ON AN EXCEPTIONAL PHENOMENON IN CERTAIN QUADRATIC EXTENSIONS

H. B. MANN

Let Ω be a cyclic extension of degree l over the field Σ. Correcting an error which for some time had been haunting the literature, Hasse (1, p. 272) noted that for $l=2$, the field Ω may contain a unit ξ such that

$$
\xi^{\nu^{\beta}} \in \Sigma, \xi^{\beta-1} \notin \Sigma, \beta>1
$$

Hasse also gave the example $\Sigma=\Re(\sqrt{-2}), \Omega=\Sigma(\sqrt{-1})$, where \Re is the rational field and $\Omega \ni \sqrt[4]{-1}$. In this note, we shall give necessary and sufficient conditions under which this exceptional case arises.

Theorem 1. Let Ω be any field separable and cyclic of degree l (a prime) over a field Σ. There exists an element $\omega \in \Omega$ such that $\omega^{\iota^{\beta}} \in \Sigma, \omega^{\nu^{\beta-1}} \notin \Sigma, \beta \geqslant 2$, if and only if
(i) $l=2$,
(ii) $\Omega=\Sigma(\sqrt{-1})$,
(iii) $\Sigma \ni \theta+\theta^{-1}$,
where θ is a primitive 2^{β} th root of unity. Moreover
(iv) Ω contains the 2^{β} th roots of unity,
(v) $\omega=\alpha(1+\theta), \quad \alpha \in \Sigma$.

Proof. Since Ω is cyclic, hence normal, over Σ and since

$$
\Omega=\Sigma\left(\sqrt[l]{\omega^{\beta^{\beta}}}\right)
$$

it is clear that the l th roots of unity must be in Σ. If l is odd, then

$$
\omega^{\nu^{\beta}}=N\left(\omega^{\beta-1}\right)=N\left(\omega^{\nu^{\beta-2}}\right)^{l},
$$

hence

$$
\omega^{z^{\beta-1}} \in \Sigma
$$

contrary to hypothesis. (N denotes the relative norm in Ω over Σ.) Hence $l=2$. We then have

$$
-\omega^{2^{\beta}}=N\left(\omega^{\beta^{\beta-1}}\right)=N\left(\omega^{2^{\beta-2}}\right)^{2}
$$

which shows that $\sqrt{-1} \notin \Sigma$ and $\Omega=\Sigma(\sqrt{-1})$. Furthermore, we must have $\omega^{s}=\theta \omega$, where S is the generating automorphism of Ω over Σ and θ a 2^{β} th

Received November 25, 1953; in revised form February 19, 1954. This research was supported by the United States Air Force through the Office of Scientific Research.
root of unity. Moreover, θ cannot be a $2^{\beta-1}$ th root of unity, otherwise we should have

$$
\left(\omega^{2^{\beta-1}}\right)^{S}=\omega^{2^{\beta-1}} \in \Sigma
$$

The equation $\omega^{S}=\theta \omega$ shows $N(\theta)=1$. Hence $\theta^{S}=\theta^{-1}$, so that $\theta+\theta^{-1} \in \Sigma$ and $\left(1+\theta^{-1}\right)^{s}=\theta\left(1+\theta^{-1}\right)$. This gives

$$
\left(\frac{\omega}{1+\theta^{-1}}\right)^{S}=\frac{\omega}{1+\theta^{-1}}
$$

and shows that

$$
\omega=\alpha\left(1+\theta^{-1}\right), \quad \alpha \in \Sigma
$$

On the other hand, let the conditions (i), (ii), and (iii) be satisfied. Since $\theta^{2}-\theta\left(\theta+\theta^{-1}\right)+1=0$ and since $\Sigma(\theta) \ni \sqrt{-1}$, it follows that $\Omega \ni \theta$ and $\theta^{S}=\theta^{-1}$. Therefore

$$
\begin{aligned}
\left((1+\theta)^{2^{\beta-1}}\right)^{S} & =-(1+\theta)^{2^{\beta-1}} \notin \Sigma \\
\left((1+\theta)^{2^{\beta}}\right)^{S} & =(1+\theta)^{2^{\beta}} \in \Sigma .
\end{aligned}
$$

This completes the proof of Theorem 1 .
The condition (v) shows that β is bounded if Ω is a finite extension of \Re. We thus have

Corollary 1.1. If Ω is a finite extension of the rationals, then β is bounded. If β is the largest value such that there exists a number ω in Ω for which $\omega^{\omega^{\beta}} \in \Sigma$, $\omega^{2^{\beta-1}} \notin \Sigma$, then $\omega \neq \alpha \omega_{1}{ }^{1-S}, \alpha \in \Sigma, \omega_{1} \in \Omega$.

Otherwise $\omega=\alpha \omega_{1}{ }^{1-S}=\alpha \omega_{1}{ }^{1+S} \omega_{1}{ }^{-2 S}=\alpha^{*} \omega_{1}{ }^{* 2}$. But this shows $\omega_{1}^{* 2^{\beta}} \notin \Sigma$, $\omega_{1}{ }^{* 2^{\beta+1}} \in \Sigma$ contrary to the significance of β.

The same argument also shows
Corollary 1.2. If under the conditions of corollary $1, \beta$ is the largest value such that there is a unit $H \in \Omega$ for which $H^{2^{\beta}} \in \Sigma, H^{2^{\beta-1}} \notin \Sigma$, then H is not of the form $H_{1}{ }^{1-S} \epsilon$, where H_{1} is a unit of Ω, ϵ a unit of Σ.

Theorem 2. The number ω in Theorem 1 can (under the conditions of Corollary 1) be chosen as a unit if and only if the ideal (2) is, in Σ, the $2^{\beta-1}$ th power of a principal ideal (α).

Proof. We have

$$
(2)=(1+\theta)^{2^{\beta-1}}
$$

If $(2)=\left(\alpha^{2^{\beta-1}}\right)$, then $(1+\theta) / \alpha=\omega$ is a unit. On the other hand, if ω is a unit, then by Theorem 1.

$$
\omega=\alpha(1+\theta), \quad \alpha \in \Sigma .
$$

Hence

$$
\left(\alpha^{-1}\right)=(1+\theta),(2)=\left(\alpha^{-1}\right)^{2^{\beta-1}}
$$

If β is chosen maximal, then the $2^{\beta+1}$ th roots of unity are in Ω if and only if $\Sigma \ni \theta_{1}-\theta_{1}^{-1}$, where θ_{1} is a primitive $2^{\beta+1}$ th root of unity. In this case, it is
trivial that ω can be chosen as a unit. A less trivial example is $\Sigma=\Re(\sqrt{7})$, $\Omega=\Re(\sqrt{7}, i)$, where the unit

$$
H=\frac{1+i}{3+\sqrt{7}}
$$

has the property $H^{2} \notin \Sigma, H^{4} \in \Sigma$.

Reference

1. H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Jahresbericht der Deutschen Mathematiker Vereinigung, 36 (1927), 233-311.

Ohio State University

