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Spherical Fundamental Lemma for
Metaplectic Groups

Caihua Luo

Abstract. In this paper, we prove the spherical fundamental lemma for metaplectic group Mp2n
based on the formalism of endoscopy theory by J. Adams, D. Renard, andW.-W. Li.

1 Introduction

Let F be a non-archimedean ûeld of characteristic 0 with residue characteristic p /= 2.
Fix a non-trivial character ψ of F with conduct OF , let S̃pψ(W) beWeil’s metaplectic
8-th cover of Sp(W), which is a pushout of themetaplectic cover Mpψ(W) via µ2 ↪
µ8, i.e.,

µ2
� � //
� _

��

Mpψ(W)
p
// //

��

Sp(W)

µ8 �
�

// S̃pψ(W)
p
// // Sp(W).

Notice thatW.-W. Li has built up the endoscopy theory for S̃pψ(W) in [Li11] and sta-
bilized the elliptic trace formula of S̃pψ(W) in [Li15]. He has also proved the trans-
fer conjecture and fundamental lemma of units for large p in [Li11]. But the spher-
ical fundamental lemma has not yet been proved, and it is a necessary theorem for
applying global arguments to prove the expected endoscopic character identities of
S̃pψ(W). _e purpose of this article is to adapt Clozel and Hales’ ideas in [Clo90,
Hal95] to prove the desired spherical fundamental lemma for S̃pψ(W). Herein we
should mention that for standard endoscopy in linear groups, analogous “spheri-
cal fundamental lemma” was proved by Hales [Hal95], and for twisted endoscopy, it
was recently shown byLemaire–Moeglin–Waldspurger [LMW15] andLemaire-Wald-
spurger [LW15].

Let G = Sp(W), G̃ = S̃pψ(W). As shown by J. Adams, D. Renard, andW.-W. Li
among others, the elliptic endoscopic groups of G̃ are the split orthogonal groups

H = Hn′ ,n′′ = H′ ×H′′ ∶= SO(2n′ + 1) × SO(2n′′ + 1) with n′ + n′′ = n,

and a standard norm correspondence is deûned in Section 2.2.3 as

N∶H(F)ss/∼geo Ð→ G(F)ss/∼geo .
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Associatedwith thenorm correspondenceN, the transfer factors fornormpairs (γ, δ̃)
are deûned in Section 2.2.4 as follows:

∆(γ, δ̃) ∶=
Θ′

ψ

∣Θ′
ψ ∣

(−δ̃′) ⋅
Θ′′

ψ

∣Θ′′
ψ ∣

( δ̃′′) ⋅ sgnK′′/K′′#(Pa′(−a
′′)(a′′)−n′ det(δ′ + 1)) ,

where Θ′
ψ (resp. Θ′′

ψ) is the Harish–Chandra character of the Weil representation
ω′ψ (resp. ω′′ψ) of S̃pψ(W ′) (resp. S̃pψ(W ′′)), and Pa′ ∈ F[T] is the characteristic
polynomial of a′ ∈ K′×. Let K = G(OF) and KH = H(OF); we deûne the associated
spherical (anti-genuine) Hecke algebras

HK(G̃)−− ∶= C∞c ( G̃//G(OF))−− , HKH(H(F)) ∶= C∞c (H(F)//H(OF)) .

Let
b∶HK(G̃)−− Ð→HKH(H(F))

be the conjectural transfermap deûned by thenormmapN and Satake isomorphisms,
i.e.,_eorem 3.1.1. For ϕ ∈HK(G̃)−− and f ∈HKH(H(F)), set Oδ̃(ϕ) as the normal-
ized orbital integral associatedwith δ̃ ∈ G̃ and SOγ( f ) as thenormalized stable orbital
integral associated with γ ∈ H(F). Denote

Λ(γ, ϕ) ∶=∑
δ
∆(γ, δ̃)Oδ̃(ϕ) − SOγ(b(ϕ)).

Main _eorem Assume the (stable) orbital integrals are compatibly normalized as
in [Li12b]. Let ϕ ∈ HK(G̃)−− , f = b(ϕ) ∈ HKH(H(F)). _en Λ(γ, ϕ) = 0 for any
γ ∈ H(F)G−reg.

As is well known, Clozel [Clo90] andHales [Hal95] have a standard way to tackle
this problem. So naturally we will try to adapt their arguments to prove our theorem.
Notice that themain ingredients of Clozel andHales’ arguments are as follows.
● Howe’s ûniteness theorem,
● Vignéras’ characterization of orbital integrals,
● Clozel andWaldspurger’s theorem concerning compact trace,
● Keys’ reducibility theorem of unramiûed unitary principal series.
So basically we should extend these results to S̃pψ(W). Note that Vignéras’ char-
acterization of orbital integrals has also been established for ûnite central covering
groups in [Vig82]. Instead of using Vigneras’ characterization indirectly, we will use
W.-W. Li’s isomorphism theorem which comes much more directly. _erefore, our
ingredients in some sense have been built up as follows.
● Howe’s ûniteness theorem for covering groups [Luoar],
● W.-W. Li’s isomorphism theorem concerning transfer maps [Li16],
● Clozel andWaldspurger’s theorem for covering groups [Luoar],
● Irreducibility theorem of unramiûed unitary principal series of S̃pψ(W) [Szp13].

_e outline of this article is as follows. In Section 2, we recall in greater detail the
theory of endoscopy for S̃pψ(W) established by J. Adams, D. Renard, andW.-W. Li.
In Section 3 we prove some key results about genuine spherical representations that
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will play an essential role in the last section, while the last section is devoted to the
proof of theMain _eorem.

2 Endoscopy and Trace Formula

For the convenience of the reader,we summarizeW.-W. Li’swork as follows [Li11,Li15,
Li16].

2.1 Notations and Facts

2.1.1 Local Case

● Let F be a non-archimedean ûeld of characteristic 0 with residue characteristic
p /= 2, and let ψF ∶ F → S1 be a non-trivial character of conductor OF .

● Let (W , ⟨ ⋅ , ⋅ ⟩) be the non-degenerate symplectic F-space of 2n-dimension as-
sociatedwith the symplectic form ( In

−In ) and letG = Sp(W) be the associated sym-
plectic group. Fix a selfdual lattice L = O2n

F ⊂W ; we deûne K = StabG(L) = G(OF).
● For the Heisenberg group H(W) = W ⊕ F, themultiplication is deûned as fol-

lows.
(w1 , t1)(w2 , t2) = (w1 +w2 , t1 + t2 +

1
2
⟨w1 ,w2⟩) .

We have Z(H(W)) = 0 ⊕ F. Notice that G acts naturally on H(W) by g .(w , t) =
(g .w , t), trivially on Z(H(W)). By Stone–Von Neumann theorem, this action de-
ûnes a projective representation of G, i.e., G → GL(SψF )/C×, where (ρψF , SψF ) is the
unique smooth irreducible representation of H(W) with central character ψF .

● Sp(W)ψF ∶= {(g ,A(g)) ∈ Sp(W)×GL(SψF ) ∶ ρ
g
ψF = A(g)−1 ○ ρψF ○A(g)}. _is

is a central extension of Sp(W) by C× such that A can be li�ed to a representation
ωψF of Sp(W)ψF : ωψF (g ,A(g)) ∶= A(g). _is is the so-calledWeil representation.

2.1.2 Global Case

● Let F∗ be a number ûeld, O the associated ring of integers, andA the associated
Adèle ring. Fix a non-trivial automorphic character ψ∶ F∗/A→ S1, ψ =⊗ν ψν .

● Let (W , ⟨ ⋅ , ⋅ ⟩) be a non-degenerate symplectic F∗ vector space of dimension
2n, (Wν , ⟨ ⋅ , ⋅ ⟩) ∶= (W , ⟨ ⋅ , ⋅ ⟩)⊗F∗ F∗ν , and Sp(W ,A) ∶=∏

′
ν Sp(Wν).

● For Adèlic Heisenberg group H(W ,A) ∶= ∏
′
ν H(Wν), Sp(W ,A) acts naturally

on H(W ,A). Again, by the Stone–VonNeumann theorem,we get a central extension
Sp(W ,A)ψ of Sp(W ,A) by C× and its associated global Weil representation ωψ ∶=
⊗wψν .

2.1.3 Schrödinger Model

Associated with a complete polarization W = X + Y , ûx a Haar measure on Y and
a self-dual Haar measure on W with respect to ψF(⟨ ⋅ , ⋅ ⟩), one can then construct a
model of the representation (ρψF , SψF ) as follows:

SY = IndH(W)
H(Y) ψF ,
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where, by abuse of notation, ψF is the unique extension of the character ψF of
Z(H(W)) to H(Y) given by ψF(y, t) = ψF(t). Here the induced representation
means smooth induced representation, and the action of H(W) is given by right
translation.
Associated with two complete polarizations W = X1 + Y1 andW = X2 + Y2, Lion

and Perrin [LP81] have deûned a canonical intertwining operator IY1 ,Y2 ∶ SY1 → SY2 as
follows. For f1 ∈ SY! , Y12 ∶= Y1 ∩ Y2, the integral

IY1 ,Y2( f (h)) = ∫
Y12/Y2

f ((y, 0)h)dy

is absolutely convergent and not identically zero, and deûnes an element of SY2 . Note
that the isomorphism IY1 ,Y2 depends on a choice of the Haar measure on Y12/Y2. On
the other hand, for any g ∈ Sp(W), one can deûne a natural isomorphism

A0(g)∶ SY Ð→ SY g−1

(A0(g) f )(h) = f (hg)
that satisûes

ρψF (h)A0(g) = A0(g)ρψF (hg).
Put these isomorphisms together, and one can then deûne an action of g ∈ Sp(W) on
SY as

AY(g) ∶= IY g−1 ,Y ○ A0(g).
It is easy to check that (g ,AY(g)) ∈ Sp(W)ψF . We deûne the above section of
p∶ Sp(W)ψF → Sp(W) as σY ∶ g ↦ (g ,AY(g)), and it is well known that σY splits
over PY = StabSp(W)(Y).

