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The behaviour of a strongly magnetised collisional electron–positron plasma that is
optically thin to cyclotron radiation is considered, and the distribution functions accessible
to it on the various timescales in the system are calculated. Particular attention is paid to
the limit in which the collision time exceeds the radiation emission time, making the
electron distribution function strongly anisotropic. Indeed, these are the exact conditions
likely to be attained in the first laboratory electron–positron plasma experiments currently
being developed, which will typically have very low densities and be confined in
very strong magnetic fields. The constraint of strong magnetisation adds an additional
complication in that long-range Coulomb collisions, which are usually negligible, must
now be considered. A rigorous collision operator for these long-range collisions has
never been written down. Nevertheless, we show that the collisional scattering can be
accounted for without knowing the explicit form of this collision operator. The rate of
radiation emission is calculated and it is found that the loss of energy from the plasma is
proportional to the parallel collision frequency multiplied by a factor that only depends
logarithmically on plasma parameters. That is, this is a self-accelerating process, meaning
that the bulk of the energy will be lost in a few collision times. We show that in a simple
case, that of straight field-line geometry, there are no unstable drift waves in such plasmas,
despite being far from Maxwellian.

Key words: plasma instabilities, plasma dynamics, plasma confinement

1. Introduction

In a companion article (Kennedy & Helander 2020), hereinafter referred to as (I), it
was shown that plasmas that are optically thin to cyclotron radiation relax to strongly
anisotropic distributions and a theory of collisional scattering in such systems was
developed. These results were general; in particular, little was assumed about the confining
magnetic geometry. Nevertheless, two important conditions needed to be satisfied as
follows.
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(i) (C1) The plasma needed to be optically thin to cyclotron emission. This required the
number density to be sufficiently small.

(ii) (C2) The radiation time, τr, needed, at least initially, to be smaller than the collision
time, τc. This required strong magnetic fields.

In (I), suitable candidates for systems satisfying these two conditions were proposed.
In this contribution, we explore one of these suggestions: the first laboratory
electron–positron plasma experiment, and develop the theory of collisional scattering in
strongly magnetised pair plasmas.

1.1. Laboratory electron–positron plasmas
Efforts are currently underway to create and confine the first terrestrial electron–positron
plasmas in the laboratory. This is done by first accumulating positrons from a powerful
source and then injecting these into a pure electron plasma confined by the dipolar
magnetic field of a levitated current-carrying circular coil, so that a stationary, quasineutral
electron–positron plasma is formed (Sunn Pedersen et al. 2012).

It has been shown by Helander (2014) that pair plasmas possess unique gyrokinetic
stability properties owing to the mass symmetry between the particle species. For example,
drift instabilities are completely absent in straight field-line geometry, e.g. in a slab,
provided that the density and temperature profiles of the two species are identical
(‘symmetric’ pair plasmas). The symmetry between the two species is broken if the
temperature profiles of the electrons and positrons differ or there is an ion contamination.
In these regimes, drift instabilities can be excited even in unsheared slab geometry
(Mishchenko et al. 2018b). It has also been shown that instabilities can be excited
when symmetry is broken through relaxation of the quasineutrality condition (Kennedy
& Mishchenko 2019). In a sheared slab, pure pair plasmas are prone to current-driven
reconnecting instabilities (Zocco 2017), but there are no drift waves. Note that asymmetry
between the species is needed also in this case because the ambient electron flow velocity
must differ from the positron one for the ambient current to be finite.

In contrast to slab geometry, a dipole magnetic field has finite curvature. In this case,
the symmetry between the species is broken by curvature drifts and the plasma can be
driven unstable by temperature and density gradients (Helander 2014), even without ion
contamination and for identical temperature profiles of the two species. This result also
persists in the electromagnetic regime (Helander & Connor 2016). The nonlinear stability
of point dipole pair plasmas has also been addressed by Helander (2017). More recently,
Mishchenko, Plunk & Helander (2018a) performed a detailed study of the gyrokinetic
stability of pure pair plasma in both the Z-pinch and point-dipole limits. Again, it was
found that such pair plasmas can be driven unstable by magnetic curvature, density and
temperature gradients. These instabilities are also found in the magnetic geometry most
relevant for the experiment, i.e. the magnetic field of a levitated current-carrying circular
coil, as was recently demonstrated using a gyrokinetic code (Kennedy et al. 2020).

In spite of symmetry breaking leading to instability, there is hope that upcoming
experiments themselves will actually be in a minimum energy state (Helander 2017)
and, therefore, exhibit robust stability and, perhaps, little or no turbulence. If this were
true, it could be the first time that a magnetically confined quasineutral plasma is free of
anomalous transport (Pedersen et al. 2017). Such an accomplishment would be a strong test
for the predictive capabilities of magnetic confinement research and could have profound
implications on our theoretical understanding.

In the first electron–positron plasma experiment, the aim is to produce a plasma
with density in the range 1012 m−3 < n < 1013 m−3 and with a temperature T between
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1 and 10 eV. The Debye length λD = (ε0T/2ne2)1/2 for such plasmas will therefore be of
the order of a few millimetres and will exceed the gyroradius ρ by two or three orders of
magnitude provided the target magnetic field of around B = 1 T is attained. That is, we
are declaring an interest in plasmas satisfying the strongly magnetised ordering ρ � λD.
In fusion plasmas, the Debye length is usually comparable with the gyroradius of the
electrons but much smaller than that of the ions.

