefree and prime to \(p \), then \(\vartheta \) is defined by a rational map

\[
\vartheta : (x, y) \mapsto \left(\frac{N(x)}{D^2(x)}, y \frac{M(x)}{D^3(x)} \right),
\]

where \(N, M \) and \(D \) are polynomials over \(\mathbb{F}_q \) with \(\deg N = \deg M = d \) and \(\deg D = (d - 1)/2 \).

In both cases, the polynomial \(D(x) \) cuts out the kernel of \(\vartheta \), in the sense that \(D(x(\vartheta)) = 0 \) if and only if \(P \) is a non-trivial element of \(\ker \vartheta \); we call \(D \) the kernel polynomial of \(\vartheta \). We suppose we have a subroutine \(\text{KERNELPOLYNOMIAL}(\ell, \mathcal{E}, j_1) \) which, given \(\mathcal{E} \) and \(j_1 = j(\mathcal{E}_1) \) such that there exists an \(\ell \)-isogeny \(\vartheta : \mathcal{E} \rightarrow \mathcal{E}_1 \) over \(\mathbb{F}_q \), computes the kernel polynomial \(D \) of \(\vartheta \) and the isogenous curve \(\mathcal{E}_1 \) in \(O(\ell^2) \) \(\mathbb{F}_q \)-operations (using the fast algorithms in [1])

The algorithms in this article examine the actions of endomorphisms on \(\ker \vartheta \), where \(\vartheta \) is either \(\ell \) or an \(\ell \)-isogeny, for a series of small primes \(\ell \). The key is to define a symbolic element
of ker \vartheta. First, we compute the kernel polynomial \(D \) of \(\vartheta \) (note that \(D = \Psi_\ell \) if \(\vartheta = [\ell] \)); then we can construct a symbolic point \(P \) of ker \(\vartheta \) as

\[
P := (X, Y) \in \mathcal{E}(\mathbb{F}_q[X, Y]/(Y^2 - f_\mathcal{E}(X), D(X))).
\]

We reduce the coordinates of points in \(\langle P \rangle \) modulo \(D(X) \) and \(Y^2 - f_\mathcal{E}(X) \) after each operation, so elements of \(\langle P \rangle \) have a canonical form \(Q = (Q_x(X), YQ_y(X)) \) with deg \(Q_x \), deg \(Q_y \) < deg \(D \).

Let \(e = \deg D \); then we can compute \(Q_1 + Q_2 \) for any \(Q_1 \) and \(Q_2 \) in \(\langle P \rangle \) in \(O(\log e) \mathbb{F}_q \)-operations, using the standard affine Weierstrass addition formulae. We can therefore compute \(\langle \log Q \rangle \) as in \(\mathbb{F}_q \)-operations, using a binary method. We let DISCRETELOGARITHM\((Q_1, Q_2)\) be a subroutine which returns the discrete logarithm of \(Q_2 \) to the base \(Q_1 \), where both points are in \(\langle P \rangle \), in \(O(\sqrt{\log e}) \mathbb{F}_q \)-operations (using the approach in \[8\]; in some cases we can do better \[15\]).

Lemma 1. Let \(P = (X, Y) \) in \(\mathcal{E}(\mathbb{F}_q[X, Y]/(Y^2 - f_\mathcal{E}(X), D(X))) \) and let \(e = \deg D \). Then for any \(Q \) in \(\langle P \rangle \), we can:

1. compute \(\pi_p(P) = (X^p, Y^p) \) in \(O(\log p) \mathbb{F}_q \)-operations;
2. compute \(\pi_p(Q) \), given \(\pi_p(P) \), in \(O(\log p) \mathbb{F}_q \)-operations;
3. compute \(\phi(Q) \), where \(\phi \) is a 2-isogeny (as in \(2.1 \)), in \(O(\mathbb{F}_q) \mathbb{F}_q \)-operations; and
4. compute \(\phi(Q) \), where \(\phi \) is a \(d \)-isogeny with \(d \) odd, squarefree and prime to \(p \) (as in \(2.2 \)), in \(O(M(d) + \mathcal{C}_d(e)) \mathbb{F}_q \)-operations.

Proof. See Appendix A.

3. Atkin, Elkies and volcanic primes

Given an elliptic curve \(\mathcal{E}/\mathbb{F}_q \), we split the primes \(\ell \neq p \) into three classes: Elkies, Atkin and volcanic. The volcanic primes fall in two sub-classes: floor-volcanic and upper-volcanic. This classification reflects the structure of the \(\ell \)-isogeny graph near \(\mathcal{E} \), which reflects the factorization of \(\Phi_\ell(j(\mathcal{E}), x) \). The facts stated below without proof all follow immediately from well-known observations of Atkin for general ordinary elliptic curves over \(\mathbb{F}_q \) (cf. \[20, Proposition 6.2\]).

Recall that the discriminant of \(\chi_{\pi_q} \) is \(\Delta_{\pi_q} := t_\mathcal{E}^2 - 4q < 0 \). We say that \(\ell \) is volcanic if \(\ell \) divides \(\Delta_{\pi_q} \). A volcanic prime \(\ell \) is floor-volcanic if

\[
\Phi_\ell(x, j(\mathcal{E})) = (x - j_1)h(x),
\]

where \(h \) is an \(\mathbb{F}_q \)-irreducible polynomial of degree \(\ell \), or upper-volcanic if

\[
\Phi_\ell(x, j(\mathcal{E})) = \prod_{i=1}^{\ell+1}(x - j_i)
\]

with each \(j_i \) in \(\mathbb{F}_q \). In each case, the roots \(j_i \) are the \(j \)-invariants of the elliptic curves \(\mathcal{E}_i \) that are \(\ell \)-isogenous to \(\mathcal{E} \) over \(\mathbb{F}_q \) (up to isomorphism).

We say that \(\ell \) is Elkies if \(\Delta_{\pi_q} \) is a non-zero square modulo \(\ell \). Equivalently, \(\ell \) is Elkies if

\[
\Phi_\ell(x, j(\mathcal{E})) = (x - j_1)(x - j_2) \prod_{i=1}^{(\ell-1)/e} h_i(x),
\]

where \(j_1 \) and \(j_2 \) are in \(\mathbb{F}_q \) and the \(h_i \) are \(\mathbb{F}_q \)-irreducible polynomials, all of the same degree \(e > 1 \), with \(e | (\ell - 1) \). In this case, there exist \(\mathbb{F}_q \)-rational \(\ell \)-isogenies \(\vartheta_1 : \mathcal{E} \to \mathcal{E}_1 \) and \(\vartheta_2 : \mathcal{E} \to \mathcal{E}_2 \) such that \(j(\mathcal{E}_i) = j_i \), and the \(\ell \)-torsion decomposes as \(\mathcal{E}[\ell] = \ker \vartheta_1 \oplus \ker \vartheta_2 \).
We say that ℓ is Atkin if Δ_{π_q} is not a square modulo ℓ. Equivalently, ℓ is Atkin if

$$\Phi_\ell(x, j(E)) = \prod_{i=1}^{(\ell+1)/e} h_i(x),$$

where the h_i are all irreducible polynomials of the same degree $e > 1$, with $e | (\ell + 1)$. Since $\Phi_\ell(x, j(E))$ has no roots in \mathbb{F}_q, there are no elliptic curves ℓ-isogenous to E over \mathbb{F}_q.

