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Abstract

Vyborny and I (1972) proved maximum principles for a quasilinear elliptic operator where the
boundary satisfied a smoothness condition weaker than the interior sphere property. In this paper
I extend these to parabolic operators of a similar form and through a simple device to weakly
coupled systems of such operators. Finally, I extend all of these results to an operator similar to
the "parabolic" case of an operator introduced by Redheffer (1971). His conditions on the coeffi-
cients are replaced by conditions analogous to those Dow and Vyborny (1972).

Vyborny and I (1972) proved interior and boundary maximum principles
and a consequent uniqueness theorem for a quasilinear elliptic operator. The
conditions on the coefficients were similar to those used by Pucci (1957) and
(1958) for linear operators and by Redheffer (1962), Vyborny (1963), and Horacek
and Vyborny (1966) for quasilinear operators. The boundary satisfied a smooth-
ness condition weaker than the interior sphere property.

The object of this paper is to extend these theorems to parabolic operators

n - l n

Pu = X atj(x, u, Du)Duu + S bfa, u, Du)D-u + d(x, u, Du)u + a(x, u, Du)
M = i ; = i

with bn(x, u, 0) negative and usually bounded away from zero. Here Dtu = duldxt

and Du = (DjM, ••-,£)„_!«). Through a simple device, the results generalize
easily to weakly coupled systems of such operators

p

•PwuM + Z /I ) I , (X,U,,DMV)MV, H = I,—,p.
v = l

Finally, I extend these results to systems in which Pu is replaced by an operator
similar to the "parabolic" case of an operator used by Redheffer (1971). His
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104 M. A. Dow [2]

conditions on the coefficients are replaced by somewhat more general conditions
similar to those of Dow and Vyborny (1972).

A comprehensive discussion and bibliography to 1966 on the maximum
principle for weakly coupled systems can be found in Protter and Weinberger's
monograph (1967). Further maximum principles for systems have been proved
by Ako (1968), Khusnytdinova (1967), Ladyzhenskaya, Solonnikov and Ural'tseva
(1968), Wa.sowski (1970), and Moisak (1971), and by Stroock (1970), who used
stochastic methods.

1. Definitions and basic lemma

In what follows, B denotes a continuous, positive function on (0, oo) with

a

B< oo
Jo

for some a > 0. Without loss of generality, B is assumed bounded away from zero
by a positive constant Bo.

The symbol / denotes a non-negative function on (0, oo) x [0, oo) satisfying
(i) / ( ( , 0) = 0 for all t in (0, oo),
(ii) / is non-decreasing in its second variable,
(iii) there are constants A > 0 and c > 0 such that for each e > 0 there is a

supersolution 0C to the problem <p' = cf(t,<j)) on [0,A] with 0 < <t>t(t) ^ e on
[0,A].

Here a supersolution is a function <j> denned and continuous on [0, A], differentiable
on (0,A), satisfying the inequality <j)'(t) ^ cf(f, <£(()) on (0, A). For Theorems 1.1
and 2.1, condition (ii) can be weakened slightly (see Dow and Vyborny (1972),
§2.2).

Let G be a bounded open set in R". Points in R" are denoted byx = (xu---,xn).
We assume G is connected although this will not always be needed. Let P be the
parabolic operator described in the introduction with coefficients denned on
G x R1 x R"'1. The operator P is to be degenerate elliptic-parabolic relative to
the function u in the sense that

\ a^x, u, 0)1^0
••.7 = 1

for all X in Rn~* and all x in G.
For each point y in G we define the propagation sets Ty and Sr The set Ty is

the connected component of the set G O (xn = yn) containing y if y e G or with y
in its boundary if y e dG; Sy is the set of all points in G that can be connected to y
by a path lying in G, except perhaps for y, along which xn is non-decreasing from
JC to y. For y in G these are the usual sets described by Nirenberg (1953); for y in
dG the set Sy was used by Vyborny (1958). The closures of these sets relative to G

https://doi.org/10.1017/S1446788700023582 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023582


[3] Quasilinear parabolic inequalities 105

are denoted by Sy and fy; the bar notation Sy and Ty is reserved for closure
relative to R".