Importantly, the very low densities, necessitated by the difficulty in sourcing and
trapping large numbers of positrons, render the plasma optically thin to cyclotron radiation.
The strong magnetisation also means the power radiated will be relatively large. In
particular, the collision time τc will tend to be much longer, at least initially, than the
radiation time τr, and laboratory pair plasmas will be able to dissipate large amounts of
energy before collisions come into play.

The aim of this paper is to discuss how the presence of radiative cooling will affect
the equilibrium and stability of magnetically confined electron–positron plasmas. In § 2,
we begin by presenting a brief introduction to cyclotron cooling and introducing the
relevant dynamical timescales for laboratory pair plasmas. In § 3, we begin to develop
the kinetic theory of such plasmas, taking the aforementioned radiative processes into
account. Section 4 is dedicated to a discussion of the long-range Coulomb collisions,
which are important in strongly magnetised plasmas, but are usually neglected. Various
properties of these collisions are discussed and we prove several results about how these
new collisions are included in the kinetic equation. The collisional regime is explored in
§ 5, before being further developed in § 6 where we attempt to glean some insight on the
distribution function during the collisional regime. In § 7, we repeat one of the stability
calculations of Helander (2014) in the strongly anisotropic limit, giving a hint of how our
results affect stability properties.

2. Radiative cooling in electron–positron plasmas

It was shown in (I) that a plasma that is optically thin to cyclotron emission will radiate
its perpendicular kinetic energy on a timescale given by the radiation time:

dw⊥
dt

= − e4B2

3πε0(mc)3
w⊥, τr = 3πε0(mc)3

e4B2
= 3πρe

Ω2
e c

, (2.1a,b)

with Ωe = eB/mc electron cyclotron frequency and ρe = vthe/Ωe the electron gyroradius.

2.1. Timescales in laboratory pair plasmas
In the aforementioned laboratory efforts to create and confine the first terrestrial
electron–positron plasma, high-field devices with magnetic fields of the order of 1 T are
being investigated as possible candidates for confinement. The radiative cooling time is
inversely proportional to the square of the magnetic field strength and, hence, devices
with larger magnetic fields will be able to dissipate perpendicular energy more quickly.
As such, in systems of interest, the radiative cooling time can be relatively short compared
with the other timescales in the system.

It is clear that collisions can mediate this cooling process owing to the scattering of the
velocity vector. A simple estimate of the collision time is given by

τc = 3
4
√

πnvthb2
min ln Λ

, (2.2)

where bmin = e2/2πε0mv2
th is the classical distance of closest approach, vth = √

2T/m is
the thermal velocity and ln Λ is the Coulomb logarithm. The factor 3/4

√
π has been
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inserted to make τc equal to the conventional definition of the electron collision time by
Braginskii (1965). From this estimate, and the target parameters given in the text, one can
see that

ε = τr

τc
= nm ln Λ√

πε0B2

(
c
vth

)3

� 1. (2.3)

In the following analysis, this parameter surfaces repeatedly, and usually turns up inside
a logarithm. Our results hold to logarithmic accuracy in epsilon, whose exact definition
is, thus, only important within a multiplicative factor of order unity. Such factors will
therefore usually be ignored. An equivalent definition (again up to an order unity factor)
of our expansion parameter is given by

ε = ln Λ

σM

(
c
vth

)3

, (2.4)

where σM = B2/nmc2μ0. This quantity is the ratio of the magnetic energy to the rest mass
energy and is sometimes referred to as the magnetisation in the astrophysical literature (e.g.
Sironi & Spitkovsky 2010). From this form, one sees immediately the constraints which
must be imposed on the magnetisation and temperature in order to satisfy the ordering
requirements.

A caveat here is that, of course, the collision time itself will decrease as the plasma cools
and, hence, this assumption will be violated after sufficient time has elapsed.

2.2. Scattering in strongly anisotropic plasmas
We have now seen that the first electron–positron plasma experiment aims to operate in a
parameter regime where the conditions (C1) and (C2) are well satisfied. As a result, much
of theory developed in (I) can be applied directly to such plasmas.

Nevertheless, an additional complication arises, namely that the plasma is strongly
magnetised, ρ � λD. As a result, an interesting type of collision comes into the picture
and further theory must be developed.

3. Radiative cooling in collisional plasmas

In § 2, we used simple estimates to show that, to leading order, the plasma is effectively
collisionless. However, this is an assumption which, of course, will not be true indefinitely.
In particular, the collision frequency, νc scales with T−3/2 and this means that as the plasma
loses thermal energy through radiative cooling, the collision frequency will increase.

After sufficient time has elapsed, the collision time will become comparable with
the radiation time and collisional effects will become important. That is, eventually the
assumption τrνc � 1 will be violated. On even longer timescales, the collision time will
be shorter than the radiation time.