We can determine the class of a prime ℓ by finding out how many roots $\Phi_\ell(j(E), x)$ has in \mathbb{F}_q. We define a subroutine \textsc{EvaluatedModularPolynomial}(\ell, E), which computes $\Phi_\ell(j(E), x)$ in $O(\ell^3 (\log \ell)^3 \log \log \ell)$ bit operations (under the Generalized Riemann Hypothesis) using the method of [26], assuming that $\log q = \Theta(\ell)$. (Note that, in practice, one generally uses precomputed modular polynomials over \mathbb{Z}.)

The number of roots is the degree of $J = \gcd(x^q - x, \Phi_\ell(j(E), x))$, which we compute at a higher cost of $O((\log q) M(\deg J) \log \deg J) = O((\log q) M(\ell) \log \ell)$ \mathbb{F}_q-operations. We may then want one of these roots, if any exist; we therefore define a subroutine \textsc{OneRoot}(J) which finds a single root of J. At worst, in the upper-volcanic case, this requires $O((\log q) M(\deg J) \log \deg J)$ \mathbb{F}_q-operations; at best, in the lower-volcanic and Elkies cases (where J is linear and quadratic, respectively), \textsc{OneRoot}(J) costs $O(1) \mathbb{F}_q$-operations.

4. The SEA algorithm

Algorithm 1 presents a basic version of the SEA algorithm. The main loop computes $t_\ell := t_E (\mod \ell)$ for a series of small primes ℓ; then we recover t_E from the t_ℓ via the CRT.

The complexity of Algorithm 1 (and Algorithm 2 below) depends on the number of non-Atkin primes less than a given bound. The standard (and naïve) heuristic on prime classes is to suppose that the number of Atkin and non-Atkin primes ℓ less than B for a given E/\mathbb{F}_q is approximately equal when $B \sim \log q$, as $q \to \infty$. In particular, this means that $O(\log q)$ non-Atkin ℓ suffice to determine t_E, and the largest such ℓ is in $O(\log q)$. While the standard heuristic holds in general, it is known to fail for some E; Galbraith and Satoh have shown (under the Generalized Riemann Hypothesis) that, for some E/\mathbb{F}_p, we may need to use non-Atkin ℓ as large as $O((\log q)^{3+\epsilon} p)$ (see [17, Appendix A]). We refer the reader to [21] and [22] for further details and discussion.

Proposition 2. If E/\mathbb{F}_q is an elliptic curve, then, under the standard heuristic on prime classes, Algorithm 1 computes t_E in $O((\log^3 q)\log \log q)$ expected \mathbb{F}_q-operations (that is, $O((\log^4 q)$ expected bit operations, using fast arithmetic).}

Proof. The main loop computes a set T of pairs $(t_\ell := t_E (\mod \ell), \ell)$ with $\prod_{\ell \in T} \ell > 4\sqrt{q}$. We then recover t_E from T via an explicit CRT. Our procedure for computing t_ℓ depends on the class of ℓ, which we determine using the method at the end of §3 (Lines 6, 7, and 15).

If ℓ is volcanic (Lines 9–14), then $\ell | \Delta_{\pi_q}$, so $t_\ell = 0$ or $t_\ell \equiv \pm 2\sqrt{q} (\mod \ell)$. We distinguish between the three cases by comparing $\pi_q(P)$ with $\pm \sqrt{q} \mod \ell P$ for a generic element P of the kernel of the rational ℓ-isogeny corresponding to one of the roots of $\Phi_\ell(j(E), x)$.

If ℓ is Elkies (Lines 16–20), then $E[\ell]$ decomposes as a direct sum $(\ker \vartheta_1) \oplus (\ker \vartheta_2)$ of ℓ-isogeny kernels; π_q acts by multiplication by eigenvalues λ_1 and λ_2 on $\ker \vartheta_1$ and $\ker \vartheta_2$, respectively, with $\lambda_1 \lambda_2 \equiv q (\mod \ell)$, so $t_\ell \equiv \lambda_1 + q/\lambda_1 (\mod \ell)$; and we can determine λ_1 by solving the discrete logarithm problem $\pi_q(P) = [\lambda_1] P$ for a symbolic point P of $\ker \vartheta_1$.

If ℓ is Atkin, then we skip it completely and do not compute t_ℓ (see the discussion in §7).

In terms of \mathbb{F}_q-operations, determining the class of ℓ costs $O((\log q)^3 \log \log q + \log q M(\ell))$; computing t_ℓ then costs $O((\log q + \log \ell) M(\ell) \log \ell + (\ell^{(\omega+1)/2})$ for volcanic ℓ and $O((\log p + \ell^{1/2}) M(\ell) + (\ell^{(\omega+1)/2})$ for Elkies ℓ. The standard heuristic on prime classes tells us that we will
try $O(\log q)$ primes ℓ and that the largest ℓ are in $O(\log q)$; so the total cost of the algorithm is $\hat{O}(\log^2 q)$, as claimed.