Suppose yedG and JV is a neighbourhood of y. If the boundary of G permits
it, T denotes a function on NnG satisfying

(i) ?eC\NnG)nD2(NnG),
(ii) T = 0 on dG O N and T > 0 on N n G, and
(iii) 0<m^\D-c\^M<ao on NnG.

In (i), D2{N n G) is the set of twice differentiable functions on N Pi G. Notice
that the condition teCl{N C\G) implies the existence of an interior normal to
dG at y.

The operator P is said to satisfy condition Q relative to u at y in dG if there are
functions/, B and x and a neighbourhood Nofy all satisfying the above conditions
and also

(a) j e(x, u, 0) - e(x, u, Du) | g f(t(x), \ Du(x) |)
f o r e = au(i,j = l ,--- ,n - 1), b-{i = 1, ••-,«),

a and d for all x in N n 5,,,

B - l

(b) 2 a,/x, M, 0)DyT(x) ̂  - S(T(X)) for all x
i J m l Ain AT n 5,,

,,. . . . . d(x, u,
(d) l « m m f - -

xeSy

We shall see in Theorems 2.1-2.3 that the part of condition Q(a) relating to the
function a can be weakened to

a(x, u, Du) - a(x, u, 0) ^ / (T(X) , | DU(X) |).

In analogous theorems concerning negative minima, the inequality used is

a(x, II, Du) - a(x, II, 0) ̂  -

The basis of this paper is the following extension of Theorem 3.1 of Dow
and Vyborny (1972). For brevity we call a vector / admissible at a point y in dG
if it emanates from y into Sy at an angle less than n/2 with the inner normal to
dG at y.

THEOREM 1.1. Let yedG with Sy * 0, let ueC(5y) nD2($y), and let \Du\
and \Dyu\ (i,j = 1, •••, n — 1), be bounded by the constants L and K in Sy in
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some open neighbourhood N of y. Let P satisfy condition Q at y relative to u in
N and also the non-degeneracy condition relative to u

n - l

lim inf £ au(x, u, O)Dtx(x)DjX(x) > p > 0.
x-y i.j = l

A
XB Sy

Let the constant c associated with f satisfy

o c 0 j = ((n- l)2K + nL+U+l)j

where U = u(y). Suppose also Pu ^ 0, bn(x, u, 0) <; 0, a(x, u, 0) g 0 and d(x, u, 0)
g 0 on N nSy. Lastly, let u(y) ^ 0 and u(x) < u(y) = U for all x in 5ynfi
except y. Then

u(x) — u(y) .
lim sup -~ -f < 0

\ x y \

for every admissible vector I at y.

The proof is a simple modification of that of Theorem 3.1 of Dow and
Vyborny (1972). The auxiliary function w(x) = u(x) + z(x(x)) is now defined
on NC\Sy instead of J V n C and

z(i) = — I </>(t)exp I-5- I B(s)ds\ dt

with
/3 CA' \

Cj = Mexp I— B(i)dt\.

One shows by contradiction that w cannot attain its maximum over Sy O N at a
point of N n S . The auxiliary linear operator Eo is replaced by

A close examination of the proof will show that the function x need only be
defined for points in Sy, that is, on the smaller sets Ny where Ny = N n Sy.

2. Maximum principles and uniqueness theorems for single operators

Subscripts "Hy" or "if" will indicate dependence on a particular point y in
the boundary of a domain H or just on the particular domain H itself. For a sphere
H with iJ<= G and a point j ; in H, let Sj,(//) denote the propagation set relative
to the domain H. The notation $y(H) means the closure of Sy(H) relative to H.
Obviously if Ye G and ye$YnH then S(H) <= §Y.
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If 7 e G, if u e D2(SY) and if each Dtiu is bounded on compact subsets of §Y,
the operator P is said to satisfy the interior condition IC on G relative to u and Y
if, for every open sphere H whose closure lies in G and every point y in dH n §Y

not at the " t o p " or "bottom" of H relative to the ^-coordinate, we have

(i) P satisfies condition Q on the domain H at y relative to u,

n - l

(ii) liminf I atJ(x, u,0)DixHy(x)DJxHy(x) > PHy > 0,

A
jteSv(H)

(iii) each constant cHy associated with the function fHy satisfies

cHy > ((« - l)2KHy + nLHy+ UHy + 1) ^5>
PHy

where KHy, LHy and UHy are bounds for DtJu, Du and « over Sy(H).