We wish to gain an understanding of how the plasma energy evolves as a function of time
in these regimes. To this end, we introduce the total, perpendicular and parallel thermal
energy of the plasma through the appropriate moments of the total (electron + positron)
distribution function

W =
∫

mv2

2
f d3v, W⊥ =

∫
mv2

⊥
2

f d3v, W‖ =
∫ mv2

‖
2

f d3v. (3.1a–c)

It is clear that this evolution of these quantities can be partitioned into three separate
regimes based on the relative sizes of the collision time τc and the radiation time τr.
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(I) Initially, 0 < τr < t < τc(0), the initial collision time. In this regime the behaviour
is described as in (I), § 2 therein, and we recover the result that the perpendicular
energy will decay exponentially on the radiation timescale, whilst the parallel kinetic
energy will remain constant:

W⊥ = W⊥0 exp(−t/τr), W‖ = constant. (3.2a,b)

(II) After some time, t ∼ τc(t) and collisional scattering becomes important. The
remainder of this paper is devoted to studying this process.

(III) Eventually, t � τr, τc(t). In this regime, the distribution function is isotropic
(Maxwellian), and any remaining parallel kinetic energy will be converted into
perpendicular kinetic energy via collisional scattering and then radiated:

W ∝ exp(−t/τr). (3.3)

4. Collisions in strongly magnetised pair plasmas

Guided by our experience in (I), we write down the collisional kinetic equation in the
varying magnetic field case

∂f
∂t

+ v‖
∂f
∂l

− ∂

∂μ

(
μ

τr
f
)

− μ

m
∇‖B

∂f
∂v‖

= C[ f , f ], (4.1)

where l parameterises the length of a magnetic field line, and we retain the assumption that
the parallel electric field is negligible. We have also introduced C[ f , f ] as the appropriate
collision operator. It is, of course, pertinent to discuss the collisions that occur in such
exotic plasmas.

Great care must be taken as we recall that our plasmas are in an unusually strongly
magnetised regime, ρ � λD. As such, the standard collision operators cannot be used
immediately as these invoke the opposite ordering and, therefore, do not ‘see’ the
gyromotion of the colliding particles. When the collisions are described by a Debye
shielded interaction, particles can be separated by a distance even as large as λD and still
exchange momentum and energy.

In the limit ρ � λD, the relevant collision operator is non-standard and must include
the effects of helical trajectories. Such collisions are prevalent in highly magnetised
non-neutral plasma experiments and have attracted some attention in the literature, being
invoked to explain enhanced heat and particle transport in Penning–Malmberg trap
experiments (e.g. O’Neil 1985; Dubin & O’Neil 1988; Dubin 1998). However, a rigorous
collision operator has never been written down. The reason for this is the presence of a
novel effect, namely that there can be multiple binary collisions between the same pair
of particles, rendering the usual techniques fruitless (Dubin 1997a). Earlier work, starting
from that of Ichimaru & Rosenbluth (1970), ignored this circumstance.

However, all hope is not lost. During such long-range collisions, particles execute many
gyrations around the magnetic field lines. As a result of this, it follows that the magnetic
moment is an adiabatic invariant (Dubin 1997b):

ρ � λD =⇒ μ = mv2
⊥

2B
= constant. (4.2)

As such, the perpendicular kinetic energy will be conserved and these relatively long-range
collisions result in negligible velocity scattering. The physical reasoning for this is as
follows. When guiding centres on different field lines interact, the long-range Coulomb
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force causes an exchange in momentum. The force transverse to the magnetic field does
almost no work, because, at leading order, the guiding centres are constrained to follow
the magnetic field lines. However, the force parallel to the magnetic field can do work,
causing a transfer of energy between the guiding centres.

It is in light of this remarkable feature of the long-range collisions that we are able to
make progress without knowing the full collision operator.

Of course, standard short-range collisions, with impact parameter b � ρ, i.e. those that
do not ‘see’ the gyromotion, are still present and, in fact, it is these collisions that will be
responsible for velocity scattering. We may therefore decompose the collision operator as

C[ f , f ] = C1( f ) + C2( f ), (4.3)

where C1( f ) is our unknown collision operator describing long-range collisions that
preserve v⊥ and μ, and C2( f ) is the standard Landau operator describing short-range
collisions (Landau 1936). Each of these collision operators has an associated collision
time, τ1 and τ2, respectively.

We make the assumption that long-range collisions are much more frequent than
short-range collisions. Our aim is to prove three properties about the unknown collision
operator C1 and how it acts in tandem with the Landau collision operator C2.

(P1) The collision operator C1 Maxwellianises v‖ for each v⊥.
(P2) Although τ1 � τ2 initially, eventually the short-range collisions become important.
(P3) The previous properties also hold in general magnetic geometry.

These properties will allow us to make progress without explicitly writing down the
collision operator C1.

4.1. P1: C1 Maxwellianises v‖ for each v⊥
The second law of thermodynamics demands that the action of any collision operator must
not decrease the entropy of a system, C1 is of course no exception.

Consider the entropy functional

S[ f ] = −
∫

f ln f d3v. (4.4)

Then any distribution function f0(r, v) say, which has been allowed to evolve under the
influence of long-range Coulomb collisions, must maximise this functional subject to
certain constraints.