\begin{algorithm}
\textbf{Input}: An elliptic curve \mathcal{E}/\mathbb{F}_q, where $q = p^n$ with p large
\textbf{Output}: The trace of Frobenius of \mathcal{E}
\begin{algorithmic}
\STATE $\mathcal{T} \leftarrow \emptyset$; \hfill // \mathcal{T} will contain the pairs $(t_{\mathcal{E}} \pmod{\ell}, \ell)$
\STATE $M \leftarrow 1$; \hfill // After each iteration, $t_{\mathcal{E}}$ is known modulo M
\STATE $\ell \leftarrow 1$;
\WHILE{$M \leq 4\sqrt{q}$}
\STATE $\ell \leftarrow \text{NextPrime}(\ell)$;
\STATE $J \leftarrow \gcd(x^3 - x, \text{EVALUATEDMODULARPOLYNOMIAL}(\ell, \mathcal{E}))$;
\IF{\deg $J = 1$ or $\ell + 1$}
\IF{\text{if } q \text{ has a square root } s \text{ modulo } \ell \text{ then} } \hfill // ℓ is volcanic
\STATE $F \leftarrow \text{KERNELPOLYNOMIAL}(\ell, \mathcal{E}, \text{ONEROOT}(J))$;
\STATE $P \leftarrow (X, Y) \text{ in } \mathcal{E}(\mathbb{F}_q[X, Y]/(Y^2 - f_{\mathcal{E}}(X), F(X)))$;
\STATE $Q_1 \leftarrow \pi_p(P); Q_2 \leftarrow \pi_p(Q_1); Q_3 \leftarrow [s]P$;
\STATE $t_\ell \leftarrow \begin{cases} -2s & \text{if } Q_2 = -Q_3; \\
0 & \text{otherwise}; \end{cases}$
\ELSE $t_\ell \leftarrow 0$;
\ENDIF
\STATE $\mathcal{T} \leftarrow \mathcal{T} \cup \{(t_\ell, \ell)\}; M \leftarrow \ell M$
\ELSE \text{if } \deg $J = 2$ \hfill // ℓ is Elkies
\STATE $F \leftarrow \text{KERNELPOLYNOMIAL}(\ell, \mathcal{E}, \text{ONEROOT}(J))$;
\STATE $P \leftarrow (X, Y) \text{ in } \mathcal{E}(\mathbb{F}_q[X, Y]/(Y^2 - f_{\mathcal{E}}(X), F(X)))$;
\STATE $Q_1 \leftarrow \pi_p(P); Q_2 \leftarrow \pi_p(Q_1)$;
\STATE $t_\ell \leftarrow \lambda + q/\lambda \pmod{\ell}$ \textbf{where } $\lambda = \text{DISCRETELOGARITHM}(P, Q_2)$;
\STATE $\mathcal{T} \leftarrow \mathcal{T} \cup \{(t_\ell, \ell)\}; M \leftarrow \ell M$
\ENDIF
\ENDWHILE
\RETURN $\text{CHINESEREMAINDERTHEOREM}(\mathcal{T})$;
\end{algorithmic}
\end{algorithm}

5. Admissible curves

From now on, $q = p^2$.

Recalling Definition 1: let \mathcal{E} be a d-admissible curve over \mathbb{F}_{p^2}, with separable d-isogeny $\phi: \mathcal{E} \to \mathcal{E}$ (satisfying $\sigma \phi = \epsilon \phi^1$ with $\epsilon = \pm 1$), and associated endomorphism $\psi = \sigma \phi \circ \pi_p$.

\textbf{PROPOSITION 3}. The associated and Frobenius endomorphisms of \mathcal{E} are related by

$$\psi^2 = [cd] \pi_p^2.$$ \hfill (5.1)

The characteristic polynomial of ψ is

$$\chi_\psi(T) = T^2 - r dT + dp.$$ \hfill (5.2)

where r is an integer satisfying

$$dr^2 = 2p + \epsilon t_{\mathcal{E}}.$$ \hfill (5.3)

In particular,

$$r \psi = p + \epsilon \pi_{p^2} \in \text{End}(\mathcal{E}).$$ \hfill (5.4)
Indeed, since the discriminants of $\psi^2 = (\sigma \phi \pi_p)(\sigma \phi \pi_q) = (\epsilon \phi^1 \phi)(\sigma \pi_p \pi_q) = |ed| \pi_q$. The degree of ψ is dp, so ψ has characteristic polynomial $\chi_\psi(T) = T^2 - xT + dp$ for some integer x. On the other hand, $ed \pi_q$ has characteristic polynomial $T^2 - \epsilon dt \pi_q T + d^2 p^2$; but $\psi^2 = x\psi - dp$ is a root, so $x = rd$, where r satisfies (5.3). We then have $ed r^2 \pi_q = (\epsilon \pi_q + p)^2$ in $\mathbb{Z}[\pi_q]$. Comparing with (5.1), we find that $r\psi = \pm(p + \epsilon \pi_q)$; but then $\chi_\psi(\psi) = 0$ implies (5.4).

Equation (5.3) has a number of interesting corollaries. First, $t_\mathcal{E} \equiv -2\epsilon p \pmod{d}$, so we obtain some information on $t_\mathcal{E}$ for free. Second, r determines $t_\mathcal{E}$, and hence $\mathcal{E}(\mathbb{F}_{p^2})$. Third, we have a much smaller bound on r than on $t_\mathcal{E}$: for d-admissible curves the Hasse–Weil bound becomes

$$|r| \leq 2\sqrt{p/d}. \tag{5.5}$$

This suggests our point-counting strategy, which is to modify the SEA algorithm to compute r instead of $t_\mathcal{E}$, by considering the action on $\mathcal{E}[\ell]$ of ψ instead of π_q and using fewer primes ℓ.

We simplify the task by quickly disposing of the supersingular case, which can be efficiently detected using Sutherland’s algorithm [25], or slightly faster using a probabilistic algorithm.

Proposition 4. If $\mathcal{E}/\mathbb{F}_{p^2}$ is d-admissible, then it is supersingular if and only if $r = 0$, in which case $t_\mathcal{E} = -2\epsilon p$ and $\mathcal{E}(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/(p + \epsilon)\mathbb{Z})^2$.

Proof. The curve \mathcal{E} is supersingular if and only if $p \mid t_\mathcal{E}$, if and only if $p \mid r$ (by (5.3) mod p and $p \nmid d$) and if and only if $r = 0$ (by (5.5)). The group structure follows from [27, Theorem 1.1].

From now on, we will assume \mathcal{E} is ordinary; so $\text{End}(\mathcal{E})$ is an order in the quadratic imaginary field $\mathbb{Q}(\pi_q)$, and $\mathbb{Z}[\pi_q]$ and $\mathbb{Z}[\psi]$ are orders contained in $\text{End}(\mathcal{E})$. Looking at (5.2), we see that the discriminants of $\mathbb{Z}[\psi]$ and $\mathbb{Z}[\pi_q]$ are related by

$$\Delta_\psi = d(dr^2 - 4p) \quad \text{and} \quad \Delta_\pi_q = t_\mathcal{E}^2 - 4p^2 = r^2 \Delta_\psi,$$

so $|r|$ is the conductor of $\mathbb{Z}[\pi_q]$ in $\mathbb{Z}[\psi]$: that is,

$$\mathbb{Z}[\pi_q] \subset \mathbb{Z}[\psi] \subseteq \text{End}(\mathcal{E}) \quad \text{with} \ [\mathbb{Z}[\psi] : \mathbb{Z}[\pi_q]] = |r|.$$

Indeed, since \mathcal{E} is ordinary, $r \neq 0$; so we can rewrite (5.4) as

$$\psi = \frac{p + \epsilon \pi_q}{r} \quad \text{in} \ \text{End}(\mathcal{E}). \tag{5.6}$$

Deuring’s theorem on isogeny classes and class groups (cf. [19, §4]) can be used to show that the number of \mathbb{F}_q-isomorphism classes of ordinary d-admissible curves with a given r is $H(\Delta_\psi)$, where H is the Kronecker class number. In particular, every r in the interval of (5.5) occurs for some d-admissible \mathcal{E}/\mathbb{F}_q.