THEOREM 2.1. Let YsG, let ueD2(SY) and let D^u be bounded on compact
subsets of $Y. Let Pu ^ 0, bn(x, u, 0) ^ 0, a(x, u, 0) ^ 0 and rf(x, u , 0 ) ^ 0 on SY.
Suppose P satisfies condition IC on G relative to u and Y. Under these conditions,
if u attains a non-negative maximum over §Y ay Y then u is constant on TY.

Actually the condition a(x, u, 0) ^ 0 need only hold in a neighbourhood of
each maximum of w.

The proof follows Nirenberg's. (See (1953), Theorem 1.) He proved first that
if a sphere H whose closure lies in G contains no maximum points of u in its
interior but has one such point in its boundary, then that point is either the " t o p "
or "bottom" of H relative to the x,,-coordinate. If the point is a maximum relative
to SY and lies in $Y, then this conclusion follows in our case from Theorem 1.1.
The rest of the proof is the same as Nirenberg's.

To show that maxima spread to the rest of SY, we must strengthen condition
IC. For each open sphere H whose closure lies in G, the functions T and / must
depend only on H and not vary with individual points of the boundary. Also, B
must be constant and depend only on H, and/must satisfy additional conditions.

The operator P is said to satisfy condition QI relative to u and Y on a sphere
H in G if

(1) there is a function / satisfying conditions (i), (ii) and (iii) listed in §1 and
(iv) f(t, o<p) ^ a fit, <j>) for all a > 0, (v) for every s with 0 < s < A, there is <* > 0
such that / is bounded over [e, A~\ x [0, Q;

(2) there is a function x defined on H O SY satisfying
(i) •teC1(ffnSr)nD2(Hn§r),
(ii) r = QondH dSY and T > 0 on H O SY,
(iii) | Dr \ < MH < oo on H n SY, and | Dx | > 0 on dH n SY, except possibly

at the " top" and "bottom" of H,
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108 M. A. Dow [6]

(iv) T(X) < AonH P\§Y where A is the constant associated with/in conditions
(1) (iii) and (v) above;

(3) /and x satisfy condition Q(a) over H nSY and there is a constant BH > 0
such that — BH bounds

n - l

bi(x, u, 0), d(x, u, 0) and X au{x, u, 0)DijT(x) below

Next, if Ye G, u e D2(SY) and if Dtju is bounded on compact subsets of §Y,
we say P satisfies the interior condition PIC on G relative to u and Y if, for
every open sphere H whose closure lies in G,

(i) P satisfies condition Ql relative to u and Y on H,
(ii) there is jiH > 0 such that

n - l

liminf I aiJ(x,u,0)DizH(x)DJzH(x)> pH> 0
A

xeHnSy

for all points y in dH O ̂ y except perhaps those at the "top" and "bottom" of H,
(iii) the constant cH associated with fH satisfies

ABH{\ + nMH + A)

where c0 = ((n — \)2KHy + nLHy + UHy + 1) and KHy, LHy and UHy are bounds
for DfjU, Du and u over Sy(H).

THEOREM 2.2. Suppose the hypothesis of Theorem 2.1 holds with condition
IC replaced by PIC and with bn(x,u,0) bounded away from zero by a negative
constant on compact subsets of G. Then u is constant on SY.

PROOF. We combine the method used in Theorem 1.1 (see Dow and Vyborny
(1972)) with a method used by Il'in, Kalashnikov and Oleinik (1962). Proceed
by contradiction. Assume u is not constant on SY. There is x' in SY such that
w(x') < w(Y); x' is connected to Y by a path T along which xn is non-decreasing
from x' to Y. Follow T from x' towards Yto the first point x° where u(x°) = u(Y).
There is an open spherical neighbourhood H of x° with He G. Notice that
SYnH = {xeH:xnfLx°n}. Choose a point x" ^ x° in F O H. Obviously x"n < x°
because of Theorem 2.1. Let C denote the cylindrical set

C = {xef/ :x:<xn<xn
0}.