As with any collision operator, the total particle number and the total energy must be
conserved. That is, ∫

f0 d3v = n(r), fixed, (4.5)∫
1
2

mv2f0 d3v = 3n(r)T(r)
2

, fixed. (4.6)

We also know that the magnetic moment is conserved during long-range collisions and,
hence, an additional constraint is∫

f0 dv‖ = f⊥(v⊥), fixed. (4.7)

In order to find the distribution function f0 which maximises (4.4) subject to the constraints
(4.5)–(4.7), we introduce sets of Lagrange multipliers κ(r), λ(r) and ξ(v⊥) and seek to
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maximise the functional

W[ f0, κ, λ, ξ ] = −
∫

f0 ln f0 d3v + κ(r)
[∫

f0 d3v − n(r)
]

+ λ(r)
[∫

1
2

mv2f0 d3v − 3n(r)T(r)
2

]

+
∫

ξ(v⊥)

[∫
f0 dv‖ − f⊥(v⊥)

]
dv⊥. (4.8)

The first-order variation is given by

δW =
∫

δf (−(1 + ln f0) + κ(r) + 1
2 mv2λ(r) + ξ(v⊥))d3v. (4.9)

In order to ensure that this variation vanishes, the integrand must vanish point-wise and
hence we obtain

f0(r, v) = exp(−κ(r) + 1) exp(−(1/2)mv2
‖λ(r)) exp(−(1/2)mv2

⊥λ(r)) exp(−ξ(v⊥))

= f‖(v‖)f⊥(v⊥). (4.10)

Indeed, this implies that the distribution function can be decomposed as

f (v‖, v⊥) = nf‖(v‖)f⊥(v⊥), f‖(v‖) =
(

m
2πT‖

)1/2

exp

(
−mv2

‖
2T‖

)
. (4.11a,b)

4.2. P2: short-range collisions are still important
In a straight field, the kinetic equation is

∂f
∂t

− 1
τr

∂

∂μ
(μf ) = C1( f ) + C2( f ) (4.12)

where C1 describes collisions that Maxwellianise v‖ for each v⊥. We write

f = g et/τr ,
v2

⊥
2

= y e−t/τr (4.13a,b)

and find that (
∂f
∂t

)
μ

=
(

∂g
∂t

)
y

et/τr , (4.14)

from which it then follows that

∂g
∂t

= C1(g) + C2(g). (4.15)

If

C1( f ) ∼ f
τ1

, C2( f ) ∼ f
τ2

, τ1 � τ2, (4.16a–c)
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then g will approach a parallel Maxwellian on the timescale τ1, that is

f (v‖, y, t) → f⊥( y, t)
√

m
2πT‖(t)

exp

(
− mv2

‖
2T‖(t)

)
, t � τ1. (4.17)

The ‘thermal’ (i.e. typical) velocity in the perpendicular direction is thus given by

v⊥ ∼ v‖ e−t/τr , v‖ =
√

2T‖
m

. (4.18a,b)

It can be shown (see (I)) that the operator C2 then approaches

C2( f ) → σ

n

√
m

πT‖
| ln ε| 1

v⊥

∂

∂v⊥
v⊥

∂f
∂v⊥

, σ = ne4 ln Λ

8πε2
0m2

, (4.19a,b)

where ln Λ is the Coulomb logarithm. It follows that in the new coordinate system

C2( f ) → 2σ

n
| ln ε|

√
m

πT‖

∂

∂y

(
y
∂f
∂y

)
et/τr ∼ et/τr

τ2
| ln ε| f , (4.20)

where τ2 is equal to τc evaluated at the temperature T‖ .
Hence, it is clear that C2( f ) is only smaller than the radiation term as long as

et/τr | ln ε| � τ2

τr
=⇒ t � τr ln

(
τ2

τr| ln ε|
)

. (4.21)

At later times, C2( f ) cannot be neglected. The distribution will then stop contracting in
the perpendicular direction.

4.3. P3: general magnetic geometry
In (I), it was shown that the theory of collisional scattering in strongly anisotropic plasmas
could be developed for general magnetic geometry. This result also holds in strongly
magnetised plasmas.

We were able to show in (I), albeit with different collision operators, that
bounce-averaging the collisional kinetic equation with a varying magnetic field results
in the equation

∂ f̄
∂t

− 1
τr

∂

∂μ
(μf ) − μB0

τr

∂f
∂w

= C1( f ) + C2( f ), (4.22)

where the bounce average is defined as

Q̄ = 1
τb

∫
Q

dl
v‖

, τb =
∫

dl
v‖

(4.23a,b)

and we are to understand that the B2 term in Larmor’s formula is replaced with its average
along a field line.
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We again take C1, denoting μ-preserving collisions, to be dominant, and expand f̄ =
f0 + f1 + · · · to obtain

∂f0

∂t
− 1

τr

∂

∂μ
(μf0) − μB0

τr

∂f0

∂w
= C1( f0). (4.24)

We again switch to a stretched coordinate system and write

f0 = g et/τr , μ = B−1
0 y e−t/τr , (4.25a,b)

such that (
∂f0

∂t

)
μ

− 1
τr

∂

∂μ
(μf0) = et/τr

(
∂ ḡ
∂t

)
y

(4.26)

and we thus obtain

∂ ḡ
∂t

− y e−t/τr

τr

∂ ḡ
∂w

= C1(g). (4.27)

Equation (4.27) suggests that g will approach a distribution function in the null space of
the bounce-averaged collision operator C1. However, any such function must satisfy

0 = −
∫

τb
4π

m2
C1(g) ln g dw dμ = −4π

m2

∫
ln g dw dμ

∮
C1(g)

dl
v‖

= −
∮

dl
B

∫
ln gC(g) d3v ≥ 0 (4.28)

with equality if, and only if, g is of the form

g = h(μ, t) exp(−w/T(μ, t)). (4.29)

Once this relaxation has occurred, on the time scale τ1, f will be Maxwellian in the parallel
direction for each μ, and the distribution will have shrunk so much in the μ direction that
C2 becomes important.

