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1. Introduction. Here and throughout, A is a closed subalgebra of //°° that contains
the disk algebra and M(A) denotes the maximal ideal space of A. Because A contains the
function fo(z) = z, we can define the fiber MX{A) of M{A) for A e 3D (the unit circle) in
the usual way; i.e., Mk(A) = {(p eM(A):/o(0) = A}. The Bergman space L2

a(D) of the
unit disk D is the L2(D, djcd>-)-closure of A. Let P:L2(D, dxdy)-+Ll{D) be the
orthogonal projection. For f eV°{D, dxdy), define the multiplication operator
Mf: L\D, dx dy)^L\D, dx dy) by

Mfg=fg, geL2(D,dxdy)

and define the Toeplitz operator 7}: L2
a(D)^ L2

a(D) by

Tfg = PMfg, geL2
a(D).

Let T(A) be the C*-algebra of bounded operators on L2
a(D) generated by {Tf:fe

C(M(A))} and let C(A) be the commutator ideal of T(A). Denote the maximal ideal
space of T(A)/C(A) by E(A). The McDonald-Sundberg theorem ([8]) asserts that £(//°°)
consists of the one point Gleason parts of M{H"). At the other extreme, if A is the disk
algebra, then E(A) is the unit circle by a theorem of Coburn ([2]). The unit circle consists
of the one point Gleason parts of M{A) if A is the disk algebra, so a natural question
arises: does E(A) always consist of the one point Gleason parts of M{A)1 As we see
below, the answer to this question is no. However, we can see that E{A) consists of the
one point Gleason parts of M(A) when A = ¥T D C(D U K), where AT is a closed set in
3D. Thus there is a class of algebras (albeit of somewhat limited interest) that includes
the disk algebra and / /" allows us to "interpolate" between Coburn's theorem and the
McDonald-Sundberg theorem.

For any unexplained notions from the theory of function algebras (e.g., maximal
ideal space, Gleason parts, Shilov boundary) see Gamelin's book [5].

2. Sundberg's criterion and applications. For f eA and g e L°°(D, dx dy) we can
easily see that T-{g=TjTg and Tfg = TsTf. By an argument in Chapter 7 of [4], the
commutator ideal C(A) coincides with the semicommutator ideal of T(A). This allows us
to use the main result of [11] to assert that E{A) = {<p eM(A):fe C{M(A)) with
/ (0 ) = O implies Mf is not bounded below on Ll(D)}. As a consequence of his proof,
Sundberg obtains the spectral inclusion f(E(A)) a o(Tf) for / e C(M(A)) without any
ancillary work and so each theorem identifying E{A) has an immediate corollary giving a
spectral inclusion result. This criterion of Sundberg for membership in E(A) is the crucial
ingredient in what follows. Indeed, part of the purpose of this note is to display the utility
of Sundberg's criterion.

Let R:M(//°°)-*M(A) be the restriction map R(j> = (p \ A, 0 e M{H°").

THEOREM 2.1. R(E(H°°)) = E(A).
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Proof. Let 0 e £(//"") and suppose feC(M(A)) with f(R<j>) = 0. Then f°Re
C(M(//")) and/°i? vanishes at <f> whereby MfaR is not bounded below on L2

a{D). Because
/ =foR on D, Mf = Mf.R and so R(j> e E{A).

For the other inclusion, suppose (f> e M(A) does not belong to R(E(H°°)). Clearly
E(A) is contained in the M(>4)-closure of D and so without loss of generality, assume <p
lies in the M(v4)-closure of D. There are disjoint open sets W, V in M(A) such that <p eW
and B(£(«") )cV. Now R~l(W) and R~l(V) are disjoint open sets in M(/T) and
W n D = R~\W) DD so U=WDD is an open set in D whose M(/T)-closure does not
meet E(Hm). By exercise 2 from Chapter X of [6], there is a finite union 5 of interpolating
sequences such that U cz{z eD: p(z, w)<% for some w e 5}, where

z - w

By [7], it follows that there is some C > 0 such that

\g(z)\2dxdy>C\\g\\2, z=x + iy
r

for all g e L2JD). Take / e C(M(A)) with f((p) = 0 and / = 1 off W. Then

\g{z)\2dxdy>C\\g\\2

f
•>D

f
•>D\U

2£

\
JD\U

2Jfor g e L2JJD). By Sundberg's Criterion, <j> $ E(A).