2.1.4 Structure

● Sp(W)ψF , for various choices of ψF , are canonically isomorphic in the category
of central extensions of Sp(W) by C×. From now on, we will omit the subscript ψF .

● Sp(W) ≃ S̃p
(2)(W)×µ2 C×, where S̃p

(2)(W) is the unique non-trivial two-fold
cover of Sp(W). Denote

G̃ = S̃p
(8)(W) ∶= S̃p

(2)(W) ×µ2 µ8 .
● Let PY be the Siegel parabolic associatedwith amaximal isotropic subspace Y of

W ; then PY splits in G̃ via the composite of σY and the projectionmap of Sp(W)→ G̃,
i.e.,

G̃

p

��

PY

σY
>>

i
// G .

Note that such σY does not depend on the choices ofHaar measures. Conventionally,
one writes −1 for σY(−1) in G̃, which does not depend on the choice of Y .

● For K hyperspecial compact subgroup of Sp(W), K splits in G̃. Globally, Sp(W)
splits in Sp(W ,A).
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● For x̃ , ỹ ∈ G̃, x̃ and ỹ commute if and only if x and y commute.
● For amaximal split torus T of G, let T̃ be the preimage of the projection map p;

one can then deûne a genuineWG(T)-invariant character χψF of T̃ that is compatible
with the local theta correspondence associated to ψF in [Kud96] as follows:

χψF ∶ ((
a

t a−1 ), є) z→ єγ(det(a),ψF)−1 ,

where γ( ⋅ ,ψF) is the relativeWeil index. Note that this is also compatible with the
natural splitting of T in T̃ given by σY in [Kud96,_eorem 4.5]

σY ∶ g = ( a t a−1 )z→ (g , γ(det(a),ψF)),
i.e., χψF ○ σY = id.

● Denote

N ∶= {(єν) ∈⊕Ker(pν) =⊕ µ2 ∶∏ єν = 1} ,

S̃p
(2)(W ,A) ∶=

′

∏
ν

S̃p
(2)(Wν)/N .

We have Sp(W ,A)ψ ≃ S̃p
(2)(W ,A) ×µ2 C×. Similarly, we deûne the µ8 cover

S̃p
(8)(W ,A) of Sp(W ,A) to be the pushout of the double cover as deûned before.

2.2 Endoscopy

2.2.1 Regular Semisimple Conjugacy Classes

● Sp(W) with dim W = 2n: the regular semisimple conjugacy classes are
parametrized by the following data O(K/K# , x , c):

– (K , τ) 2n-dimensional étale F-algebra with involution τ. Denote by K# the
τ-ûxed étale subalgebra of K.

– x ∈ K× such that τ(x) = x−1 and K = F[x].
– c ∈ K× with τ(c) = −c.

● SO(V , q) splits with dim V=2m+1: the strongly regular semisimple conjugacy
classes are parametrized by the following data O(K/K# , x , c):

– (K , τ) 2m-dimensional étale F-algebra with involution τ. Denote K# the τ-
ûxed étale subalgebra of K.

– x ∈ K× such that τ(x) = x−1 and K = F[x].
– c ∈ K× such that τ(c) = c.

● O(K1/K#
1 , x1 , c1) and O(K2/K#

2 , x2 , c2) are equivalent if and only if there exists
an F-algebra isomorphism and involution σ ∶ (K1 , τ1)

∼Ð→ (K2 , τ2) such that σ(x1) = x2
and σ(c1)c−1

2 ∈ NK2/K#
2
(K×

2 ).

2.2.2 Endoscopic Groups and Stable Conjugacy

● Let G = Sp(W), G̃ = S̃p
(8)(W), the elliptic endoscopic groups of G̃ are H =

Hn′ ,n′′ = H′ ×H′′ ∶= SO(V ′ , q′)× SO(V ′′ , q′′)with n′ +n′′ = n, where the quadratic
forms are

q′(x−n′ , . . . , x0 , . . . , xn′) = 2
n′

∑
i=1

x−ix i + x2
0
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and

q′′(x−n′′ , . . . , x0 , . . . , xn′′) = 2
n′′

∑
i=1

x−ix i + x2
0 .

For simplicity,wewrite the above special orthogonal groups in the form SO(2m + 1).
● δ̃1 , δ̃2 ∈ G̃reg are stably conjugate if δ1 and δ2 are stably conjugate in G, and

ΘψF (−δ̃1) = ΘψF (−δ̃2), where ΘψF is theHarish–Chandra character of theWeil rep-
resentation ωψF . _us, the conjugacy classes within a stable conjugacy class in G̃reg
are parametrized by H1(F , T).

2.2.3 Norm Correspondence

Fix F-split tori S′ ∈ H′ , S′′ ∈ H′′ and let S = S′ × S′′. Also ûx F-split torus T ′ ∈ G′ =
Sp(2n′), T ′′ ∈ G′′ = Sp(2n′′), and T ∈ G = Sp(W). Let WG(T) be theWeyl group
associatedwith T inG, similarly for other groups. _ere are natural F-isomorphisms:

µ′∶ S′ ∼Ð→ T ′ , µ′′∶ S′′ ∼Ð→ T ′′ , ν∶T ′ × T ′′ ∼Ð→ T
and homomorphisms compatible with the above isomorphisms:

WH′
(S′) ∼Ð→WG′

(T ′),

WH′′
(S′′) ∼Ð→WG′′

(T ′′),

WG′
(T ′) ×WG′′

(T ′′) ↪Ð→WG(T).
_us, we obtain F-homomorphisms:

µ′∶ S′/WH′
(S′) ∼Ð→ T ′/WG′

(T ′),

µ′′∶ S′′/WH′′
(S′′) ∼Ð→ T ′′/WG′′

(T ′′),

ν∶T ′/WG′
(T ′) × T ′′/WG′′

(T ′′)Ð→ T/WG(T).
Let

µ = µn′ ,n′′ ∶= ν ○ (id,− id) ○ (µ′ , µ′′)∶ S/WH(S)Ð→ T/WG(T).
_us, we get the “norm map”

N∶H(F)ss/∼geo Ð→ G(F)ss/∼geo .

Explicitly in terms of parameters:

O(K′/K′# , x′ , c′) ×O(K′′/K′′# , x′′ , c′′)↔ O(K/K# , (x′ ,−x′′), c) with K = K′ × K′′ .

We say δ̃ ∈ G̃ and γ ∈ H are correspondent ifN({γ}) = {δ}.

2.2.4 Transfer Factor

Recall that W.-W. Li has constructed the transfer factors for the above endoscopic
groups [Li11, §5.3]. Suppose that γ′ ∈ O(K′/K′# , a′ , c′) and γ′′ ∈ O(K′′/K′′# , a′′ , c′′),
for δ̃ ∈ G̃ and γ = (γ′ , γ′′) ∈ HG−reg(F) such that δ and γ are correspondent. _enwe
have a unique orthogonal decomposition ofW = W ′ ⊕W ′′, stable under the action
of δ such that δ′ ∈ O(K′/K′# , a′ , c′) and δ′′ ∈ O(K′′/K′′# ,−a′′ , c′′), where δ′ ∶= δ∣W′

and δ′′ ∶= δ∣W′′ . _is gives rise to a canonical homomorphism j∶ S̃p(W ′)×S̃p(W ′′)→
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S̃p(W); we can then take δ̃′ ∈ S̃p(W ′), δ̃′′ ∈ S̃p(W ′′) such that j(δ̃′ , δ̃′′) = δ̃. Note
that the pair (δ′ , δ′′) is unique and belongs to Sp(W ′)reg × Sp(W ′′)reg. On the other
hand, (δ̃′ , δ̃′′) is unique up to multiplication by (є, є−1), where є ∈ Ker(p).

Deûnition Under the above assumptions, we can deûne the transfer factor for
(γ, δ̃) as

∆(γ, δ̃) ∶=
Θ′

ψ

∣Θ′
ψ ∣

(−δ̃′) ⋅
Θ′′

ψ

∣Θ′′
ψ ∣

(δ̃′′) ⋅ sgnK′′/K′′#(Pa′(−a
′′)(a′′)−n′ det(δ′ + 1)) ,

where Θ′
ψ (resp. Θ′′

ψ) is the Harish–Chandra character of the Weil representation
ω′ψ(resp. ω′′ψ) of S̃p(W ′) (resp. S̃p(W ′′)), and Pa′ ∈ F[T] is the characteristic polyno-
mial of a′ ∈ K′×. Conventionally, ∆(γ, δ̃) ∶= 0 if (γ, δ̃) is not a norm correspondence
pair.