We have now proven that properties P1 and P2 also hold in general magnetic geometry.
We have also dealt with the general magnetic geometry case for the Landau collision
operator in (I).

4.4. Collision operator in a strongly magnetised plasma
The short-range collisions, which have not yet been taken into account, can be described
by the usual Landau collision operator acting on the decomposed distribution functions.
This leads us to a result that will be the key in unlocking this problem.

Namely, the appropriate treatment of the collision operator in a strongly magnetised
plasma is simply

C( f ) = C1( f ) + C2( f ) � C2(nf‖(v‖)f⊥(v⊥)), t � τ1 � τr (4.30a,b)

with

f‖ =
(

m
2πT‖

)1/2

exp

(
−mv2

‖
2T‖

)
,

∫
f⊥ d2v⊥ = 1. (4.31a,b)

We can now turn our attention to solving the collisional kinetic equation.
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5. Collisional scattering in pair plasmas

The kinetic equation is

∂f
∂t

+ v‖
∂f
∂l

+ ∂

∂μ

(
μ

τr
f
)

− μ

m
∇‖B

∂f
∂v‖

� C2( f ), (5.1)

where we now understand that the long-range collisions have been taken into account by
invoking (4.30a,b).

In the interest of adopting a pedagogical approach, let us specialise to straight field-line
geometry, noting once more that the results should hold more generally after associating
B2 with its field line average.

One then arrives at the equation

∂f
∂t

− 1
τr

∂

∂μ
(μf ) = σ

n

∫
∇ · [U · ( f ′∇f − f ∇′f ′)] d3v′. (5.2)

The gradient operators are defined by

∇ = ∂

∂v
, ∇′ = ∂

∂v′ . (5.3a,b)

We have also introduced U, the second-rank tensor

U(u) = ∇∇u = u2I − uu
u3

, (5.4)

where u = v − v′ is the difference in velocity vectors between colliding particles, and I is
the identity matrix.

The energy moments introduced in (3.1a–c) satisfy the evolution equations

dW
dt

= −W⊥
τr

,
dW⊥

dt
= −W⊥

τr
+ Sc, (5.5a,b)

where the scattering term Sc is given by

Sc =
∫

mv2
⊥

2
C[ f , f ] d3v = −σm

n

∫∫
v⊥ · [U · ( f ′∇f − f ∇′f ′)]d3v d3v′. (5.6)

We can now take advantage of the large anisotropy in the distribution function, which
is a result of the perpendicular kinetic energy being radiated before collisions become
important, by expanding the scattering operator in powers of the small parameter

ε = u⊥
u‖

� 1. (5.7)

To lowest order, this yields

Sc = −σm
n

∫∫
v⊥ · u2I − uu

u3
( f ′∇f − f ∇′f ′) d3v d3v′,

� −σm
n

∫∫
v⊥
u‖

· f ′∇f d3v d3v′,

� 2σm
n

∫∫
ff ′

u‖
d3v d3v′ (5.8)
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and one can evaluate∫∫
ff ′

u‖
d3v d3v′ = n2

(
m

2πT‖

)∫ ∞

−∞

∫ ∞

−∞
exp

(
−m(v2

‖ + v′2
‖ )

2T‖

)
dv‖ dv′

‖
|v‖ − v‖′ | (5.9)

= n2

π

√
m

2T‖

∫ ∞

−∞

∫ ∞

−∞
exp(−x2 − y2)

dx dy
|x − y| , (5.10)

where we have made the substitution

x = v‖

√
m

2T‖
, y = v′

‖

√
m

2T‖
, (5.11a,b)

and note that a small region around x = y needs to be excluded from the integration range
because the ordering (5.7) does not hold.

Upon making a further change of variables

x − y = u
√

2, (5.12)

x + y = v
√

2, (5.13)

we obtain∫∫
ff ′

u
d3v d3v′ = n2

2π

√
m
T‖

∫ ∞

−∞

exp(−u2)

u
du
∫ ∞

−∞
exp(−v2) dv = n2

2

√
m

πT‖
| ln ε|.

(5.14)

Here it is pertinent to remark that we had a choice in whether to perform the integration
over v‖ or v⊥ first in (5.8). As we know f⊥, we could perform the v‖ integrals first, giving a
Bessel function instead of the divergent integral (5.10), thus avoiding the ‘ad hoc’ cut off
of the latter. This procedure is displayed explicitly in the next section.

It follows from (5.14), that provided w⊥ � w, we have

Sc = σmn
√

m
πT‖

| ln ε| = 3√
2

W
τ2

| ln ε|, (5.15)

where W � nT‖/2 and τ2 ∝ T3/2
‖ .