In the language of isogeny volcanoes [6], if ℓ is a prime dividing r, then \mathcal{E} is somewhere strictly above the floor of the volcano for ℓ; that is, all $\ell \mid r$ are upper-volcanic.

6. Computing the cardinality of admissible curves

Let \mathcal{E}/\mathbb{F}_q be an ordinary d-admissible curve, with associated endomorphism ψ; we want to compute $\#\mathcal{E}(\mathbb{F}_q)$. Many of the techniques used in the conventional SEA algorithm can be transposed to working with ψ instead of π_q. Equations (5.3) and (5.5) show that $t_\mathcal{E}$ is completely determined by $|r|$, which is bounded by $2\sqrt{p/d}$; so we can compute $t_\mathcal{E}$ by computing

$$r_\mathcal{E} := r \pmod{\ell}$$
for \(\ell \) in a collection of small primes \(\mathcal{L} \) such that
\[
\prod_{\ell \in \mathcal{L}} \ell > 4\sqrt{p/d},
\]
then recovering \(r \) from the \(r_\ell \) using the CRT. As a quick comparison, using SEA with \(\pi_q \) to compute \(t_\mathcal{E} \) directly would require \(\prod_{\ell \in \mathcal{L}} \ell > 4\sqrt{q} = 4p \).

Proposition 5. If \(\mathcal{E}/\mathbb{F}_{p^2} \) is \(d \)-admissible, then, under the standard heuristic on prime classes, Algorithm 2 computes \(t_\mathcal{E} \) in \(\tilde{O}(\log^3 p) \) expected \(\mathbb{F}_q \)-operations (that is, \(\tilde{O}(\log^4 p) \) expected bit operations, using fast arithmetic).

Proof. We compute \(t_\mathcal{E} \) from \(r, \) which we recover exactly using the CRT from the pairs \((r_\ell, \ell) \) in \(\mathcal{R} \), since \(\prod_{(r_\ell, \ell) \in \mathcal{R}} \ell > 4\sqrt{p/d} \). Our approach for computing \(r_\ell \) depends on which class \(\ell \) falls into; we determine the class of \(\ell \) in Lines 6, 7 and 15 (exactly as in Algorithm 1).

If \(\ell \) is volcanic (Lines 9–14), then combining \(\ell \mid \Delta_{\pi_q} \) with (5.3) yields \(r \equiv 0 \) or \(\pm 2\sqrt{p/d} \) (mod \(\ell \)); in particular, if \(\ell \) is volcanic and \(dp \) is a non-square modulo \(\ell \), then \(r_\ell = 0 \).

If \(\ell \) is Elkies (Lines 16–20), then let \(\mathcal{E}[\ell] = (\ker \vartheta_1) \oplus (\ker \vartheta_2) \) be the decomposition of the \(\ell \)-torsion into eigenspaces for \(\pi_q \). Since \(\ell \) is not volcanic, \(r \not\equiv 0 \) (mod \(\ell \)), so (5.6) shows that the \(\ker \vartheta_1 \) are eigenspaces for \(\psi \). So let \(\lambda_\psi \) and \(\lambda_\psi \) be the eigenvalues of \(\pi_q \) and \(\psi \) on \(\ker \vartheta_1 \) (say); then (5.6) yields \(\lambda_\psi \equiv (p + \epsilon \lambda_\pi)/r \) (mod \(\ell \)), and then \(\chi_\psi(\lambda_\psi) \equiv 0 \) (mod \(\ell \)) implies that \(r_\ell = \lambda_\psi/d + p/\lambda_\psi \) (mod \(\ell \)). We can therefore compute \(r_\ell \) by computing \(\lambda_\psi \), which is the discrete logarithm of \(\psi(P) \) to the base \(P \) for a symbolic point \(P \) in \(\ker \vartheta_1 \).

If \(\ell \) is Atkin, then we skip it completely, as in Algorithm 1 (but, see §7).

In terms of \(\mathcal{F}_q \)-operations, determining the class of \(\ell \) costs \(O(\ell^2(\log \ell)^3 \log \ell + \log q M(\ell)) \), while computing \(r_\ell \) costs \(O((\log p + \log \ell) M(\ell) \log \ell + \ell(\omega+1)/2) \) if \(\ell \) is volcanic and \(O((\log p + \ell/2) M(\ell) + \ell(\omega+1)/2) \) if \(\ell \) is Elkies. The standard heuristic on prime classes tell us that we will try \(O(\log p) \) primes \(\ell \), the largest of which are in \(O(\log p) \); so the total complexity is \(O(\log^3 p) \) \(\mathcal{F}_q \)-operations, as claimed.

Remark 1. Suppose \(\ell \mid d \) and \(\ell \neq 2 \). Equation (5.3) tells us that \(t_\mathcal{E} \equiv 2\epsilon p \) (mod \(\ell \)); so \(\ell \mid \Delta_{\pi_q} \), and \(\ell \) is volcanic. Moreover, since \(\Delta_\psi = d(dr^2 - 4p) \), we can deduce that \(\ell \mid \Delta_\psi \). Note also that \(\text{End}(\mathcal{E}) \cong \text{End}(\mathcal{E}) \), so the \(\ell \)-isogeny factoring \(\phi \) is horizontal; this implies that \(\text{End}(\mathcal{E}) \) is \(\ell \)-maximal. Combined with the above, we see that \(\mathbb{Z}[\bar{\psi}] \) is \(\ell \)-maximal in \(\mathbb{Q}(\pi_q) \). In particular, if \(\ell \) is upper-volcanic, then \(\ell \mid r \) (and \((0, \ell) \) can be added to \(\mathcal{R} \) in Algorithm 2).

7. Complements

Schoof’s original algorithm may be generalized from prime \(\ell \) to small prime powers in a very simple way. Going further, we may use isogeny cycles to compute eigenspaces of \(\pi_q \) for \(\pi_q \) in [5] and [8] generalize to \(\psi \) without any difficulty. Once we have recovered
\[
\psi(P) = [k_n]P \quad \text{for} \quad P = (X, Y) \in \mathcal{E}(\mathbb{F}_q[X, Y]/(Y^2 - f_\mathcal{E}(X), F_{\ell^n}(X))),
\]
we have \(k_{n+1} = k_n + \tau \ell^n \) for \(0 \leq \tau < \ell \), and we need to test
\[
\psi(P) - [k_n]P = [\tau]([\ell^n]P) \quad \text{in} \quad \mathcal{E}(\mathbb{F}_q[X, Y]/(Y^2 - f_\mathcal{E}(X), F_{\ell^n+1}(X)))
\]
(here \(F_{\ell^n} \) and \(F_{\ell^n+1} \) are factors of \(\Psi_{\ell^n} \) and \(\Psi_{\ell^{n+1}} \) that are minimal polynomials for \(\ell^n \) and \(\ell^{n+1} \)-torsion points).
Algorithm 2: AdmissibleTrace