_e transfer factor deûned above has the following known properties:
● (Genuine) ∆(γ, єδ̃) = є∆(γ, δ̃) for є ∈ Ker(p).
● (Cocycle property) If δ̃ and δ̃1 are stably conjugate,

∆(γ, δ̃1) = ⟨κ, inv(δ, δ1)⟩∆(γ, δ̃),

where inv(δ, δ1) is the associated cohomology class in H1(F ,Gδ), and the endo-
scopic character κ is deûned as follows:
As H1(F ,Gδ) = H1(F , T ′) × H1(F , T ′′) associated with the decomposition of

δ = (δ′ , δ′′), which is determined by the decomposition of γ, κ is deûned as the
composites of the projection to the secondH1 and the product map ofH1(F , T ′′) ≃
µI′′∗

2 to µ2, i.e.,

κ∶ µI′∗
2 × µI′′∗

2 Ð→ µ2

((t′i)i∈I′ , (t′′i )i∈I′′) z→ ∏
i∈I′′

t′′i ,

where (I′ , I′∗) and (I′′ , I′′∗) are determined by the decomposition of the parame-
ters K′ and K′′ as follows. If

K′ = ∏
i∈I′

K′
i , K′′ = ∏

i∈I′′
K′′

i ,

then I′∗ is the cardinality of the set of quadratic extensions K′
i/K′#

i for i ∈ I′, similar
for I′′∗.

● (Symmetric) ∆n′ ,n′′((γ′ , γ′′), δ̃) = ∆n′′ ,n′((γ′′ , γ′),−δ̃).
● (Normalization à la Waldspurger) For the hyperspecial subgroup pair (K ,KH) =

(G(OF),H(OF)), and the norm correspondence pair (γ, δ) ∈ K × KH , ∆(γ, δ) = 1
provided (γ, δ) are of regular reduction.

● (Product formula) Suppose (γ, δ) ∈ HG−reg(F∗)×G(F∗) is anorm correspondence
pair, and δ = (δ̃ν)ν in G̃(A); then
– ∆ν(γ, δ̃ν) = 1 for almost all place ν;
– ∏ν ∆(γ, δ̃ν) = 1.
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● (Parabolic descent) If a norm pair (γ, δ) lies in Levi subgroups MH ×M with

MH = ∏
i∈I

(GL(n′i) ×GL(n′′i )) ×Hb , M = ∏
i∈I

GL(n i) ×Gb , and n i = n′i + n′′i ,

then (γb , δb) is also anormpair inHb×Gb . Denote by∆H ,G̃ and∆Hb ,G̃b the transfer
factors associated with (H,G) and (Hb ,Gb), respectively; then

∆H ,G̃(γ, δ̃) = ∆Hb ,G̃b(γb , δ̃b),

where δ̃b is given by the relation: j(σGL(δGL), δ̃b) = δ̃, with δ = δGL × δb and σGL
the natural splitting deûned in Section 2.1.4.

2.2.5 Transfer Conjecture and Fundamental Lemma

For x ∈ G, Gx ∶= CG(x)o , let

DG(x) = ∣det(1 −Ad(x)∣LieG/ LieGx )∣1/2 ,

C∞c (G̃)−− be the anti-genuine subspace of C∞c (G̃), i.e., ϕ(єx̃) = є−1ϕ(x̃), similar
notion for other groups and function spaces. We deûne thenormalized (stable) orbital
integral on γ ∈ H for f ∈ C∞c (H(F)) as

Oγ( f ) = DH(γ)∫
Hγ(F)/H(F)

f (h−1γh)dh,(H)

SOγ( f ) = DH(γ)∫
(Hγ/H)(F)

f (h−1γh)dh.

Similarly, for δ̃ ∈ G̃reg, and ϕ ∈ C∞c (G̃)−−,

(G) Oδ̃(ϕ) = DG(δ)∫
Gδ(F)/G(F)

ϕ(g̃−1 δ̃ g̃)dg .

Remark 1 _e compatible Haar measures for (H) and (G) are deûned via the
canonical isomorphisms between the centralizers of regular elements.

As in [Li16], we set

I(G̃)−− ∶ = {O?(ϕ) ∶ ϕ ∈ C∞c (G̃)},
SI(Hn′ ,n′′) ∶ = {SO?( f ) ∶ f ∈ C∞c (Hn′ ,n′′(F))};

Icusp(G̃)−− ∶= the subspace in I(G̃)−− of elements supported on the elliptic set,

SIcusp(Hn′ ,n′′(F)) ∶=
the subspace in SI(Hn′ ,n′′(F)) of elements supported on the elliptic set.

_eorem 2.2.1 (Transfer theorem [Li11, Proposition 5.20]) Fix compatible Haar
measures on G(F) and H(F) as in [Li11, Proposition 5.20]. Suppose ϕ ∈ C∞c (G̃)−−,
then there exists f ∈ C∞c (H(F)) such that

∑
δ
∆(γ, δ̃)Oδ̃(ϕ) = SOγ( f )

for all γ ∈ HG−reg(F). We say that (ϕ, f ) is a transfer pair for (G̃ ,H(F)).
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If F is archimedean, for anti-genuine Schwartz function ϕ ∈ S(G̃)−−, we can take
Schwartz function f ∈ S(H(F)) such that the above transfer identity holds.

One can collect all the possible transfer maps deûned in _eorem 2.2.1, and then
deûne a “collective” transfer TE as follows:

TE∶ I(G̃)−− Ð→ ⊕
n′+n′′=n
H∶=Hn′ ,n′′

SI(H(F)),

O?(ϕ)z→ ∑
n′+n′′=n
H∶=Hn′ ,n′′

SO?( f H).

_eorem 2.2.2 (Fundamental lemma for units [Li11, _eorem 5.23]) Suppose the
residue characteristic p of F is large enough (cf. [Li11,_eorem 5.23] for the explicit re-
quirement), K = G(OF) is a hyperspecial compact subgroup ofG(F) and KH = H(OF)
the associated hyperspecial subgroup of H(F); we deûne µK(єx) ∶= є−1 if x ∈ K, other-
wise 0. _en (µK , 1KH) is a transfer pair provided

meas(K̃) = meas(K) = meas(KH) = 1.

_eorem 2.2.3 (Isomorphism theorem [Li16,_eorem 5.3.1]) _e collective transfer
map

TE∶ Icusp(G̃)−− Ð→ ⊕
Hn′ ,n′′

SIcusp(Hn′ ,n′′)

is an isomorphism.

2.3 Trace Formula

2.3.1 Stable Trace Formula: Elliptic Regular Terms

Note that W.-W. Li has built up the stable trace formula for elliptic terms [Li15], but
we only need to use elliptic regular part. For simplicity, we herein just state the easy
part. Let Γrel(G(F∗)) be the set of representatives for the elliptic regular semisimple
conjugacy classes in G(F∗), ΣG−rel(H(F∗)) the set of representatives for the elliptic
G-regular semisimple stable conjugacy classes in H(F∗), similarly for other groups.

Deûnition 2.3.1 For ϕ ∈ C∞c (G̃(A))−−, we deûne the elliptic regular part of the
trace formula in [Li15] for ϕ by T G̃

rel(ϕ) as follows:

T G̃
rel ∶= ∑

δ∈Γrel(G(F∗))
τ(Gδ)Oδ(ϕ),

where Oδ(ϕ) = ∏ν Oδ̃ν
(ϕν) with δ = (δ̃ν)ν in G̃(A), for ϕ = ∏ν ϕν , and τ(Gδ) is

the associated Tamagawameasure that equals 1.
SupposeH is an endoscopic group of G̃. For f H ∈ C∞c (H(A)),we deûne the stable

analogue STH
G−rel( f H) for H as follows.

STH
G−rel( f H) ∶= τ(H) ∑

γ∈ΣG−rel(H(F∗))
SOH

γ ( f H),
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where SOH
γ ( f H) =∏ν SOH

γ ( f Hν ) for f H =∏ν f Hν , and τ(H) is the associated Tama-
gawameasure.

Lemma 2.3.2 ([Li15, Lemma 5.2.1]) _ere exists a canonical bijection between the
sets

{(δ, κ) ∶ δ ∈ Σrel(G), κ ∈ π0(Z(G∨
δ ))Γ} ,

{((n′ , n′′), γ) ∶ n′ + n′′ = n, γ ∈ ΣG−rel(H)} ,

where H ∶= Hn′ ,n′′ , and Γ ∶= Gal(F∗/F∗). _e bijection is characterized by the follow-
ing conditions:
(i) (γ, δ) is a G-regular norm correspondence pair with respect to (n′ , n′′);
(ii) κ∶H1(F∗ ,Gδ(A)/Gδ(F

∗)) → C× is the endoscopic character associated with
((n′ , n′′), γ).