It then follows from (5.5a,b) that

dW
dt

= −W⊥
τr

= −Sc � − 3√
2

W
τ0

(
W0

W

)3/2

| ln ε|, (5.16)

where τ0 denotes the collision time τc when W = W0. In deriving this equation, we have
appealed to the properties of the two collision operators discussed in § 4.

Equation (5.16) suggests that

W
W0

=
(

1 − 9| ln ε|t
23/2τ0

)2/3

(5.17)

and, thus, W → 0 after a few collision times, after which W⊥ � W will no longer hold.
Instead

dW
dt

� −2W
3τr

(5.18)

and W will fall exponentially.

https://doi.org/10.1017/S0022377820001233 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820001233


12 D. Kennedy and P. Helander

Equation (5.16) describes a self-accelerating process and the plasma will only remain in
this regime for a few collision times τc.

5.1. Radiative cooling in electron–positron plasmas and implications in the laboratory
One can now elucidate the different cooling regimes which were introduced at the
beginning of this section.

(I) Initially, 0 < τr < t < τc(0), the initial collision time:

W⊥ = W⊥,0 exp(−t/τr), W‖ = constant. (5.19a,b)

(II) Then, t ∼ τc(t) and scattering will occur. Equation (5.16) will hold and, hence,

W = W0

(
1 − 9| ln ε|t

23/2τ0

)2/3

. (5.20)

This is a self-accelerating process. The power radiated by the plasma in this regime
can be calculated through

−dW
dt

� 3√
2

W
τ0

(
W0

W

)3/2

| ln ε|. (5.21)

(III) Eventually, t � τr, τc(t). In this regime any remaining parallel kinetic energy will
be converted into perpendicular kinetic energy via collisional scattering and then
radiated:

W ∝ exp(−t/τr). (5.22)

Thus, it seems as though the exploitation of cyclotron cooling at high field will provide
a very efficient mechanism to dissipate heat in the plasma as the radiation will simply be
absorbed by the vessel walls.

This rapid cooling will have another benefit for laboratory experiments. As stated
previously, there are fairly stringent conditions on the number of positrons that one can
accumulate and store in the laboratory. As such, this means that the laboratory plasmas
will have extremely low densities. In order for the system to be classified as a plasma, as
opposed to simply a collection of charged particles, there must be collective behaviour that
places a requirement on the Debye length compared with the system size L. Namely, one
must ensure that

λD =
√

ε0T
2ne2

� L. (5.23)

The conditions placed on both L and n ensure that meeting this requirement could prove
difficult. However, cyclotron cooling opens up a new avenue through which this condition
might be satisfied. Simply put, the cyclotron cooling process will lower the Debye length
on the time scale max(τr, τc(0)) and convert what might (and indeed likely will) be initially
a collection of electron–positron pairs into a plasma.

For a collisionless pair plasma, we require a condition on the plasma parameter:

Λ = nλ3
D � 1, (5.24)

i.e. that there are many particles in a Debye sphere. For a fixed density, this parameter
scales with T3/2 and so this condition will become less and less well satisfied.
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Inevitably, there will be some trade-off between the density and temperature, which
dictates the kind of plasma we are able to explore. In the upcoming series of laboratory
experiments, this will not be a serious limitation; the Debye length will not be sufficiently
small as to violate (5.24).

5.2. A note on entropy
It is interesting to look at the rate of change of entropy in optically thin electron–positron
plasmas. Defining the entropy S by

S = −
∫

f ln f d3r d3v, (5.25)

it follows immediately from the kinetic equation that

dS
dt

+ n
τr

= −
∫

C[ f , f ] ln f d3r d3v ≥ 0 (5.26)

where the final inequality follows from Boltzmann’s H-theorem.
This tells us that, on the timescale t ∼ τr � τc/| ln ε|, the entropy of the plasma

decreases at a constant rate that is proportional to the density. There is a simple physical
explanation of this result, namely, that the entropy of the plasma will decrease through the
loss of energy and that the loss rate will be proportional to the number of the particles
in the plasma. Note also that the entropy loss rate thus remains constant as the plasma
loses energy, which can be understood from the fact that the energy loss dQ, in the
thermodynamic relation

dS = dQ
T

, (5.27)

is proportional to temperature for cyclotron radiation.

6. The perpendicular component of the distribution function

We have already argued that, for times exceeding τ1,

f (v‖, v⊥) = nf‖(v‖)f⊥(v⊥), f‖(v‖) =
(

m
2πT‖

)1/2

exp

(
−mv2

‖
2T‖

)
, (6.1a,b)

where the long-range guiding centre collisions have driven f‖ to a Maxwellian. It is
instructive to ask what can be deduced about f⊥.