Input: A d-admissible curve \(\mathcal{E}/\mathbb{F}_p^2 \), where \(p \) is large
Output: The trace of Frobenius of \(\mathcal{E} \)

1. \(R \leftarrow \{ \} \); // \(R \) will contain the pairs \((r \mod \ell, \ell)\)
2. \(M \leftarrow 1 \); // After each iteration, \(r \) is known modulo \(M \)
3. \(\ell \leftarrow 1 \);
4. While \(M \leq 4 \sqrt{p}/\ell \) do
 5. \(\ell \leftarrow \text{NextPrime}(\ell) \) until \(\ell \nmid d \);
 6. \(J \leftarrow \gcd(x^2 - x, \text{EvaluatedModularPolynomial}(\ell, \mathcal{E})) \);
 7. If \(\deg J = 1 \) or \(\ell + 1 \) then // \(\ell \) is volcanic
 8. If \(d \) has a square root \(s \) modulo \(\ell \) then
 9. \(F \leftarrow \text{KernelPolynomial}(\ell, \mathcal{E}, \text{OneRoot}(J)) \);
 10. \(P \leftarrow (X, Y) \in \mathcal{E}(\mathbb{F}_q)[X, Y]/(Y^2 - f_\ell(X), F(X)) \);
 11. \(Q_1 \leftarrow \pi_q(P) \); \(Q_2 \leftarrow \sigma \phi(Q_1) \); \(Q_3 \leftarrow [s]P \);
 \(2s/d \mod \ell \) if \(Q_3 = Q_2 \);
 \(r_\ell \leftarrow -2s/d \mod \ell \) if \(Q_3 = -Q_2 \);
 0 otherwise;
 12. Else \(r_\ell \leftarrow 0 \);
 13. \(R \leftarrow R \cup \{ (r_\ell, \ell) \} \); \(M \leftarrow \ell M \);
 14. Else if \(\deg J = 2 \) then // \(\ell \) is Elkies
 15. \(F \leftarrow \text{KernelPolynomial}(\ell, \mathcal{E}, \text{OneRoot}(J)) \);
 16. \(P \leftarrow (X, Y) \in \mathcal{E}(\mathbb{F}_q)[X, Y]/(Y^2 - f_\ell(X), F(X)) \);
 17. \(Q_1 \leftarrow \pi_q(P) \); \(Q_2 \leftarrow \sigma \phi(Q_1) \);
 18. \(r_\ell \leftarrow \lambda/d + p/\lambda \mod \ell \) where \(\lambda = \text{DiscreteLogarithm}(P, Q_2) \);
 19. \(R \leftarrow R \cup \{ (r_\ell, \ell) \} \); \(M \leftarrow \ell M \);
 20. Return \(\epsilon(dr^2 - 2p) \) where \(r = \text{ChineseRemainderTheorem}(R) \);

We may extend Algorithms 1 and 2 to use Atkin primes. If \(\ell \) is Atkin, then \(\pi_q \) and \(\psi \) have no rational eigenspaces in \(\mathcal{E}[\ell] \); but we may still compute \(t_\ell \) and \(r_\ell \) by working on the full \(\ell \)-torsion, as in Schoof’s original algorithm. If \(P \) is a symbolic point of \(\mathcal{E}[\ell] \), then \((\chi \pi_q \mod \ell)(P) = 0 \), so, in Algorithm 1, \(t_\ell \) is the discrete logarithm of \(\pi_q(\pi_q(P)) + [q \mod \ell]P \) to the base \(\pi_q(P) \); similarly, in Algorithm 2, \(r_\ell \) is the discrete logarithm of \(\epsilon \pi_q(P) + [p \mod \ell](P) \) to the base \(\psi(P) \) (here we use \(\psi^2 - dr\psi + [dp] = d(\epsilon\pi_q - r\psi + [p]) = 0 \) and \(\ell \nmid d \)). The kernel polynomial defining \(\mathcal{E}[\ell] \) is \(\Psi_\ell \), which we can compute using standard recurrences involving the coefficients of \(f_\ell \) (using the method of [2], for example) in \(O(M(\ell^2) \log \ell) \) \(\mathbb{F}_q \)-operations. But \(\Psi_\ell \) has degree \((\ell^2 - 1)/2 \), so computing \(t_\ell \), respectively \(r_\ell \) costs \(O((\log q)M(\ell^2)) \), respectively, \(O((\log p)M(\ell^2)) \) \(\mathbb{F}_q \)-operations; for that cost, we would gain much more information by using a larger Elkies prime instead. Alternatively, we can use Atkin’s initial ideas using the splitting degree of \(\Phi_\ell(X, j(\mathcal{E})) \) to determine a list of potential \(t_\ell \) to be used in a tricky match and sort algorithm, or the more advanced algorithm of [12]. In our setting, we could use (5.3) to transform the list of \(t_\ell \) to build a list of \(r_\ell \) (on average, this does not increase the size of the lists too much).

Finally, we mention the use of the baby-step giant-step approach to speed up the final computations. If \(P \in \mathcal{E}(\mathbb{F}_q) \), then \(\chi_\psi(P) = 0 \) becomes \([cd + dp]P = [rd]\psi(P)\), so \([p + \epsilon](Q) = [r]\psi(Q)\) with \(Q = [d]P \) (if \(Q = O_\mathcal{E} \), then another \(P \) should be used). Suppose we stop the loop of Algorithm 2 early; then \(r \) is known modulo \(M \). Writing \(r = r_0 + sM \) with \(|s| \leq 2\sqrt{p}/d/M \), we can find \(s \) by solving \([p + \epsilon - r_0]Q = [s][M]\psi(Q)\) for a sufficiently general choice of \(Q \) in \(\mathcal{E}(\mathbb{F}_q) \); this is a classical discrete logarithm problem with \(\mathbb{F}_q \)-points, but in a smaller search.
space than the whole of $\mathcal{E}(\mathbb{F}_q)$. The optimal threshold for M is best determined through experiments.

8. Comparison of Algorithms 1 and 2

Let us compare the cost of computing $t_\mathcal{E}$ with Algorithms 1 and 2 when \mathcal{E} is d-admissible. For simplicity, we will suppose that Algorithm 1 also avoids the primes dividing d (these are very few and very small, so they do not contribute asymptotically or practically to the comparison).

The first clear difference between the algorithms is the number and size of primes ℓ used: Algorithm 2 essentially uses the smaller half of the set of primes used by Algorithm 1. The largest primes in each set still have roughly the same size, $O(\log p)$, so asymptotically this makes no difference—but using half the number of primes, and the smaller half at that, represents an important improvement, in practice.