This theorem characterizes the set E(A), but is unsatisfying in comparison to
Coburn's theorem and the McDonald-Sundberg theorem which characterize E{A) (for
A = disk algebra or //") in terms of a natural notion from the theory of function algebras.
Such a result does not seem possible in our context. Example 2.2 shows that E(A) does
not have to'consist of one point Gleason parts of M(A) and the other examples point out
more subtle phenomena.

EXAMPLE 2.2. Let u be an inner function not in the disk algebra and let A be the
algebra generated by the disk algebra and u. Suppose {ip0} is a one point Gleason part of
At(H™) and that u(%l>0) = 0. Then R\p0 belongs to a nontrivial Gleason part of M(A). Thus
E(A) does not consist of one point Gleason parts of M(A).

Proof. Let p(0, rp) = sup{\f((p)\:feA, | | / | U ^ 1 and/(V) = 0} denote the pseudo-
hyperbolic distance on M(A). We want to find <f>eM(A) such that (p^Ripo and
p((p,Rxpo)<l. Let XedD such that ipgeM^H00) and take 0eMA(//°°) such that
0< |M(0) | < 1. This can be done because the cluster set of u at A is the closed unit disk.
Now A contains a dense set of elements of the form F = g + fp(u) where / and g belong to
the disk algebra and p is a polynomial with p(0) = 0 and \\p\\oo = 1. Suppose F(Rip0) = 0.
Then 0 = F(Ripo) = g(X)+f(l)p(u(rl>o)) = g(k) so F=fp(u) on MX(A). Thus |/(A)| <
||F|U and taking ||F|U < 1, we get

| / W ) | = |/(A)| \p(u(<p))\ < \p(u(ct>))\ < |M(tf>)|

by Schwarz's Lemma. It follows that p(R(j),Rip0) = \u((f>)\ < 1; i.e., R(f> #Rrj)0 belongs to
the same Gleason part as Rxp0. The McDonald-Sundberg theorem and our Theorem 2.1
imply Rip0 e E(A).
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EXAMPLE 2.3. Let A be the algebra from example 2.2 with

z + 1
«(z) = exp

z - 1

Then E(A) = (3D\{1}) U EX(A) where El(A) = Ml(A)DE(A) consists of those <p e
M,(/4) such that |u(tf>)| = 1 or 0.

Proof. If |M(0) | = 1 then tf> € 3(,4), the Shilov boundary of A, so tf> € £(4) by ([10]).
By Theorem 2.1, if <j>oe M^A) n #(£(//°°)), then ^>oe£(/l). It is well known (see
Chapter X of [6]) that if u is a singular inner function and ip e M(H") satisfies u(tp) = 0,
then {ip} is a Gleason part of M(//~). Thus #0 e A/^/4) with u($0) = 0 implies <j)0 e £(>4),
as in Example 2.2. We can say more here; namely E(A) = d(A) U {$()}- To show this, we
need the observation by A. Matheson that

u(z)-w

is an interpolating Blaschke product for all w e Z)\{0}. Because this result is unpublished,
we sketch a proof. The function b extends analytically across 3D\{1} and so the singular
factor of b must be of the form

S(z) = expt — j -

for some t>0. If t>0, then |S(z)|-»0 as z tends radially to 1. But b(z)-*-wi=Q as z
tends radially to 1 and so f = 0; i.e., b is a Blaschke product. To see that the zero
sequence of b is an interpolating sequence, consider the conformal map/(£) =
(£ - «)/(£ + 0 from the upper half plane to the unit disk. Then

(b°f)~l({w}) = J£€C: Im£ = log-—- and Re £ = arg w + 2nn, n an integer |

which is easily seen to be an interpolating sequence for the upper half plane and it follows
that b~l({w}) is an interpolating sequence in D. Now Mb is bounded below on Ll(D)
([8]). Thus if <p e Mt{A) and u(tf>) = we D\{0}, then <f> $ E(A).

EXAMPLE 2.4. Let u be an inner function belonging to the little Bloch space. That is,
lim ( l- |z | 2 ) |u ' (z) l = 0. Then

1|2|—1

b(z)

belongs to the little Bloch space for all w e D. Such a function b cannot be a finite product
of interpolating Blaschke products ([6, Chapter X, Exercise 11]) and, by [8], it follows
that there is some <j) e E{Ha>) such that b{<t>) = 0. Let A be the algebra generated by the
disk algebra and u. Then E(A) = M(A)\D by Theorem 2.1.

Note that the following algebra was studied by Dawson [3], who showed that D is not
dense in M(A).