Obviously C c §Y. Let rt = {xeC:xn = xj,'}, T2 = CndH and T3 = dC
— (r\ n r 2 ) . Since u < u(x°) on T between x" and x°, Theorem 2.1 implies
u = u(x°) on f3 and u < u(x°) on the rest of C. The function u is bounded away
from u(Y) on r \ ; that is, there is a constant mx such that u(x) < mt < u(x°)
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n

= u(Y) for all x in I \ . Also, condition PIC (ii) implies there are positive constants
£ and j8H such that

i,J=l
aiy(x, M( >PH>0

on the set Zt = {xeC dr3: dist (x, F2) < £}. Let a0 be the infimum of x over the
set Z2 = (C u F3) — Zt. The continuity of x implies a0 > 0. The conditions o n /
guarantee there is a positive constant £, such that/ is bounded on [a0, ̂ 4] x [0, ̂ ]
Further, there is a supersolution 0 to the problem <f>' = cf(t,(j)) on [0, A] with
0 < <t> < f.

Define the auxiliary function w on C by w(x) = w(x) + a(x) where

(T(x) = (u(7) - m1)z(t(x))exp(- /co(xn - 4)).

The constant fc0 will be chosen later and z is the function defined by

<Kt)e{i)dt,

where for brevity

e(0 = exp nMH + A)t j and ct = AfHc(i4).

Clearly </> can be taken small enough that z(x) < 1 on [0, A].
On Tu w(x) ̂ m1+ (u(Y) - m j = u(Y); on T2, z = 0 so that w(x) ̂  «(7);

and on T3, w(x) = u(Y) + a(x) > u(Y). Since u(Y) ^ 0, it follows that w attains a
positive maximum over C somewhere in C U r3, say at a point >'. We show that
this is impossible. Define the operator Po, linear relative to w, by

n - l

i.j = 1
, u,

i = 1
,«, 0)w(x).
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Obviously Pow(y) ^ 0 because bn{x, M,0) ^ 0, d(x, u,0) gj 0, and w has a positive
maximum at y. On the other hand, Pow(y) > 0 by the following argument.

Pow(y) > Pow(y) - Pu(y) ^ - cof(tfy), \ Du(y) |)

+ X flyCv, u, 0)DtJo(y) + I i,(y,«, 0 )1 )^ ) + d{y, u, 0)<r(y)
i,j = l i = l

>-cQf(T(y),\Du(y)\)

t . J = 1

X5,0',U,0)D(T1

Let —j8x be the supremum of bn(x, u,0) over H nSY; by hypothesis j8x > 0. Now
at the point y

\Du | = |D«r| = (M(Y) - m J e - ^ - ^

Thus / ( T , I Du |) g / ( r , (u(F) - m1))e"lo0r"'It""V(tW) and by condition Q/ l(iv)
on /

/ (T , | Du |) 5£ (u(Y) - m1)e"*0('"

Therefore,

PowC) ^ («(10 - mOe-*0 0^-*- ' ' j - CO/(T, 0

Z"(T) "X ayO',«, 0)D,T^T - Z'(T) (B H + nBHMH) + z(t) (feoJ?! - BB) \.

Now

- Z'(T) (B H + nBHMH) - BHZ(T)

= _ ±0(T)e(T)Bfl(l + «Mfl) - 4 H f
Ci ct j 0

^ - — [<^(T)e(t)BH(l + «MH) + BH

= - 1 « / , ( T K T ) B *

where B^ = BH(1 + «MH + A). Therefore,
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Pow(y) Z (u(Y) - mi)e-*0( '»-^->[ - cof(r,

+ Z"(T)
n - l .

l\J' = l c l

Denote the expression in square brackets by J. The remainder of the proof is
devoted to showing that k0 can be chosen large enough that J > 0. We treat the
cases y e Zt and y e Z2 separately. If y e Z2, then

J £ - CO/(TO0, fl*O0)) - -<KA)e(A)B*
c

because z" > 0 and P is degenerate elliptic-parabolic. Now / is bounded below
over Z2 because for x in Z2 we have (T(X), 4>(j(xJ)) e [a0, A] x [0, £]. Also Z(T) is
bounded away from zero on Z2. Therefore, if k0 is large enough, J > 0 for y
anywhere in Z2. Fix k0 at this particular value. Go back to inequality (*). For y in

J>- co/(t, 0(t)) + fez"(r) - — e{x)<j>{x)B*H

= - cof(r, fa)) + ^W)

Therefore, Pow(y) > 0. This proves the theorem.