_eorem 2.3.3 (Stable trace formula: elliptic regular terms) Suppose ϕ = ∏ν ϕν ∈
C∞c (G̃)−− and an adélic transfer function f H =∏ν f Hν ∈ C∞c (H(A)) is chosen for each
given elliptic endoscopic group H ∶= Hn′ ,n′′ . _en we have

T G̃
rel(ϕ) = ∑

H∶=Hn′ ,n′′
n′+n′′=n

ι(G̃ ,H)STH
G−rel( f H),

where ι(G̃ ,H) = 1/2 if one of n′ and n′′ is zero, and ι(G̃ ,H) = 1/4 otherwise.

Proof Even though this is an easy corollary ofWen-wei Li’s stable trace formula, we
would provide a sketch of his proof for the convenience of the readers.

Step 1: Let

D(Gδ ,G; F∗) ∶= Ker(H1(F∗ ,Gδ)→ H1(F∗ ,G)) = H1(F∗ ,Gδ)
as H1(F∗ ,G) = 1, by the decomposition of the conjugacy classes in a stable conjugacy
class, we have

T G̃
rel(ϕ) = ∑

δ∈Σrel(G)
∑

x∈D(Gδ ,G ;F∗)
Ox−1δx(ϕ).

Step 2: Fix δ ∈ Σrel(G). For

κ ∈ π0(Z(G∨
δ )Γ)

Duality
≃ H1(F∗ ,Gδ(A)/Gδ(F

∗)) D

which results from Tate–Nakayama duality [Kot86], by Poisson summation formula
[Lab01,_eorem 3.9] or [Kot86,_eorem 6.6], we get a further expansion:

T G̃
rel(ϕ) = ∑

δ∈Σrel(G)
∑

κ∈π0(Z(G∨
δ )

Γ)

Oκ
δ(ϕ),

where
Oκ
δ(ϕ) ∶= ∫

D(Gδ ,G ;A)
κ(y)Oy−1δ y(ϕ)dy

with
D(Gδ ,G;A) ∶= Ker(H1(A,Gδ)Ð→ H1(A,G)) = H1(A,Gδ).
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Step 3: By the bijection correspondence in the above lemma, denote ((n′ , n′′), γ) the
triple corresponded to (δ, κ); it suõces to prove that for H ∶= Hn′ ,n′′ :

Oκ
δ(ϕ) = SOH

γ ( f H).

Step 4: (Product formulas)

Oκ
δ(ϕ) =∏

ν
∫
(Gδ/G)(F∗ν )

κν(xν)ϕν(x−1
ν δxν)dxν ,

SOH
γ ( f H) =∏

ν
SOHν

γ ( f Hν ).

By the product formulas, it suõces reduces to prove that the local parts involved are
equal to each other. Note that the local part is just the transfer identity proved in
[Li11, Proposition 5.20] or _eorem 2.2.1, whence the theorem holds.

2.3.2 Simple Trace Formulas

Before stating Arthur’s simple trace formula, we introduce some notions on test
functions. Say ϕ = ∑⊗v ϕ′v ∈ C∞c (G̃(A))−− is supercuspidal at ûnite place v0 if
trace π̃v0(ϕ′v0) = 0 for all irreducible genuine unitary non-supercuspidal representa-
tions π̃, and deûne the similar notion for test functions in C∞c (H(A)).

Arthur’s simple trace formula ( [Art88, Corollary 7.3& 7.4]) Consider such test func-
tions f = ∑⊗v f ′v ∈ C∞c (H(A)) that satisûes the following conditions:
(i) at some ûnite place v0, f is supercuspidal;
(ii) at another ûnite place v1, Oγ( f ′v1

) = 0 for all γ ∈ H(Fv1), which is not semisimple
and Fv1 -elliptic.

_en

∑
γ∈H(F∗)ell/ conj

vol(Hγ(F∗)/Hγ(A))∫
Hγ(A)/H(A)

f (x−1γx)dx =

∑
π⊂L2

disc(H(F
∗)/H(A))

m(π) trace π( f ),

where m(π) is themultiplicity of π in L2
disc(H(F∗)/H(A)).

Simple trace formula for G̃ ([Li14b,_eorem 6.7]) Consider such anti-genuine test
functions ϕ = ∑⊗vϕ′v ∈ C∞c (G̃(A))−−, which satisûes the following conditions:
(i) at some ûnite place v0, ϕ is supercuspidal;
(ii) at another ûnite place v1, Oδ̃(ϕ′v1

) = 0 for all δ̃ ∈ G̃(Fv1), which is not semisimple
and Fv1 -elliptic.

_en

∑
δ∈G(F∗)bonell / conj

vol(Gδ(F∗)/Gδ(A))∫
Gδ(A)/G(A)

ϕ(x−1δx)dx =

∑
π̃⊂L2

disc(G(F
∗)/G̃(A))

m(π) trace π̃(ϕ),
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where m(π̃) is themultiplicity of π̃ in L2
disc(G(F∗)/G̃(A)).

3 Representation Theory

Before going to the proof part of theMain _eorem, we recall somewell-known facts
that will play an important role later on.

3.1 Unramified Representations and Spherical Functions

Recall the Satake transfer map

S∶HK(G̃)−− Ð→HKT (T̃)W
G
(T)

f z→ S( f )(t̃) = f ∧(t̃) ∶= δ(t)1/2 ∫
N
f (t̃n)dn.

We have similar notions for H and other groups. _en we have the following well-
known properties of the Satake transfer maps that will be used later on.

_eorem 3.1.1 (Satake isomorphism) _e Satake transfer maps S are isomorphisms
as follows:

HK(G̃)−− ≃HKT (T̃)W
G
(T)

−−

χψ
∼Ð→HKT (T)W

G
(T)

≃ C[X∗(T∨)]W
G
(T) ≃ C[T∨]W

G
(T) ,

HKH(H(F)) ≃HKH
S
(S)W

H
(S) ≃ C[X∗(S∨)]W

H
(S) ≃ C[S∨]W

H
(S) .

_us, we can deûne a natural transfer map b∶HK(G̃)−− → HKH(H(F)) via the dual
of µ∶ S/WH(S)→ T/WG(T) deûned in Section 2.2.3.

Proof See [Li14a, Section 3.2] and [Wei14,_eorem 3.8] for a discussion and proof
in general.

For parabolic subgroup P = MN ⊂ G, we write M = MGL × MSp with MGL the

associated GL-part andMSp the Sp-part ofM. Denote by f
(P)

the constant term of a
test function f ∈ C∞c (G̃) along P:

f
(P)(m̃) = δP(m)1/2 ∫

N
f (m̃n)dn,

where

f (g̃) = ∫
K
f (kg̃k−1)dk, δP(m) = ∣det(Ad(m)∣Lie N)∣.

Recall the natural splitting

j∶MGL × M̃Sp
σGL×1ÐÐÐ→ M̃

deûned by σGL on the GL-part in Section 2.1.4.
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Lemma 3.1.2 (Parabolic descent) For a Levi subgroup M of G and the associated
Levi subgroup MH of H, we have the following diagram:

HK(G̃)−−
Sψ

//

( ⋅ )(P)

&&

b

��

↺

HKT (T)WG
(T)

ww

b

��

↺

HKM(M̃)−−
SM
ψ
//

bM

��
↺

HKT (T)WM
(T)

bM

��

HKMH
(MH) SMH

//

↺

HKH
S
(S)WMH (S)

HKH(H) S //

( ⋅ )(PH)

99

HKH
S
(S)WH

(S) .

gg

_is gives rise to the commutativity of the le� side of the diagram. On the other hand,
the natural splitting of T in Section 2.1.4:

MGL × M̃Sp
σGL×1

//

↺

M̃

T σ //

1×σSp

OO

T̃ .

OO

gives rise to the following commutative diagram:

HKM(M̃)−−
SM
ψ
//

j∗

��

HKT (T)WM
(T)

HKM(MGL × M̃Sp)−−
S

MSp
ψ
// HKT (T)WM

(T)

Combined with the previous commutative diagram, we have the parabolic descent dia-
gram:

(⋆) HK(G̃)−−
j∗○( ⋅ )(P)

//

b
��

HKM(MGL × M̃Sp)−−

1×bMSp

��

HKH(H)
( ⋅ )(PH)

// HKMH
(MH).

Proof _is follows from a routine check.

Recall the spherical local Langlands correspondence for G̃ and H as follows. Let
Πsph,−−(G̃) be the set of equivalent classes of irreducible admissible genuineK-spher-
ical representations of G̃, similar notion for H. Let WF be theWeil group associated
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with F. Note that the dual group of G̃ is Sp(2n,C) as suggested by local theta corre-
spondence [GS12] (see also [GGar,Wei15]).

_eorem 3.1.3 _e unramiûed local Langlands correspondence

Πsph,−−(G̃) 1−1Ð→
Lψ

{ϕ∶WF → Sp(2n,C) ∣ ϕ factors through Z}/ conj

is given as follows:

Πsph,−−(G̃) ≃ Irr(HK(G̃)−−)
Sψ≃ (C[X∗(T∨)]W

G
(T))D = T∨(C)/WG(T)

π̃ z→ ( f z→ Tr π̃( f )),

which is compatible with the local theta correspondence.

Proof _e compatibility results from the consistence of the splitting of T in T̃ and
the construction of local theta correspondence as follows.