We begin from the kinetic equation

∂f
∂t

− 1
τr

∂

∂μ
(μf ) = σ

n

∫
∇ · [U · ( f ′∇f − f ∇′f ′)] d3v′. (6.2)

Integrating over the parallel velocity to remove the f‖ terms on the left-hand side, one
obtains

∂f⊥
∂t

− 1
2τrv⊥

∂

∂v⊥

(
v2

⊥f⊥
) = C⊥[ f , f ], (6.3)

where we have now introduced the operator

C⊥[ f , f ] = σ

n2

1
v⊥

∂

∂v⊥
v⊥ ·

∫ ∞

−∞
dv‖

∫
ff ′U · (∇ ln f − ∇′ ln f ′) d3v′. (6.4)
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Now, using the factorisation of the distribution function, we have

C⊥ = σ
1
v⊥

∂

∂v⊥
v⊥ ·

∫
f⊥ f ′

⊥d2v′
⊥

∫∫
f‖ f ′

‖U

· (∇ ln f‖ − ∇′ ln f ′
‖ + ∇⊥ ln f⊥ − ∇′

⊥ ln f ′
⊥
)

dv‖dv′
‖ (6.5)

and we can also exploit that f‖ is a Maxwellian to obtain

∇‖ ln f‖ − ∇′
‖ ln f ′

‖ = m
T‖

(v′
‖ − v‖) = −mu‖

T‖
. (6.6)

We thus arrive at

C⊥ = σ
1
v⊥

∂

∂v⊥
v⊥ ·

∫
f⊥ f ′

⊥d2v′
⊥

∫∫
f‖ f ′

‖

[
m
T‖

(
−u2u‖ − u2

‖u

u3

)

+ U · (∇⊥ ln f⊥ − ∇′
⊥ ln f ′

⊥)

]
dv‖ dv′

‖, (6.7)

and the leading-order (in ε � 1) term is given by

C⊥ � σ
1
v⊥

∂

∂v⊥
v⊥

∂f⊥
∂v⊥

∫
f ′
⊥ d2v′

⊥

∫∫ f‖ f ′
‖

u
dv‖ dv′

‖. (6.8)

We first turn our attention to

I1 :=
∫∫ f‖ f ′

‖
u

dv‖ dv′
‖. (6.9)

Upon making the change of variables

v‖ − v′
‖ = u‖, (6.10)

v‖ + v′
‖ = w‖, (6.11)

we see that we may write

f‖ f ′
‖ = m

2πT‖
exp

(
− m

4T‖

(
u2

‖ + w2
‖
))

, (6.12)

and, thus, our integral becomes

I1 = m
2πT‖

∫ ∞

−∞

exp

(
−mu2

‖
4T‖

)
√

u2
‖ + u2

⊥
du‖

∫ ∞

−∞
exp

(
−mw2

‖
4T‖

)
dw‖. (6.13)

Upon evaluating the second integral term and making a further change of variables x2 =
mu2

‖/4T‖, we see that

I1 =
√

m
πT‖

∫ ∞

−∞

e−x2√
x2 + mu2

⊥
4T‖

dx =
√

m
πT‖

emu2
⊥/8T‖K0

(
mu2

⊥
8T‖

)
, (6.14)

where K0 is the modified Bessel function of the second kind.
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In order to calculate C⊥ it remains to evaluate I2 given by

I2 :=
√

m
πT‖

∫
f ′
⊥emu2

⊥/8T‖K0

(
mu2

⊥
8T‖

)
d2v′

⊥. (6.15)

Introducing the change of variables

x2
⊥ = mv2

⊥
2T⊥

, x′2
⊥ = mv′2

⊥
2T⊥

, (6.16a,b)

we obtain

mu2
⊥

8T‖
= δ(x2

⊥ + x′2
⊥ − 2x⊥x′

⊥ cos θ) =: δg(x⊥, x′
⊥, θ), (6.17)

where θ is the angle between v⊥ and v′
⊥ and we have introduced another small parameter

δ = T⊥
4T‖

� 1. (6.18)

We may now approximate

I2 = 2T⊥
m

∫ ∞

0
f ′
⊥x′

⊥ dx′
⊥

∫ 2π

0
exp(δg(x⊥, x′

⊥, θ))K0(δg(x⊥, x′
⊥, θ)) dθ. (6.19)

To leading order in δ, we thus obtain, to logarithmic accuracy,

I2 �
√

m
πT‖

| ln δ|, (6.20)

and, hence,

C⊥ = σ

√
m

πT‖
| ln δ| 1

v⊥

∂

∂v⊥

(
v⊥

∂f⊥
∂v⊥

)
. (6.21)

Now, (6.3) becomes

− 1
2τrv⊥

∂

∂v⊥
(v2

⊥f⊥) = σ

√
m

πT‖
| ln δ| 1

v⊥

∂

∂v⊥

(
v⊥

∂f⊥
∂v⊥

)
, (6.22)

which can be solved for the perpendicular distribution function via direct integration to
give

f⊥(v⊥) = m
2πT⊥

exp
(

−mv2
⊥

2T⊥

)
. (6.23)

That is, in the scattering regime (II), f⊥ is also a Maxwellian, but with a perpendicular
temperature given through the equation

T⊥
T‖

= 8√
2π

τr

τ2
| ln δ|. (6.24)

That is, we see that the cooling during the scattering regime occurs on the timescale of
parallel (to the magnetic field) collisions, and is thus a self-accelerating process as the
temperature T‖ falls.
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We can also see from (6.24) that, in fact, δ and ε coincide within a factor of A| ln ε|,
where A is some multiplicative O(1) factor, and can therefore be treated as identical if we
are willing to accept a relative error of order 1/| log ε|.