Now consider the cost of computing $t_\mathcal{E}$ (as in Algorithm 1) or $r_\mathcal{E}$ (as in Algorithm 2) for the same ℓ. The costs of determining the class of ℓ and the calls to DISCRETELOGARITHM are identical, and the calls to DISCRETELOGARITHM are equivalent. The only real difference is in the way each algorithm computes the relations used to determine $t_\mathcal{E}$ and $r_\mathcal{E}$.

- If ℓ is Elkies, then Algorithm 1 uses $2 \times \pi_p$, while Algorithm 2 uses $1 \times \pi_p + 1 \times \sigma \phi$.
- If ℓ is volcanic, then (in the worst cases) Algorithm 1 uses $2 \times \pi_p + 1 \times [s \text{ mod } \ell]$, while Algorithm 2 uses $1 \times \pi_p + 1 \times \sigma \phi + 1 \times [s \text{ mod } \ell]$.

In each case, the asymptotic costs are the same; but if $d \ll \log p$, then the costs are dominated by computations of π_p on $\langle P \rangle$ (for the same P). The crucial practical difference is that, for each class of prime, Algorithm 2 exchanges half of the computations of π_p required by Algorithm 1 for one computation of $\sigma \phi$, which has a very small cost when $d \ll \log p$. Hence, for any given prime ℓ, Algorithm 2 should compute $r_\mathcal{E}$ twice as quickly as Algorithm 1 computes $t_\mathcal{E}$.

By our complexity analysis, we see that the largest ℓ is $O(\log p)$ instead of $O(\log q)$, and we use the the smaller half of them; we expect a real speed-up of a factor of four. This is confirmed by our experimental results in §11 below.

9. \mathbb{Q}-curves and other sources of admissible curves

Admissible curves appear naturally as reductions of quadratic \mathbb{Q}-curves modulo inert primes (cf. [24, §3]). As such, we can construct parametrized families of admissible curves over any \mathbb{F}_{p^2}.

Definition. A quadratic \mathbb{Q}-curve of degree d is an elliptic curve $\tilde{\mathcal{E}}$ without complex multiplication, defined over a quadratic field $\mathbb{Q}(\sqrt{d})$, such that there exists an isogeny of degree d from $\tilde{\mathcal{E}}$ to its Galois conjugate $\tau \tilde{\mathcal{E}}$, where τ is the conjugation of $\mathbb{Q}(\sqrt{d})$ over \mathbb{Q}.

Proposition 6. Let $\tilde{\mathcal{E}}/\mathbb{Q}(\sqrt{d})$ be a quadratic \mathbb{Q}-curve of degree d. If $p \nmid d$ is a prime of good reduction for $\tilde{\mathcal{E}}$ that is inert in $\mathbb{Q}(\sqrt{d})$, then the reduction of $\tilde{\mathcal{E}}$ modulo p is d-admissible.

Proof. González shows that a d-isogeny $\tilde{\phi} : \tilde{\mathcal{E}} \to \tau \tilde{\mathcal{E}}$ must be defined over $\mathbb{Q}(\sqrt{d}, \sqrt{\pm d})$ (see [9, §3]); so if we extend τ to the involution of $\mathbb{Q}(\sqrt{d}, \sqrt{\pm d})$ that acts trivially on $\mathbb{Q}(\sqrt{\pm d})$ if and only if $\sqrt{\pm d}$ is in \mathbb{F}_p, then $\tilde{\phi}$ reduces modulo p to a d-isogeny $\phi : \mathcal{E} \to \sigma \mathcal{E}$ over \mathbb{F}_{p^2} and $\tau \phi$ reduces to $\sigma \phi$. Observe that $\tau \phi$ is an endomorphism of $\tilde{\mathcal{E}}$ of degree d^2. Since $\tilde{\mathcal{E}}$ does not have complex multiplication, its only endomorphisms of degree d^2 are $[\pm d]$; hence $\tau \phi = \epsilon \phi$ with $\epsilon = \pm 1$. Reducing modulo p, $\sigma \phi = \epsilon \phi^1$, so \mathcal{E} is d-admissible. \hfill \square

We emphasize that if a d-admissible curve \mathcal{E} is the reduction of a quadratic \mathbb{Q}-curve $\tilde{\mathcal{E}}$, then the associated endomorphism on \mathcal{E} is not the reduction of any endomorphism on $\tilde{\mathcal{E}}$. Indeed, $\tilde{\mathcal{E}}$ has no non-integer endomorphisms, by definition.
Example 1. Fix any prime $p > 3$; the following construction (carried much further in [23] and [24]) yields a 1-parameter family of 2-admissible curves over \mathbb{F}_p^2. Let Δ be a squarefree integer that is not a square modulo p (so p is inert in $\mathbb{Q}(\sqrt{\Delta})$), let τ be the involution of $\mathbb{Q}(\sqrt{\Delta}, \sqrt{-2})$ that restricts to σ modulo p and let s be a free parameter taking values in \mathbb{Q}. The family of curves over $\mathbb{Q}(\sqrt{\Delta})$ defined by $\tilde{E} : y^2 = x^3 - 6(5 - 3s\sqrt{\Delta})x + 8(7 - 9s\sqrt{\Delta})$ is equipped with a 2-isogeny $\tilde{\phi} : \tilde{E} \to \tau \tilde{E}$ over $\mathbb{Q}(\sqrt{\Delta}, \sqrt{-2})$ with kernel polynomial $D(x) = x - 4$ (see [11, Proposition 3.3]). Computing $\tilde{\phi}^1$ and $\tau \tilde{\phi}$, we find that $\tau \tilde{\phi} = e \tilde{\phi}^1$, where $e = 1$ if $p \equiv 5, 7 \pmod{8}$ and $e = -1$ if $p \equiv 1, 3 \pmod{8}$. Reducing everything modulo p, as in the proof of Proposition 6, we obtain a family of curves

$$\mathcal{E} : y^2 = x^3 - 6(5 - 3s\sqrt{\Delta})x + 8(7 - 9s\sqrt{\Delta}) \quad \text{over } \mathbb{F}_p \subset \mathbb{F}_p^2$$

with the parameter s taking values in \mathbb{F}_p, equipped with a 2-isogeny $\phi : \mathcal{E} \to \sigma \mathcal{E}$ over \mathbb{F}_p^2. Composing π_p with $\sigma \phi$ yields the associated endomorphism ψ of \mathcal{E}, defined by

$$\psi : (x, y) \mapsto \left(\frac{x^p(x^p - 4) + 18(1 - s\sqrt{\Delta})}{-2(x^p - 4)}, \frac{y^p}{\sqrt{-2^p}}\left(\frac{(x^p - 4)^2 - 18(1 - s\sqrt{\Delta})}{-2(x^p - 4)^2}\right)\right).$$

Since the definition of admissible curves involves only isogenies over \mathbb{F}_p^2, we would expect a characterization of admissible curves over a given \mathbb{F}_p^2 in terms of modular polynomials.