HK(G̃)−−
f↦Tr Ind(χψ χ)( f )

//

f↦S( f )

��

C

↺

HKT (T̃)W
G
(T)

−−

χψ
// HKT (T)WG

(T)

f↦ 1
∣WG (T)∣ Tr χ( f )

OO

Recall that for K = G(O), the Schwartz space of anti-genuine K-bi-invariant func-
tions on G̃ is

GK(G̃)−− ∶= { f ∶ G̃ → C ∣ f anti-genuine K-bi-invariant,

∣ f (x̃)∣ ≤ CΞ(x)(1 + ∥x∥)−r for all r > 0} ,

C being a positive constantwhich depends on f and r. HereΞ is the elementary spher-
ical function on G̃(F), and ∣∣x∣∣ the distance function (cf. [Wal03], [Sil79, P.174]). _e
vector space GK(G̃)−− is topologized bymeans of the set of the following seminorms:

νr( f ) ∶= sup{ ∣ f (x̃)Ξ(x)−1(1 + ∥x∥)r ∣ ∶ x̃ ∈ G̃} , for r > 0.

_enGK(G̃)−− is a Fréchet space. Note that for f ∈ GK(G̃)−− and π̃ genuine tempered
representation of G̃, trace π̃( f ) exists (cf. [Wal03]).

Let T∨
u denote the maximal compact subgroup of T∨; then Satake isomorphism

tells us that T∨
u /WG(T) parametrizes the genuine tempered, unramiûed principal

series representations of G̃. Let C∞(T∨
u ) be the Fréchet space of all inûnitely diòer-

entiable complex-valued functions on T∨
u with the Schwartz topology deûned by the

following seminorms:

pn(ϕ) ∶= max{∣(Dnϕ)(t)∣ ∶ Dn degree n diòerential operators, t ∈ T∨
u }, for n ∈ Z+ .

https://doi.org/10.4153/CJM-2017-013-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-013-2


912 C. Luo

Lemma 3.1.4 ([Clo90, Lemma 5.1]) Consider the Fourier transform

Fψ ∶GK(G̃)−− Ð→ C∞(T∨
u )W

G
(T)

given by f ↦ f ∨: f ∨(t) = trace π̃t( f ), where π̃t is the genuine unramiûed representa-
tion associated to t. _en the following diagram commutes

HK(G̃)−−

��

∼

Sψ

// C[T∨]WG
(T)

��

GK(G̃)−− ∼

Fψ

// C∞(T∨
u )WG

(T) ,

and the Fourier transform map Fψ is a topological isomorphism.

Proof _e commutative diagram follows from the construction of the unramiûed
local Langlands correspondence in _eorem 3.1.3. For the isomorphism part, note
that the linear case was proved by Tadić in [Tad83]. _e nonlinear case follows easily
from the covering Satake isomorphism and the covering Plancherel theorem [Li12a,
_eorem 2.6.4].

Now we can state one of the main results that will play an important role in the
proof ofMain _eorem later on.

Lemma 3.1.5 ([Clo90, Lemma 5.5]) Let t i (i = 1, . . . ,N) be distinct elements of
T∨/W . Assume that the linear form

ϕ z→∑
i
c iϕ∨(t i) (c i /= 0)

on HK(G̃)−− extends continuously to GK(G̃)−−. _en t i ∈ T∨
u /W for all i.

Proof For the convenienceof the reader,we reproduce theproof from [Clo90]. Con-
sider the diagram in Lemma 3.1.4 or [Clo90, Lemma 5.1]:

HK(G̃)−−

��

∼

Sψ

// C[T∨]WG
(T)

��

GK(G̃)−− ∼

Fψ

// C∞(T∨
u )WG

(T) .

Via the bottom isomorphism, the linear form in the lemma extends continuously to
C∞(T∨

u )WG
(T). By the deûnition of the Schwartz topology, we have

(3.1) ∣∑ c iϕ∨(t i)∣ ≤∑
j
C j max

t∈T∨u
∣D jϕ∨(t)∣

where C j > 0 and the set of j is ûnite, and D j is a diòerential operator with constant
coeõcients on T∨

u . We write

(3.2) ϕ∨(t) = ∑
λ∈X∗(T∨)

ϕ(λ)tλ .
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Substituting formula (3.2) back to inequality (3.1) yields:

∣∑
λ

ϕ(λ)∑
i
c i tλi ∣ ≤∑

j
C j max

t∈T∨u
∣∑

λ
Pj(λ)ϕ(λ)tλ ∣ ,

where Pj is a polynomial on X∗(T∨), the Fourier transform of D j . Now take ϕ =
∑w∈WG(T) δwλ0 for λ0 ∈ X∗(T∨), which is the unique spherical function such that
ϕ∨(t) = ∑w∈WG(T) twλ0 . _en

∣∑
i ,w
c i twλ0

i ∣ ≤∑
j
C j max

t∈T∨u
∣∑
w

Pi(wλ0)twλ0 ∣

≤∑
j
C j∑

w
∣Pi(wλ0)∣.

Varying λ0 andusing the fact that the twi are distinct, analyzing the exponentials shows
that the t i must be unitary.

3.2 Representation Theory of Complex Groups

Let L be a connected reductive complex group. Fix amaximal compact subgroup KL
of L and let C∞c (L,KL) denote the space of compactly supported C∞ functions that
are right and le� KL-ûnite. Let B be a Borel subgroup with Langlands decomposition
B = MAN ,W theWeyl group of T = MA in L. Fix a character σ0 of M, let πσ0 ,λ =
Ind(σ0⊗λ) for λ ∈ a∗C, a = Lie(A), and aC = a⊗C. LetC∞c (L,KL ; σ0) be the subspace
of C∞c (L,KL) satisfying the condition

⟨trace πσ ,λ , f ⟩ = 0,

for all λ ∈ a∗C and all σ ∉ {W ⋅ σ0}. We sum up some properties that will be used later
on as follows.

● All tempered irreducible representations are full unitary induced representa-
tions from Borel subgroups [Duf75].

● _e Grothendieck group of admissible representations has a basis consisting of
full induced representations from Borel subgroup.

● Clozel andDelorme’s invariant Paley–Wiener theorem [CD84]: the vector space
of functions

F f (λ) = F f (σ0 , λ) ∶= ⟨trace πσ0 ,λ , f ⟩
for f ∈ C∞c (L,KL ; σ0), consists of all functions in the Paley–Wiener space on the
complex vector space a∗C and that

F f (wλ) = ⟨trace πw−1σ0 ,λ , f ⟩

for w ∈W .
● (Vanishing property)Let Wσ0 = {w ∈ W ∶ w .σ0 = σ0}. If an absolutely conver-

gent sum

(3.3) ∑
λ∈ia∗/Wσ0

a(λ)F f (λ) = 0

for all f ∈ C∞c (L,KL ; σ0), then a(λ)F f (λ) = 0 for all λ and f [Hal95, P.991].
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Proof Otherwise, there exist λ0 and f such that c = ∣a(λ0)F f (λ0)∣ is nonzero. _e
sum (3.3) can then be broken into the term a(λ0)F f (λ0), a sum over a large enough
Wσ0 -invariant ûnite set S0 ⊂ ia∗, and a sum over the remaining terms, such that

∑
λ∈ia∗/S0∪{Wσ0 .λ0}

∣a(λ)F f (λ)∣ < c.

Pick a Paley–Wiener function h on a∗C such that h(λ0) = 1, h(λ) = 0 for λ ∈ S0, and
∣h(λ)∣ ≤ 1 for all λ ∈ ia∗. Notice that h(λ)F f (λ) is also a Paley-Wiener function, so
there exists f ′ ∈ C∞c (L,KL ; σ0) such that

F f ′(λ) = h(λ)F f (λ) = ⟨trace πσ0 ,λ , f
′⟩.

Apply equation (3.3) to f ′ to conclude that

∑ a(λ)h(λ)F f (λ) = 0.

_is gives rise to the contradiction

c = ∣a(λ0)h(λ0)F f (λ0)∣ = ∣ ∑
ia∗/{Wσ0 .λ0}

a(λ)h(λ)F f (λ)∣ < c.

Recall that G̃(C) = G(C) × µ8, H(C) = SO2n′+1(C) × SO2n′′+1(C). _e endoscopy
theory for (G̃(C),H(C)) shown by W.-W. Li gives (see [Li16] for details).

● _e transfer factor ∆(γ, (t, δ)) = t for all t ∈ µ8 and norm pair (γ, δ) with γ ∈
H(C), δ ∈ G(C). _is means that one can identify C∞c (G̃(C))−− with C∞c (G(C))
via f ↦ f (1, ⋅ ).

● (Transfer map) For ϕ ∈ C∞c (G(C)), there exists f ∈ C∞c (H(C)) such that

Oγ( f ) = Oδ(ϕ)

for all norm pairs (γ, δ) ∈ HG−reg ×Greg with γ = (γ′ , γ′′) ∈ HG−reg.
● (Endoscopic character identity) For matching pairs of representations of the

torus, ((σ , λ), ((σ ′ , λ′), (σ ′′ , λ′′))) , i.e., σ = σ ′ ⊗ σ ′′ and λ = λ′ ⊗ λ′′, andmatching
pairs (ϕ, f ) of test functions as above, we have

σ ′′(−1)λ′′(−1)Fϕ(σ , λ) = F f ((σ ′ , σ ′′), (λ′ , λ′′)) .