To deduce the usual boundary maximum principle of Hopf type, one must
first remove from Theorem 1.1 the condition u(x) < u{y) at points of the boundary
by deforming the boundary near y as in Dow and Vyborny (1972). This requi-
res strengthening other parts of the hypothesis.

The operator P satisfies condition QB relative to u at a point y in dG if P
satisfies condition Q with (b) and (c) replaced by

( b ' ) \DtjT(x)\ ^ B(t{x)) o n G O TV f o r i,j = 1 , • • - , « - 1 a n d au(x, u{x), 0 ) i s

continuous at y for i, j = 1, •••,« — 1, and
(c') | b/Lx, ii, 0) | ^ B(T(X)) on JV O 5y,

and if, in addition,

(i) / is a non-increasing function of its first variable /,
(ii) i can be extended to a continuously differentiable function on N,
(iii) the function B is non-increasing.

If y e dG, if u e C(5;) O D2(Sy) and if DM and Duu are bounded on 5, (at least
in a neighbourhood of y) then P satisfies the boundary condition BC relative to u
at y if
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(i) P satisfies condition QB relative to u at y,

n - l

(ii) S a,Jy, u{y), tyDfiWDjtly) >P>0, and

(iii) the constant c associated with/satisfies

o ( ( n - l)2K + nL+ U + l)~

where K, L and U are bounds for DtJu, Du and u over Sy n N.
We shall assume that the boundary of G is so well behaved that if yedG then

for any sequence of points y" in §y converging to y.

THEOREM 2.3. Let yedG and Sy # 0 . Let ueC{Sy) nD2($y) and let Du
and Duu be bounded on Sy for i, j = 1, •--, n — 1. Let Pu S; 0, a(x,u,0) g 0,
d{x, w,O)5jO and let bn(x,u,0) be negative and bounded away from zero on
compact subsets of G. Suppose P satisfies condition PIC on G relative to u and x
for every x in Sy and every sphere in G (at least in a neighbourhood of y) and
condition BC relative to u at y. Then u cannot attain a non-negative maximum
over §y at y unless either u is constant on Sy or

u(x) — u(y)
hmsup—'-— — < 0

xel

for every admissible vector I at y.

PROOF. Suppose u attains a non-negative maximum over Sy at y. Either there
is a neighbourhood JVX of y such that u(x) < u(y) for all x in Nx n §y or there is
no such neighbourhood. Suppose the latter: there is a sequence of points y" in §y

converging to y and u(y") = u(y). Since Syn <= Sy, the function u attains a non-
negative maximum over Syn at y". By Theorem 2.2, u s u{y) on Syn. Because we
assumed §y c ( u Syn)

n, this implies u = u(y) on Sr

Suppose on the other hand there is a neighbourhood JVX of y such that u(x)
< u(y) for all x in N10 ^ r It is an easy matter to modify Theorem 6.1 of [4] to
provide the result

.. u(x) — u(y)
lim sup -y 1 nr̂ - < °-

x-.y \x-y\
xel

In this case the deformation is made in a direction Xj with j =£ n. To ensure TX is
well-defined, a neighbourhood N in JVX is used which is a cylinder with axis in the Xj
direction. The theorem follows from this.

To simplify matters the consequent uniqueness theorem will be given for a
domain of the form G = G2 x (0, X) where Gt is a bounded, open, connected
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subset of R"-1 and X > 0. Label the parts of the boundary: Z = Gtx {0},
Z = dG 0 ( 0 < xn < X), and y = dG - (ZOE). We define the parabolic mixed
boundary value problem P* as follows.

A function u is a solution to the problem P* if u e C\G) n D2(G), Pu = 0 on
G, Bu(x) = a(x)D,u(x) + fi{x)u{x) = 0 on Z, and «(x) = 0 on Z. (Actually one
does not need u e C1 on Z or y.) The functions a and /? are defined on Z and satisfy
the inequalities a ^ 0, j ! g 0 and a2 + /?2 > 0; / denotes any admissible vector at x
and may vary with x.