Note, here (6.23) is simply a specialisation of the result obtained in (I) when the
distribution function can be factored into perpendicular and parallel components.

7. Stability of anisotropic electron–positron plasmas in straight field-line geometry

Having derived a kinetic theory for the radiative cooling of strongly anisotropic pair
plasmas, we finish by modifying one of the important calculations of Helander (2014).
We show that stability of electron–positron plasmas to low-frequency waves in slab
geometry (i.e. a plasma threaded by a straight and constant magnetic field) still holds
if the distribution function is non-Maxwellian.

We write the gyrokinetic distribution function for our plasma as

fa(r) = Fa + eaφ(r)
∂Fa

∂E
+ ea

B0
[φ(r) − 〈φ(r)〉R]

∂Fa

∂μ
+ ga(R), (7.1)

where Fa is the a priori arbitrary equilibrium distribution function of species a, φ is the
electrostatic potential and E is the energy of the plasma. We take care to distinguish
between quantities which are evaluated at the particle position r and those which are
evaluated at the guiding centre position R. The function ga satisfies the linearised,
electrostatic, collisionless gyrokinetic equation (Catto, Tang & Baldwin 1981):

iv‖∇‖ga + (ω − ωda)ga = −eaJ0(k⊥ρ)φ(R)

[
ω

∂Fa

∂E
+ 1

eaB0
k × b · ∇Fa

]
, (7.2)

where we have introduced ωda = k⊥ · vda the magnetic drift frequency. We have also
introduced the gyroaverage 〈α〉R of any function of the gyroangle α(θ, . . .) at fixed guiding
centre R, defined by

〈α〉R = 1
2π

∫ 2π

0
α(θ, . . .)

∣∣∣∣
R=constant

dθ. (7.3)

The quasineutrality condition demands

∑
a

ea

∫
r=constant

d3v fa = 0, (7.4)

which for a pure electron–positron plasma requires

1
2e

∫
R=constant

d3v(gp − ge)J0 + φ

∫
R=constant

d3v

(
eik⊥·ρ ∂F

∂E
+ 1

B0
[eik⊥·ρ − J0]

∂F
∂μ

)
J0 = 0.

(7.5)

In the limit of straight field lines we can set ωda = 0 and obtain the solution of the
gyrokinetic equation as

ga(R) = −eaJ0φ(R)

ω − k‖v‖

[
ω

∂Fa

∂E
+ 1

eaB0
k × b · ∇Fa

]
, (7.6)
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hence one obtains

gp − ge = − 2ωeJ0φ

ω − k‖v‖

∂F
∂E

. (7.7)

Substituting into Poisson’s equation gives the dispersion relation∫
d3v

ω

ω − k‖v‖

∂F
∂E

J2
0 =

∫
d3v

(
eik⊥·ρ ∂F

∂E
+ 1

B0
[eik⊥·ρ − J0]

∂F
∂μ

)
J0. (7.8)

One can see that, just as in Helander (2014), the gradients, which can drive
microinstabilities, simply cancel owing to the mass symmetry and the result that any
instability must involve magnetic curvature still holds for anisotropic plasmas.

8. Conclusions

Radiative cooling will be an important process in upcoming pair plasma laboratory
experiments and can lead to a strongly anisotropic distribution function. In the present
contribution, we have explored the kinetic theory of plasmas including the effects of
cyclotron emission. Specifically, we have investigated the evolution of the plasma kinetic
energy in the collisionless regime, both in a straight field-line geometry and also the
extension of this result to the general case of a varying magnetic field. The influence of
radiative cooling leads to the plasma dissipating its perpendicular energy on the radiation
timescale τr, initially the fastest dynamical timescale present in the system.

Eventually, the collision time will become comparable with the radiation time and
we therefore also investigated the experimentally relevant regime including both the
long-range Coulomb collisions, which arise in strongly magnetised plasma, and also the
standard short-range collisions. The evolution of the plasma can then be split into three
regimes, each of which is governed by different physics as set out in § 5. Taking advantage
of the strong anisotropy allows the rate of change of energy to be found in each instance.
In particular, it was found that the cooling during the scattering regime occurs on the
timescale of parallel (to the magnetic field) collisions and is, thus, a self-accelerating
process as the temperature T‖ falls.

The remarkable stability properties of electron–positron plasmas were found to persist in
the strongly anisotropic regime, at least insofar as the straight field-line case. The essence
of this result is that the equilibrium distribution used in the more general form of the
gyrokinetic equation is, in fact, arbitrary. The mass symmetry that leads to the precise
cancellation of the gradient terms responsible for driving instability still holds.

Crucially, we found at each stage of the investigation several results that could be useful
in the successful operation of the first pair-plasma experiments. We found that the plasma
still ought to be robustly stable to low-frequency microinstabilities and, hence, potentially
turbulence free, in spite of being strongly anisotropic. It was also found that the kinetic
theory presented here leads to a reduction of the Debye length on the time scale of radiation
emission or Coulomb collisions, whichever is slowest. If the particle confinement time
exceeds both of these time scales this mechanism can be used to convert a collection of
electron–positron pairs into the first electron–positron plasma.
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