3.3 Clozel, Waldspurger Theorem

Here we recall Clozel andWaldspurger’s theorem, which says that the compact trace
of G̃ can be expressed as a linear combination of traces of its Levi subgroups. Denote
tracec π̃(ϕ) to be the compact trace that is deûned in [Clo89]; in brief, this is equal to
trace π̃(1cϕ)with 1c the characteristic function of the compact elements in G̃(F). For
admissible representation π̃ of G̃, we denote π̃N to be the associated unnormalized
Jacquet module with respect to parabolic subgroup P̃ = M̃N ⊂ G̃. Let τ̂G

P be the
characteristic function of the obtuse Weyl chamber associated with P (see [Art05,
p. 29]), H be the Harish-Chandra map M̃ → aM , and χ̂N = τ̂G

P ○ H. Let aP be the
dimension of aM .
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Lemma 3.3.1 (Clozel,Waldspurger [Clo90, p .259])

⟨trace π̃, ϕ⟩c = ∑
P∈P

(−1)aP−aG ⟨ trace δ−1/2
P π̃N , χ̂Nϕ(P)⟩ M̃ .

Proof See [Luoar, Corollary 2].

4 Main Theorem and its Proof

Recall that G = Sp(W), G̃ = S̃p
(8)(W), the elliptic endoscopic groups of G̃ are the

split orthogonal groups

H = Hn′ ,n′′ = H′ ×H′′ ∶= SO(2n′ + 1) × SO(2n′′ + 1) with n′ + n′′ = n.

Recall K = G(OF), KH = H(OF), and the associated spherical (anti-genuine) Hecke
algebras

HK(G̃)−− ∶= C∞c (G̃//G(OF))−− , HKH(H(F)) ∶= C∞c (H(F)//H(OF)).

Let
b∶HK(G̃)−− Ð→HKH(H(F))

be the conjectured transfermap deûned by the Satake isomorphisms in_eorem 3.1.1.
Denote

Λ(γ, ϕ) ∶=∑
δ
∆(γ, δ̃)Oδ̃(ϕ) − SOγ(b(ϕ)).

_en we can state our spherical fundamental lemma for G̃ as follows.

Main_eorem Assume the (stable) orbital integrals are compatibly normalized as in
Section 2.2.5 or [Li11, Proposition 5.20]. Let ϕ ∈ HK(G̃)−−, f = b(ϕ) ∈ HKH(H(F)).
_en Λ(γ, ϕ) = 0 for all γ ∈ H(F)G−reg.

We are now ready to prove the Main _eorem. Roughly, our proof consists of
three steps. _e ûrst step is to reduce Λ(γ, ϕ) = 0 to the case of elliptic G-regular
elements by induction. _e second step is then to apply stable trace formulas to get
an obstruction for Λ(γ, ϕ) = 0, i.e., an equivalent criterion in Abstract Proposition.
_e last step is to use the unitarity criterion in Lemma 3.1.5 to show the triviality of
the obstruction, i.e., Abstract Lemma.

4.1 Reduction

We follow the standard argument to ûrst reduce to the case of elliptic elements. By
induction, we can assume that the spherical fundamental lemma holds for all meta-
plectic groups of rank smaller than that of G̃. Assume that δ̃ ∈ G̃ is regular, and let
T̃ be the preimage of T = CG(δ) in G̃. Assume T̃ is contained in a Levi subgroup
M̃ ⊂ G̃ over F.
For amaximal torus TH of H, recall that for regular elements of TH , the conjugacy

classes in a stable conjugacy class is parametrized byD(TH/F) = Ker(H1(F , TH) →
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H1(F ,H)). As H1(F ,MH) → H1(F ,H) is injective (see [DG, Exposé XXVI, Corol-
laire 5.2]), this set remains the same when we consider TH as a torus in MH . Analo-
gously, for regular elements of T̃ , the conjugacy classes in a stable conjugacy class is
parametrized by D(T/F) = H1(F , T) (cf. [Li11, lemma 5.7]). As H1(F ,M) = 1, this
set remains the same when we consider T̃ as a covering torus in M̃.

_is implies that the Main _eorem can be reduced to the case where δ ∈ G is
elliptic as follows. In fact, if δ̃ ∈ M̃ ⊂ G̃ is not a norm in G̃, it is also not a norm in
M̃. If ϕ ∈HK(G̃)−−, and ϕ(P) ∈HKM(M̃)−− is its constant term along M̃, the orbital
integral of ϕ at elements of M̃ can be computed by descent formula from ϕ(P) (cf.
[Clo85, Lemma 1]). Similarly, the same is true for stable orbital integrals. Write M =
MGL×MSp, andMH = MH(GL)×MH

SO . By the parabolic descent property of transfer
factors in Section 2.2.4 and the parabolic descent property of Satake isomorphisms
i.e., Lemma 3.1.2, we have

Λ(G̃ ,H)(γ, ϕ) = Λ(M̃ ,MH)(γ, ϕ(P))

=∑
δSp

∆(M̃Sp ,MH
SO)(γSO , δ̃Sp)OM

j(γGL×δ̃Sp)
(ϕ(P)) − SOMH

γGL×γSO
(b(ϕ)

(PH))

=∑
δSp

∆(M̃Sp ,MH
SO)(γSO , δ̃Sp)OM

γGL×δ̃Sp
( j∗ϕ(P)) − SOMH

γGL×γSO
(b(ϕ)

(PH))

(⋆)= 0

for non-elliptic γ ∈ H(F) via the induction hypothesis.

4.2 Obstruction

Inwhat follows,we adapt the global argument of [Hal95] to get an obstruction for the
truth of the spherical fundamental lemma. We ûrst construct a global situation that
specializes to give our local data (F , G̃ ,H,ψF , ⟨ ⋅ , ⋅ ⟩,Λ( ⋅ , ϕ)) at some ûnite place (see
[Li16, Proposition 8.4.1]). We choose a totally complex global ûeld F∗ and a place ω0
of F∗ such that F∗ω0

= F. Since G splits, there is a split G∗/F∗ such that G∗ ×F∗ F ≃ G.
Similarly for H, there exists a split H∗/F∗ such that H∗ ×F∗ F ≃ H. By a variant of
a result of Sansuc (cf. [KR00, Lemma 1]), G∗(F∗) and H∗(F∗) have dense image in
G∗(F∗S ) and H∗(F∗S )) for the completion F∗S at any ûnite set S of places of F∗. For
simplicity, we now write G instead of G∗ and H instead of H∗. Notice that G and H
satisfy theHasse principle for H1.
Fix a G-regular elliptic element γH ∈ H(F). We select a strongly regular semisim-

ple element γ ∈ H(F∗) approximating γH at ω0. More speciûcally, we demand that
Λ(γω0 , ϕ) = Λ(γH , ϕ) for all ϕ ∈HK(G̃)−−. Such elements exist by weak approxima-
tion andHowe ûniteness conjecture (cf. [Luoar]). We can also assume that γ belongs
to an anisotropic unramiûed Cartan subgroup at some place ν0 /= ω0, and that γω lies
in a given open set U (to be speciûed below) for every archimedean place ω. Let T be
the centralizer of γ. _e Cartan subgroup T is anisotropic and unramiûed at ν0, and
so by the Tchebotarev density theorem, it is anisotropic and unramiûed at inûnitely
many places.
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In what follows, we would like to specialize some local test functions to simplify
the elliptic stable trace formulas of H and G̃, i.e.,

T G̃
ell( f ) = ι(G̃ ,H)STH

équi,ell( f H) and TH
ell( f H) = STH

équi,ell( f H).

We now set aside six ûnite places ν1, ν2, ν3, ω1, ω2, and ω3 of F∗ such that T is
anisotropic and unramiûed at those places. We also choose a ûnite set of ûnite places,
say S, containing the distinguished place ω0 and all ramiûed places ν, i.e.,G×F∗ F∗ν or
H ×F∗ F∗ν is ramiûed, such that the fundamental lemma for units holds for any ûnite
place ν ∉ S′ ∶= S ∪ {ν1 , ν2 , ν3 ,ω1 ,ω2 ,ω3}.

We deûne a set ∑S′ = {(ϕ, f )} of test functions ϕ = ⊗ν ϕν , f = ⊗ν fν on
G̃(AF∗) and H(AF∗) respectively such that the following hold.

● ϕω1 is a anti-genuine test function supported on the regular elliptic set. By the
transfer conjecture proved by Wen-Wei Li (_eorem 2.2.1), there exists fω1 ∈ C∞c (H)
such that (ϕω1 , fω1) is a transfer pair.

● fω2 is a test function supported on the regular elliptic set. By the transfer isomor-
phism theorem (_eorem 2.2.3), there exists ϕω2 ∈ C∞c ,−−(G̃ω2) such that (ϕω2 , fω2)
is a transfer pair.

● ϕν1 is a linear combination ofmatrix coeõcients of a genuine supercuspidal rep-
resentation of G̃, and fν1 is the associated transfer function (cf. _eorem 2.2.1).