Proposition 7. If \mathcal{E} is an ordinary elliptic curve over $\mathbb{F}_q = \mathbb{F}_p^2$ such that $j(\mathcal{E})$ is a simple root of $\Phi_d(x, x^p)$ in $\mathbb{F}_q \setminus \{0, 1728\}$ (so in particular, $\text{Aut}_{\mathbb{F}_q}(\mathcal{E}) = \{\pm 1\}$), then \mathcal{E} is d-admissible.

Proof. If $j(\mathcal{E})$ is a simple root of $\Phi_d(x, x^p)$ in \mathbb{F}_q, then, up to \mathbb{F}_q-isomorphism, there is a unique d-isogeny $\phi : \mathcal{E} \to \sigma \mathcal{E}$. If ϕ were not defined over \mathbb{F}_q, then the endomorphism $\sigma \pi_p \phi$ would not be defined over \mathbb{F}_q, and hence would not commute with π_q, which would contradict non-supersingularity. For d-admissibility, it remains to show that $\phi = e \phi^1$ with $e = \pm 1$. But if this were not the case, then $(\tau \phi)^1$ would be a second d-isogeny $\mathcal{E} \to \sigma \mathcal{E}$, not isomorphic to ϕ (since $\text{Aut}_{\mathbb{F}_q}(\mathcal{E}) = \{\pm 1\}$): that is, $j(\mathcal{E})$ would be (at least) a double root of $\Phi_d(x, x^p)$.

Example 2. Multiple roots of $\Phi_d(x, x^p)$ may not yield d-admissible curves. Consider the ordinary curve $\mathcal{E} : y^2 = x^3 + (38 + 53i)x + 27 - 3i$ over $\mathbb{F}_q = \mathbb{F}_{103}(i)$, where $i^2 = -1$: then $j(\mathcal{E}) = 35 + 5i$ is a double root of $\Phi_3(x, x^{103})$. Indeed, we have a pair of non-isomorphic 3-isogenies $\phi_1 : \mathcal{E} \to \sigma \mathcal{E}$ and $\phi_2 : \mathcal{E} \to \sigma \mathcal{E}$, with kernel polynomials $x + 1 + 39i$ and $x - 4 + 32i$, respectively; but $\sigma \phi_1 = \pm \phi_2^1$ and $\sigma \phi_2 = \pm \phi_1^1$, so \mathcal{E} is not 3-admissible.

10. Generating cryptographically strong curves

One of the important motivations for developing our algorithm was the generation of cryptographically strong curves. Indeed, the curves proposed for cryptographic applications in [23] and [24], and which were subsequently used in fast, compact Diffie–Hellman key exchange software [3], are admissible. These curves were designed to offer accelerated scalar multiplication (using the associated endomorphism) over fast finite fields, without obstructing twist-security; but when generating twist-secure curves at and above the 128-bit security level, we can expect to try hundreds of thousands of curves before finding a suitable one. In this context of counting many curves, practical speed-ups become very important.

For cryptographic applications based on the hardness of the discrete logarithm problem, the minimum requirement for a ‘secure’ curve $\mathcal{E}/\mathbb{F}_{p^2}$ is that $\#\mathcal{E}(\mathbb{F}_{p^2}) = c \cdot n$, where n is prime and c is tiny (traditionally, we want $c = 1$; more modern software using Montgomery and Edwards
models requires \(c = 2 \) or \(4 \). For some applications, we further require ‘twist-security’: that is, the quadratic twist \(\mathcal{E}' \) should satisfy \(\#\mathcal{E}'(\mathbb{F}_{p^2}) = c' \cdot n' \), where \(n' \) is prime and \(c' \) is tiny.

To find a secure or twist-secure curve over \(\mathbb{F}_{p^2} \), we typically fix a prime \(p \) of bitlength around the required security parameter, then test a series of curves over \(\mathbb{F}_{p^2} \), computing their orders until we find a curve with the right structure. Equation (5.3) implies that

\[
\#\mathcal{E}(\mathbb{F}_{p^2}) = (p + \epsilon)^2 - \epsilon dr^2 \quad \text{and} \quad \#\mathcal{E}'(\mathbb{F}_{p^2}) = (p - \epsilon)^2 + \epsilon dr^2.
\]

This places some immediate constraints on the combinations of \(d, p \) and \(\epsilon \) that can yield suitable curves. For example, \(\#\mathcal{E}(\mathbb{F}_{p^2}) \equiv (p + \epsilon)^2 \pmod{d} \), so \(d \mid \#\mathcal{E}(\mathbb{F}_{p^2}) \) if and only if \(p \equiv -\epsilon \pmod{d} \); such \(p \) should be avoided unless we can accept \(d \mid c \). Similarly, if twist-security prohibits \(d \mid c' \), then we must avoid \(p \equiv \epsilon \pmod{d} \). Clearly if \(\mathcal{E} \) is 2-admissible, then it must have a rational point of order 2, so we cannot do better than having \(c = c' = 2 \). Similarly, 3-admissible curves must have either \(3 \mid c \) or \(3 \mid c' \).

Extensive computations done for \(d = 2 \) and 3 over a range of primes revealed densities of twist-secure \(d \)-admissible curves (modulo the constraints above) similar to the densities of twist-secure general elliptic curves over the same fields.

With Algorithm 1, we can speed up the search for secure curves by checking whether \(t_\ell \equiv p^2 + 1 \pmod{\ell} \) for each \(\ell \); if so, then \(\ell \mid \#\mathcal{E}(\mathbb{F}_{p^2}) \), so we can abort the computation and move on to the next candidate curve [14]. Similarly, if \(t_\ell \equiv -(p^2 + 1) \pmod{\ell} \), then \(\ell \mid \#\mathcal{E}'(\mathbb{F}_{p^2}) \).

With Algorithm 2, if \(\ell \) divides \(\#\mathcal{E}(\mathbb{F}_{p^2}) \) then \((p + \epsilon)^2 \equiv \epsilon dr^2 \pmod{\ell} \), so \(\ell \) cannot divide \(\#\mathcal{E}(\mathbb{F}_{p^2}) \) unless \(\epsilon d \) is a square mod \(\ell \); and if \(\epsilon d \) is a square mod \(\ell \), then we should abort if \(r_\ell \equiv \pm (p + \epsilon) \sqrt{\epsilon d} \pmod{\ell} \). In fact, if \(r_\ell \equiv 0 \) and \(p + \epsilon \equiv 0 \pmod{\ell} \), then the non-degeneracy of the \(\ell \)-Weil pairing implies that \(\mathcal{E}[\ell](\mathbb{F}_{p^2}) \cong (\mathbb{Z}/\ell\mathbb{Z})^2 \). Replacing \(\epsilon \) with \(-\epsilon \) yields analogous results for the twist \(\mathcal{E}' \).

