ON AN EXCEPTIONAL PHENOMENON IN CERTAIN QUADRATIC EXTENSIONS

H. B. MANN

Let Ω be a cyclic extension of degree l over the field Σ . Correcting an error which for some time had been haunting the literature, Hasse (1, p. 272) noted that for l = 2, the field Ω may contain a unit ξ such that

$$\xi^{\imath^{\beta}} \in \Sigma, \ \xi^{\imath^{\beta-1}} \notin \Sigma, \ \beta > 1.$$

Hasse also gave the example $\Sigma = \Re(\sqrt{-2})$, $\Omega = \Sigma(\sqrt{-1})$, where \Re is the rational field and $\Omega \ni \sqrt[4]{-1}$. In this note, we shall give necessary and sufficient conditions under which this exceptional case arises.

THEOREM 1. Let Ω be any field separable and cyclic of degree l (a prime) over a field Σ . There exists an element $\omega \in \Omega$ such that $\omega^{l^{\beta}} \in \Sigma$, $\omega^{l^{\beta-1}} \notin \Sigma$, $\beta \ge 2$, if and only if

(i)
$$l = 2$$
,
(ii) $\Omega = \Sigma(\sqrt{-1})$,
(iii) $\Sigma \ni \theta + \theta^{-1}$,

where θ is a primitive 2^{β} th root of unity. Moreover

(iv) Ω contains the 2^{β} th roots of unity,

(v) $\omega = \alpha(1 + \theta), \quad \alpha \in \Sigma.$

Proof. Since Ω is cyclic, hence normal, over Σ and since

$$\Omega = \Sigma(\sqrt[l]{\omega^{l^{\beta}}}),$$

it is clear that the *l*th roots of unity must be in Σ . If *l* is odd, then

$$\omega^{l^{\beta}} = N(\omega^{l^{\beta-1}}) = N(\omega^{l^{\beta-2}})^{l},$$

hence

$$\omega^{l^{\beta-1}} \in \Sigma$$

contrary to hypothesis. (N denotes the relative norm in Ω over Σ .) Hence l = 2. We then have

$$-\omega^{2^{\beta}} = N(\omega^{2^{\beta-1}}) = N(\omega^{2^{\beta-2}})^{2}$$

which shows that $\sqrt{-1} \notin \Sigma$ and $\Omega = \Sigma(\sqrt{-1})$. Furthermore, we must have $\omega^s = \theta \omega$, where S is the generating automorphism of Ω over Σ and θ a 2^{β} th

Received November 25, 1953; in revised form February 19, 1954. This research was supported by the United States Air Force through the Office of Scientific Research.

root of unity. Moreover, θ cannot be a $2^{\beta-1}$ th root of unity, otherwise we should have

$$(\omega^{2^{\beta-1}})^s = \omega^{2^{\beta-1}} \in \Sigma.$$

The equation $\omega^s = \theta \omega$ shows $N(\theta) = 1$. Hence $\theta^s = \theta^{-1}$, so that $\theta + \theta^{-1} \in \Sigma$ and $(1 + \theta^{-1})^s = \theta(1 + \theta^{-1})$. This gives

$$\left(\frac{\omega}{1+\theta^{-1}}\right)^s = \frac{\omega}{1+\theta^{-1}}\,,$$

and shows that

 $\omega = \alpha (1 + \theta^{-1}), \ \alpha \in \Sigma.$

On the other hand, let the conditions (i), (ii), and (iii) be satisfied. Since $\theta^2 - \theta(\theta + \theta^{-1}) + 1 = 0$ and since $\Sigma(\theta) \ni \sqrt{-1}$, it follows that $\Omega \ni \theta$ and $\theta^s = \theta^{-1}$. Therefore

$$((1+\theta)^{2^{\beta-1}})^{s} = -(1+\theta)^{2^{\beta-1}} \notin \Sigma,$$

$$((1+\theta)^{2^{\beta}})^{s} = (1+\theta)^{2^{\beta}} \in \Sigma.$$

This completes the proof of Theorem 1.

The condition (v) shows that β is bounded if Ω is a finite extension of \Re . We thus have

COROLLARY 1.1. If Ω is a finite extension of the rationals, then β is bounded. If β is the largest value such that there exists a number ω in Ω for which $\omega^{2^{\beta}} \in \Sigma$, $\omega^{2^{\beta-1}} \notin \Sigma$, then $\omega \neq \alpha \omega_1^{1-s}$, $\alpha \in \Sigma$, $\omega_1 \in \Omega$.

Otherwise $\omega = \alpha \omega_1^{1-\beta} = \alpha \omega_1^{1+\beta} \omega_1^{-2\beta} = \alpha^* \omega_1^{*2}$. But this shows $\omega_1^{*2\beta} \notin \Sigma$, $\omega_1^{*2\beta+1} \in \Sigma$ contrary to the significance of β .

The same argument also shows

COROLLARY 1.2. If under the conditions of corollary 1, β is the largest value such that there is a unit $H \in \Omega$ for which $H^{2^{\beta}} \in \Sigma$, $H^{2^{\beta-1}} \notin \Sigma$, then H is not of the form $H_1^{1-s} \epsilon$, where H_1 is a unit of Ω , ϵ a unit of Σ .

THEOREM 2. The number ω in Theorem 1 can (under the conditions of Corollary 1) be chosen as a unit if and only if the ideal (2) is, in Σ , the $2^{\beta-1}$ th power of a principal ideal (α).

Proof. We have

$$(2) = (1+\theta)^{2^{\beta-1}}.$$

If $(2) = (\alpha^{2^{\beta-1}})$, then $(1 + \theta)/\alpha = \omega$ is a unit. On the other hand, if ω is a unit, then by Theorem 1.

$$\omega = \alpha(1 + \theta), \ \alpha \in \Sigma.$$

Hence

$$(\alpha^{-1}) = (1 + \theta), \ (2) = (\alpha^{-1})^{2^{\beta-1}}.$$

If β is chosen maximal, then the $2^{\beta+1}$ th roots of unity are in Ω if and only if $\Sigma \ni \theta_1 - \theta_1^{-1}$, where θ_1 is a primitive $2^{\beta+1}$ th root of unity. In this case, it is

trivial that ω can be chosen as a unit. A less trivial example is $\Sigma = \Re(\sqrt{7})$, $\Omega = \Re(\sqrt{7}, i)$, where the unit

$$H = \frac{1+i}{3+\sqrt{7}}$$

has the property $H^2 \notin \Sigma$, $H^4 \in \Sigma$.

Reference

 H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Jahresbericht der Deutschen Mathematiker Vereinigung, 36 (1927), 233-311.

Ohio State University

476