● fν2 is a linear combination ofmatrix coeõcients of a supercuspidal representa-
tion of H. By the transfer isomorphism theorem (_eorem 2.2.3), there exists ϕν2 ∈
C∞c ,−−(G̃ν2) such that (ϕν2 , fν2) is a transfer pair.

● ϕω3 is a anti-genuine cuspidal function, and fω3 is the associated transfer func-
tion (cf. _eorem 2.2.1). Further, by the transfer isomorphism theorem (_eo-
rem 2.2.3), we can select ϕω3 such that only H is involved.

● fν3 is a cuspidal function such that only H itself is involved in the elliptic sta-
ble trace formula of H. By the transfer isomorphism theorem (_eorem 2.2.3), there
exists ϕν3 such that (ϕν3 , fν3) is a transfer pair.

● At the archimedean places ∞, (ϕ∞ , f∞) is a transfer pair such that ϕ∞ ∈
C∞c (G(C),K; σ0) for some regular character σ0 ∈ M̂ such that Fϕ(σ0 , λ) is not iden-
tically zero. _is gives rise to an open set U ⊂ G(C)reg on which the orbital integrals
Oδ(ϕ) of δ ∈ U are nonzero.

● (ϕS′ , f S
′) are unit elements in the spherical Hecke algebras that are transfer pairs

outside S′ guaranteed by W.-W. Li’s fundamental lemma for units (_eorem 2.2.2).
● At ω0, take fω0 = b(ϕw0), with ϕω0 ∈HK(G̃)−−.
● At the remaining places ν, wemay take arbitrary transfer pairs (ϕν , fν) guaran-

teed by the transfer conjecture (_eorem 2.2.1).

Suppose (ϕω0 , b(ϕω0)) is a transfer pair at ω0. By Kottwitz’s elliptic stable trace
formula for H andW.-W. Li’s elliptic stable trace formula for G̃ (_eorem 2.3.3), we
have

T G̃
ell(ϕ) = ι(G̃ ,H)TH

ell( f ).

Viewed as an identity on ϕ∞ and f∞, Arthur’s simple trace formulas for H and G̃
in Section 2.3.2 tell us that the spectral side of the identity T G̃

ell(ϕ) = ι(G̃ ,H)TH
ell( f )
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takes the form as follows:

∑
π̃⊂L2

disc(G(F
∗)/G̃(A))

m(π̃) trace π̃∞(ϕ∞) trace π̃∞(ϕ∞) =

ι(G̃ ,H) ∑
π⊂L2

disc(H(F
∗)/H(A))

m(π) trace π∞( f∞) trace π∞( f∞).

By the structure of the Grothendieck group of admissible representations in Sec-
tion 3.2, i.e.,

[π̃∞] =∑
σ ,λ
bG(π̃∞ , σ , λ)[IndG̃(σ̃ ⊗ λ)],

[π∞] =∑
σ ,λ
bH(π∞ , σ , λ)[IndH(σ ⊗ λ)],

for some integer coeõcients bG(π̃∞ , σ , λ) and bH(π∞ , σ , λ). We then have

∑
σ ,λ
cG(σ , λ, ϕ∞)Fϕ∞(σ , λ) =

∑
(σ ′ ,σ ′′),(λ′ ,λ′′)

cH((σ ′ , σ ′′), (λ′ , λ′′), f∞)F f∞((σ ′ , σ ′′), (λ′ , λ′′)),

where
cG(σ , λ, ϕ∞) = ∑

π̃⊂L2
disc

m(π̃)bG(π̃∞ , σ , λ) trace π̃∞(ϕ∞),

and

cH((σ ′ , σ ′′), (λ′ , λ′′), f∞) =
ι(G̃ ,H) ∑

π⊂L2
disc

m(π)bH(π∞ , (σ ′ , σ ′′), (λ′ , λ′′)) trace π∞( f∞).

Further by the endoscopy theory for complex groups in Section 3.2 and the choices
of test function ϕ∞, we then have

(4.1) ∑
λ∈a∗C

a(λ, ϕ∞)Fϕ∞(σ0 , λ) = 0,

where

a(λ, ϕ∞) = cG(σ0 , λ, ϕ∞) − σ ′′0 (−1)λ′′(−1)cH((σ ′0 , σ ′′0 ), (λ′ , λ′′), f∞) ,
with σ0 = σ ′0 ⊗ σ ′′0 and λ = λ′ ⊗ λ′′. Notice that the involved representations
are unitary, so the summands in equation (4.1) should be over ia∗. _us, we have
a(λ, ϕ∞)Fϕ∞(σ0 , λ) = 0 for all λ ∈ a∗C by the vanishing property in Section 3.2. Each
term a(λ, ϕ∞)Fϕ∞(σ0 , λ), viewed as a function of ϕω0 in the Hecke algebra of G̃ω0 ,
is linear. ByHarish-Chandra’s ûniteness theorem for both G̃ andH (cf. [HC59]), each
identity a(λ, ϕ∞)Fϕ∞(σ0 , λ) = 0 is a ûnite sum of the form as follows:

(4.2) ∑
π̃ω0 spherical

aG(π̃ω0 , λ, ϕ
ω0) trace π̃ω0(ϕω0) =

∑
πω0 spherical

aH(πω0 , λ, ϕ
ω0) trace πω0(b(ϕω0))
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where

aG(π̃ω0 , λ, ϕ
ω0) = Fϕ∞(σ0 , λ) ∑

π̃′⊂L2
disc

π̃′ω0=π̃ω0

m(π̃′)bG(π̃′∞ , σ0 , λ) trace π̃′∞,ω0(ϕ∞,ω0)

and

aH(πω0 , λ, ϕ
ω0) = σ ′′0 (−1)λ′′(−1)ι(G̃ ,H)Fϕ∞(σ0 , λ)

× ∑
π′⊂L2

disc
π′ω0=πω0

m(π′)bH(π′∞ , σ0 , λ) trace π′∞,ω0(b(ϕ∞,ω0)).

In conclusion, we have deduced the necessary condition of the following equivalent
criterion for the truth of spherical fundamental lemma.

Abstract Proposition Spherical fundamental lemma holds⇔ (4.2) holds for all pairs
(ϕ, f ) in∑S′ .

Proof We have already shown (⇒). For the converse, if the character identities
a(λ, ϕω0)Fϕ∞(σ0 , λ) = 0 hold for all ϕω0 and λ; then we have an equality on the
spectral side of the trace formulas. _e identity T G̃

ell(ϕ) = ι(G̃ ,H)TH
ell( f ) then holds.

On the other hand, the choice of test function fν3 gives rise to TH
ell( f ) = STH

ell( f ), and
then T G̃

ell(ϕ) = ι(G̃ ,H)STH
ell( f ), i.e.,

∑
δ∈Σrel(G(F∗))

∑
κ∈π0(Z(G∨

δ )
Γ)

Oκ
δ(ϕ) = ι(G̃ ,H)τ(H) ∑

γ∈ΣG−rel(H(F∗))
SOγ( f )

= ∑
γ∈ΣG−rel(H(F∗))

SOγ( f ).

_us, the identity Λ(γ, ϕ) = 0 results from the induction assumption and the follow-
ing choices of test functions:

● Let f He be the function obtained from f by replacing fw0 with the characteristic
function of a compact set that meets all elliptic conjugacy classes in Hw0 . Shrink the
support of the function fν at some place ν so that the only H(A)-conjugacy classes
in H(A) intersecting the support of f He come from γ. _is is possible because of Kot-
twitz’s ûniteness theorem [Kot86, 8.2]. _e transfer of T to G̃ gives a corresponding
global element δ ∈ T(F∗) ⊂ G(F∗). EveryG(A)-conjugacy class in G̃(A) that comes
from a global element other than δ ∈ G(F∗) and that is elliptic at ω0 has vanishing
κ-orbital integrals at some place other than ω0.

● Further arrange that the κ-orbital integrals of ϕ on δ are nonzero at all non-
archimedean places except possibly ω0. _is is possible by the choices made above
[Hal95, Lemma 5.1].

4.3 Triviality

To prove the triviality of the obstruction i.e., (4.2), we follow Hales’s argument in
[Hal95] using Howe’s ûniteness conjecture. From now on, we omit the subscript ν
that indicates the ûnite place ν. By _eorem 3.1.3, for each spherical representation π
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of H, there exists a genuine spherical representation π̃ of G and a parameter s ∈ T∨

such that
trace π(b(ϕ)) = trace π̃(ϕ) = (χψϕ∧)(s).

_is allows us to rewrite the desired identity of the obstruction as A(ϕ) = 0, where
A(ϕ) is a ûnite sum of the form

A(ϕ) = ∑
s∈T∨(C)/WG(T)

a(s)(χψϕ∧)(s)

for certain functions a(s) on T∨.
Recall that tracec π̃(ϕ) is the compact trace deûned in Section 3.3. _ere are similar

notions for π on H.

Proposition 4.3.1 ([Hal95]) Assume the fundamental lemma holds for all proper Levi
subgroups of G̃ and the associated endoscopic groups obtained by descent from H; then
the linear functional ϕ ↦ A(ϕ) on the anti-genuine Hecke algebra is a ûnite combina-
tion of the linear functionalsΛ(γH , ⋅ ), for γH ∈ H(F)G̃−reg. _e linear functional A(ϕ)
is also a ûnite linear combination of linear functionals of the form

ϕ z→ tracec π̃(ϕ) and ϕ z→ tracec π(b(ϕ)), for π̃ and π spherical.