We note also that there may be an advantage in generating curves using the parameter \(r \) and not \(t_\ell \). We could force some value of \(\ell \) to divide \(r \) by rejecting curves \(\mathcal{E} \) for which \(\Phi_\ell(X,j(\mathcal{E})) \) does not have one or \(\ell + 1 \) roots. This has no impact on \(t_\ell \), and we already know \(r \pmod{\ell} \). We just need to hope that such curves are as secure as general \(d \)-admissible curves.

11. Implementation and experiments

We implemented the new algorithm on top of our implementation of SEA, realized in C++ using NTL 9.6.4 (with gcc 4.9.2). The timings below (in seconds) are for an Intel Xeon platform (E5520 CPU at 2.27GHz). We define two primes (of 128 and 255 bits), derived from the decimal expansion of \(\pi \).

\[
p_{128} := 314159265358979323846264338327950288459,
\]

\[
p_{255} := 31415926535897932384626433832795028841971693993751058209749445923078164062963.
\]

First, we compare the straightforward computation of \(X^q \pmod{\Phi_\ell} \) to a modular composition over \(\mathbb{F}_{p^2} \) with \(p = p_{128} \) and \(p_{255} \), for two choices of \(\ell \).

<table>
<thead>
<tr>
<th>(P_{128})</th>
<th>(\ell)</th>
<th>(X^p \pmod{\Phi_\ell})</th>
<th>(X^p \circ X^p)</th>
<th>(X^q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>0.23</td>
<td>0.04</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>0.43</td>
<td>0.11</td>
<td>0.88</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(P_{255})</th>
<th>(\ell)</th>
<th>(X^p \pmod{\Phi_\ell})</th>
<th>(X^p \circ X^p)</th>
<th>(X^q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>0.69</td>
<td>0.07</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>1.38</td>
<td>0.18</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

Then we ran our program on curves from the family of Example 1, for each \(1 \leq s \leq 100 \). This gave the following average values.
Finally, we searched for twist-secure curves with small values of the parameter s. For instance, with $p = p_{128}$ and $s = 113$, we get a curve of cardinality $2p'$, whose twist has cardinality $6p''$; with $p = p_{255}$, taking $s = 269$ yields a pair of curves each with cardinality two times a prime.

Appendix A. Detailed complexity of basic computations

Let $F(X)$ be a degree e polynomial with coefficients in $\mathbb{F}_p[X]$. We define G and H to be the polynomials of degree $< e$ such that $H \equiv X^p \pmod{F}$ and

$$Y^p \equiv YG(X) \quad \text{with} \quad G(X) \equiv f_X^{(p/e-1)/2}(X) \mod F(X). \quad (A.1)$$

A.1. Computing $X^q \mod F$

The first step in factoring F is to compute $X^q \mod F$. When $q = p^n$ for some prime p, we may start by computing H and then proceed with modular composition.

If $R(X) = \sum_{i=0}^{e-1} r_i X^i$ with $r_i \in \mathbb{F}_q$, then $\sigma R(X) = \sum_{i=0}^{e-1} \sigma r_i X^i$ satisfies $R^p \equiv \sigma R \circ X^p \mod F$. We assume that the cost of computing all the r_i^p is negligible (as it is with a suitable choice of basis for $\mathbb{F}_q/\mathbb{F}_p$; if $\mathbb{F}_{p^2} = \mathbb{F}_p(\sqrt{\Delta})$, then $(a+b\sqrt{\Delta})^p = a-b\sqrt{\Delta}$ for all a and b in \mathbb{F}_p). For our purposes, the computation of $X^p \circ \sigma$ computes $H(X)$ and $X^p \circ \sigma = \sigma H \circ H \mod F$, which costs $O((\log p)M(e) + C(e))$ instead of $O((\log q)M(e))$, which is larger provided that $2e \leq (\log p)^2$. When $q = p^n$ with $n > 2$, similar savings can be obtained.

A.2. Proof of Lemma 1

Let $F = D$, or any factor of D (as in the extensions of the algorithm mentioned in §7).

For (i), the obvious way is to compute H, then G, in $O(\log p)M(e)$ \mathbb{F}_q-operations. Alternatively, we can adapt the methods of [8]: first compute G in $O(\log p)M(e)$ operations. Consider the polynomial $P(W) = W^3 + AP + B - (X^3 + AX + B)G(X)^2$. Then $X^p \mod F$ is a root of both $\sigma F(W)$ and $P(W)$ in $\mathbb{F}_q[X]/(F(X))$, so $W = H(X) \mid g = \gcd(P(W), \sigma F(W))$. Very generally, $g = W - H(X)$. The main cost is that of reducing $\sigma F(W)$ modulo $P(W)$, which is $O(eM(e))$. This can be reduced to $C_3(e)$ or even $O((\log \ell)M(e))$ if F divides \mathcal{P}_ℓ.

For (ii), we can compute $\pi_p(Q) = (Q^p, Y^pQ^p) = (\sigma Q_x \circ H \mod F, YG(\sigma Q_y \circ H) \mod F)$ in $C_2(e)\mathbb{F}_q$-operations. This also applies for computing $\pi_q(P) = (X^p, Y^p) = \pi_p(H, YG)$.

For (iv), suppose that $\phi = (N/D, M/D^2)$ with $\deg N = \deg M = 2$ and $\deg D = 1$. We compute $N \circ Q_x \circ H \mod F, M \circ Q_x \circ H \mod F$ and $D \circ Q_x \circ H \mod F$, followed by some multiplications, keeping numerators and denominators. We only need a few modular multiplications, for a cost of $O(M(e))$.

For (v), $\phi = (N/D^2, M/D^3)$ with $\deg(N) = \deg(M) = d$, and $\deg(D) = (d-1)/2$. First, we reduce N, M and D modulo F (if necessary), at a cost of $O(M(d))$. We then compute $N \circ Q_x \circ H \mod F, M \circ Q_x \circ H \mod F$ and $D \circ Q_x \circ H \mod F$, followed by some multiplications, keeping numerators and denominators. The dominating cost is bounded by $O(M(d) + C_3(e))$.

Acknowledgement. We thank A. Sutherland for pointing out an error in the complexity analysis of the SEA algorithm.
References

François Morain
École Polytechnique/LIX
and Centre national de la recherche scientifique (CNRS)
and Institut national de recherche en informatique et en automatique (INRIA)
France
morain@lix.polytechnique.fr

Charlotte Scribot
Ministère de l’Éducation Nationale
France

Benjamin Smith
Institut national de recherche en informatique et en automatique (INRIA)
and École Polytechnique/LIX
and Centre national de la recherche scientifique (CNRS)
France
smith@lix.polytechnique.fr