EXAMPLE 2.5. (The Gramophone algebra) Let A be the algebra generated by the disk
algebra and the outer function Q.(z) = (1 - z)' where we take ~(n/2) < arg(l - z) < nil.
Then E(A) = d(A). ~ •'*
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Proof. The cluster set of G at 1 is {z e<C:e-*/2< \z\ <e*/2}. If 0 € Mt(A) and
\G(<p)\ <e~Jl/2, then <f> lies outside the A/(/4)-closure of D and so <p $ E(A). Suppose
<f>(=Mx{A) with e~"/2<|G(0)|<e*/2. Now the level sets of \G\ in D are secants
terminating at 1 and so (f> lies in the M(A)-closure of the interior of a Stolz angle at 1. Let
U be a truncation (so that U C\3D = {1}) of this region. By [7], there is some C > 0 such
that

JD\U
\g(z)\2dxdy>C\\g\\2 for g e L2

a{D).

As in the proof of Theorem 2.1 we see that <}>$E(A). Now 3(A) = (3D\{1}) U
{0eM,(^) : |G(0) | = e±'r/2} and so E(A) = 3(A) by [10]. It is worth noting that
<p e Mi(A) and \G((j))\ = e~"'2 imply that (j> lies in a nontrivial Gleason part of M(A).

Let K be a closed set in 3D and let A = //°°n C(£) U AT), the algebra of bounded
analytic functions on D that extend continuously to K. For ks K we clearly get
Mx{A)={k). Suppose A $ K. Take a closed arc T in 3D centered at A such that
r n K = 0 . There is a conformal map h of D onto a domain in D such that /i(F) is an arc
in 3D with h(A) = k,h{K)<zD and such that /i extends continuusly to D ([9, Chapter V,
Section 7]). Given feH°°, g=f°h belongs to A and lim sup |/(z) - g{z)\ =0. Thus

A | 1

,4 I MA(/T) = / T | A/A(//°°) and fl | MA(/T) is the identity map. Put EK(H°°) = £ ( /T) D
Mk(H"). Applying Theorem 2.1 we obtain the following.

THEOREM 2.6. Let K be a closed set in 3D and let A = H°° n C(D U K). Then
E{A) = ( U E^(H")) U K. In particular, E{A) consists of the one point Gleason parts of
M(A). HK

REMARKS. Any of the examples 2.2-2.5 suffices to show that E(A) does not
necessarily consist of one point Gleason parts of M{A). In fact, in examples 2.2-2.4,
E{A) is not even contained in the closure of the one point Gleason parts. Of course, the
pseudohyperbolic distance from R<j> to Rxp in M(A) is no larger than the pseudohyper-
bolic distance from <p to i/> in M(H°°) whence E(A) contains the one point Gleason parts
of M(A) that lie in the M(/4)-closure of D.

In examples 2.2-2A, we see the restriction map R sending one point Gleason parts of
M(H°°) to points belonging to nontrivial parts of M{A), but in each of 2.2-2.4, we have
R(3(Hm)) = 3(A) which consists of peak points for these algebras. However, in example
2.5 we see that R(3(HCO)) can meet a nontrivial Gleason part of M(A). The first example
(2.2) shows that Theorem 2.6 does not directly generalize to the algebras considered by
Chang and Marshall in [1] and examples 2.3 and 2.4 serve to point out the difficulty of
formulating a nice result in this context. To be more specific, we see that E(A) can be as
small (example 2.3) or as large (example 2.4) as is allowed by Theorem 2.1 and example
2.2.

Sundberg shows that E(A) is the largest set in M{A) such that f{E{A)) a a(Tf) for all
feC(M(A)) ([11]). Because T*ZTZ - TJ* is a compact operator on L2

a(D) (see [8]) and
the compact operators form a minimal closed two-sided ideal in the bounded operators
([4]), it follows that C{A) contains the compact operators on L2

a{D). From standard facts
about the spectrum ([4]), we obtain f{E{A)) c oe(Tf) for all / e C(M(A)).
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If we define our operators on the Hardy space H2 of the unit circle instead of the
Bergman space, then ([4, Chapter 7]) the sets E(A) in question turn out to be 3(//°°)
when A = H°° and 3D = d(A) when A is the disk algebra. This Hardy space case is better
behaved than the situation for the Bergman space. In fact ([10]), if ju is a probability
measure with supp fi = 3(A) then 3(A) = E(A) = {(f> e M(A) :f e C(M(A)) with f((p) = 0
implies Mf is not bounded below on the L2(/z)-closure of A).
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