Proof By hypothesis,we can assume thatΛ(γH , ϕ) = 0 fornon-elliptic γH . _us, the
expansion to be produced in the proposition will only involve functionals Λ(γH , ⋅ )
for γH elliptic.
For the ûrst statement, applying Howe’s ûniteness conjecture (cf. [Luoar]) for γH ∈

H(F)G̃−reg, the space of distributions ϕ ↦ Λ(γH , ϕ) on the anti-genuine spherical
Hecke algebra of G̃ is ûnite dimensional. _us, the vanishing of Λ(γ, ϕ) for all γH ∈
H(F)G̃−reg can be replaced by the ûnitely many vanishing conditions, i.e.,

Λ(γ j , ϕ), for j = 1, . . . , k,

for an appropriate ûnite collection {γ j} of strongly G̃-regular semisimple elements in
H. When these vanishing conditions hold, the spherical fundamental lemma holds.
_en by the implication (⇒) in the Abstract Proposition, A(ϕ) = 0. _is means that
the functional A is a linear combination of the functionals Λ(γ j , ⋅ ).
For the second statement, applying Howe’s ûniteness conjecture for H,we ûnd that

there is a ûnite set of tempered representations such that their compact traces form
a basis for the span of {tracec π ∶ π irreducible tempered} on HKH(H(F)). Note
that for f ∈ HKH(H(F)), tracec( f ) = trace(1c f ), and for any elliptic γ ∈ H(F)reg,
Oγ(1c f ) = Oγ( f ). _en by Kazhdan’s density theorem, Oγ( f ) has an expansion
of the sort given in the proposition. Similarly for any elliptic δ ∈ G(F) and ϕ ∈
HK(G̃)−−, Oδ̃(ϕ) has an expansion as given in the proposition, whence the proposi-
tion holds.

Now we can turn to the proof of the triviality of the obstruction. Actually, the two
expressions in Proposition 4.3.1 will deduce a contradiction if the triviality does not
hold. Note that orbital integrals are tempered distributions (cf. [Clo90, Lemma 5.5]),
so the ûnite set of parameters s, for which a(s) /= 0 consists of unitary parameters.
_is results from Lemma 3.1.5 as A(ϕ) has a ûnite expression of orbital integrals in

https://doi.org/10.4153/CJM-2017-013-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-013-2


Spherical Fundamental Lemma for Metaplectic Groups 921

Proposition 4.3.1. Given this, we can sum up the triviality as an abstract lemma as
follows, which is the key point of Clozel andHales’s arguments in [Clo90,Hal95].

Abstract Lemma If A∶HK(G̃)−− → C is a linear functional that satisûes:
(i) A is a ûnite linear combination of characters Tr(π̃) for π̃ irreducible genuine tem-

pered unramiûed representations,
(ii) A is a ûnite linear combination of compact traces Trc(π̃) and Trc(π) ○ b for π̃

and π unramiûed representations,
then A is zero.

Proof To prove this, we adapt Hales’ argument as follows, which is almost the same
as in [Hal95, p. 986]:

● (Unitary parameter)As tempered unramiûed representations are parameterized
by unitary elements in T∨(C) by Lemma 3.1.5, one can write A(ϕ) as a ûnite sum of
the form

A(ϕ) = ∑
s∈T∨u (C)/WG(T)

a(s)(χψϕ∧)(s).

● (Nonunitary parameter) First, we can assume that each of the representation π̃
and π in the second expression comes from a nonunitary parameter in the spectrum.
_is results from the following facts:

– A spherical tempered representation of G̃ is a full induced unitary principal
series [Szp13,_eorem C].

– A spherical tempered representation on the adjoint group H is a full induced
unitary principal series [Key82].

– All spherical principal series representations have the same compact trace.
Second, let c(ϕ, λ), for λ ∈ X∗(T∨), be the coeõcients in

(χψϕ∧)(t) =∑
λ
c(ϕ, t)λ(t).

Associated with λ ∈ X∗(T∨), there is a anti-genuine spherical Hecke function ϕλ de-
termined by the condition that c(ϕλ , ⋅ ) is the characteristic function of theWG(T)-
orbit of λ. _e functions ϕλ form a linear basis of the anti-genuine spherical Hecke
algebra. Note that for those compact traces parametrized by {λ}, we have the follow-
ing lemma.

Lemma 4.3.2 Fix π̃ genuine unramiûed representation of G̃. _ere exists a nonempty
open cone C ⊂ X∗(T∨), such that for any λ ∈ C and ϕλ the associated spherical function
as above, the compact trace Trc(π̃)(ϕλ) can be expressed as the form∑ j e jλ(z j) with
the coeõcients {e j} j do not depend on λ.

Proof By Clozel andWaldspurger’s _eorem (Lemma 3.3.1), the compact trace is a
linear combination of forms ( χ̂Nϕ(P)λ )∧(z). _e function χ̂N factors as a composite
of threemaps

M̃(F)Ð→ aM Ð→ aM0 Ð→ R,
where the ûrst map is the Harish-Chandra map HM ∶ M̃ → aM , the second map is a
natural identiûcation of aM with a subspace of aM0 (cf. [Art78]), the thirdmap is the
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characteristic function τ̂G
P of the obtuse Weyl chamber associated to P (cf. [Art78,

p. 936]). In particular, for λ ∈ X∗(T∨) and m ∈ M(F), we have χ̂N(mϖλm−1) =
τ̂G
P (λ),wherewe have identiûed X∗(T∨)with a lattice in aM0 . Denote by BM = TNM

the Borel subgroup of M, B = TNG the Borel subgroup of G and P = MNP . _en

( χ̂Nϕ(P)λ )∧(t̃) = δ1/2BM
(t)∫

NM
χ̂N(t̃n)ϕ(P)λ (t̃n)dn

= δ1/2BM
(t)∫

NM
χ̂N(t̃n1)δ1/2P (t)∫

NP
ϕλ(t̃n1n2)dn2dn1

= δ1/2B (t)∫
NG
χ̂N(t̃)ϕλ(t̃n)dn.

Further, based on the natural isomorphisms in _eorem 3.1.1, it is an easy calculation
to deduce (cf. [Hal95, p. 986])

(χψ( χ̂Nϕ(P)λ )∧)(z) = ∑
w∈WG(T)

τ̂G
P (wλ)wλ(z),

where wλ = w ⋅ λ. _ere are ûnitely many hyperplanes X1 , . . . , Xr through the origin
of X∗(T∨)⊗R such that τ̂G

P (wλ) = τ̂G
P (wλ′) for all P and all w ∈WG(T), whenever

λ and λ′ belong to the same component of X∗(T∨) ⊗ R/(X1 ∪ ⋅ ⋅ ⋅ ∪ Xr). Fix such a
component C. _en

(χψ( χ̂Nϕ(P)λ )∧)(z) = ∑
w∈W′

λ(w ⋅ z)

for λ ∈ C, for some subset W ′ ⊂WG(T) that depends on C, but not on λ ∈ C.

Returning to the proof of the Abstract Lemma, note that the terms tracec π(b(ϕ))
can be treated similarly as in Lemma 4.3.2. Also notice that the transfer map b sends
nonunitary parameters of H to nonunitary parameters of G. _en Tracecπ(b(ϕ))
may be expressed as a linear combination of terms λ(z), again for lattice points λ in a
suitable open cone of X∗(T∨). By passing to a smaller open cone C′ ⊂ C, if necessary,
to accommodate the terms tracec π(b(ϕ)), then A(ϕλ) has the form ∑ j b jλ(z j) for
λ ∈ C′.
By the above argument, the identity has two ûnite sum expressions as follows.

∑
s
a(s)(χψϕ∧λ)(s) =∑

i
a iλ(s i) =∑

j
b jλ(z j),

for λ ∈ C′. We can assume these s i , z j are linear independent, i.e., distinct. _us,
Lemma 4.3.3 says that a i = b j = 0 for all i , j, whence A = 0.

Lemma 4.3.3 (Hales lemma cf. [Hal95]) Consider a function B(λ) = ∑r
i=1 c iλ(t i)

on λ ∈ X⋆(C×n) = Zn , with c1 , . . . , cr ∈ C and distinct t1 , . . . , tr ∈ C×n . If B(λ) = 0 for
all λ ∈ C ∩ X⋆(C×n), where C ⊂ X⋆(C×n)⊗R is an open cone, then c i = 0 for all i.

Proof _e proof results from the following two steps.
● Step 1: _ere exists amuch smaller open cone C′ ⊂ C such that λ(t i) /= λ(t j) for

any 1 ≤ i /= j ≤ r and λ ∈ C′;
● Step 2: _ere exists an arithmetic sequence of lattice points in C′ ∩ X⋆(C×n) of

length r, like {m(a1 , . . . , ar) ∶ m = 1, . . . , r}.
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Note that the associated Vandermonde determinant is nonzero guaranteed by Step 1,
we then know (c1 , . . . , cr) = 0.
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