THEOREM 2.4. Let u be a solution to the problem P* and let DtJu be bounded.
Let a{x, u, 0) • u{x) ^ 0 and d(x, « , 0 ) g 0 on G. Let bn(x, u, 0) be negative and
bounded away from zero on compact subsets of G. Suppose P satisfies condition
PIC on G relative to u and x for every x in G and every sphere in G. Suppose P
also satisfies conditionBCrelative to u and y for every point y in Z. Then a s O
on G.

(Actually the condition a{x, u, 0) • u(x) :§ 0 need only hold in a neighbourhood
of each maximum and minimum of u.)

The proof is standard and follows from Theorems 2.2 and 2.3 and their
analogues for negative minima. (See, for example, Vyborny (1958), Theorem 4.)

One can combine Theorem 2.4 with a technique used by Kusano (1963) to
derive conditions under which solutions to boundary value problems of the form

"Pu = 0 on G,

Bu(x) s <x(x)D,u(x) + j?(x)«(x) = g(x) on Z,

«(x) = 5(x) on Z,

with a ^ 0, ft ^ 0 and a2 + ft2 > 0 " are unique or have at most a constant dif-
ference. For such a result, one assume the coefficients atj, bt and d are functions
of x and Du alone. Also one needs strengthened versions of conditions PIC and
BC. For example, inequalities of the type Q(a) must be replaced by

| e(x, p + Du)- e(x, Du) \ £f(z(x), \ p |).

Other inequalities must be replaced in a similar manner.

3. Generalization to systems

Consider the system of inequalities

(W+) P^x) + 2 V(*> MM(*)> 0«I . (* )X(*) £0, H=1,-,P,
v = l

where the P^are degenerate elliptic-parabolic operators relative to uM of the type
described in §1. The coefficients of PM and /iwv are defined on G x Rl x R"'1.
Dependence on n is denoted by sub- or superscripts /J.: for example, afj(x, uv,
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The coupling coefficients /iMV are assumed to satisfy /iMV k 0 for n =£ v and Z ' = i h^
g O for n= I,-,p.

Observe that if U is a non-negative constant and uv^U for all v = 1, •••,/>,

then p p

P^v + K»(% -U)^ ?„«„ + I /!„„("» -U)^ Pvuv + X / I ^ M , ^ 0
v = l v = l

for every ju. Thus if u satisfies the weakly coupled system W+ then u satisfies the
system of separate inequalities

P^ + h^-UJ^O, n = I,-,p.

Similarly, if F i s a non-positive constant and uv ^ Ffo r all v = 1, •••,/>, then the

weakly coupled system

(W-)P M u M + l V « » g ° - n = l , - , P
v = l

implies the system of separate inequalities

Thus to prove a maximum or a minimum principle for a system it is sufficient to
prove it for a single inequality of the form Pu + h(u — U) ̂  0 with appropriate
conditions on h. Notice that this is not a trivial extension of the case Pu ^ 0 in
that the terms h(u — U) and h(u — V) cannot be absorbed into the terms d(x, u, Du)u
and a(x,u,Du) of P. For example, the maximum principles require a(x, M,0) ^ 0.
From the inequalities satisfied by AMV it follows that /iM(1 ̂  0 for /J = l,---,p. Thus
hJu»-V)2:0.

Theorem 1.1 generalizes as follows:

THEOREM 3.1. Let yedG and let u ~(uu---,up) satisfy the system W+.
Let uu be one of the components of u. Suppose the hypothesis of Theorem 1.1
holds relative to P,, and u,, and, in addition, h^ satisfies the conditions

Q(e) | K»(x> MuW> °) - hJL*> MM(X)' DUJ<X)) I ^/(T(^)> | D^(x) |) on N n 5,,

Finally, suppose uj^y) > u^x) for all x in N nSy except y, uv(y) ^ uv(x) for
all x in N nSy and all v # n, and uu(y) ^ 0. Then

JCEl

/or every admissible vector I at y.

https://doi.org/10.1017/S1446788700023582 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023582


[13] Quasilinear parabolic inequalities 115

PROOF. Let U = u^{y). As pointed out above, the conclusion holds if Theorem
1.1 holds for operators that include a term of the form h(x,u,Du) (u — U) with h
satisfying Q(e) and Q(f). This is easily shown. In the proof of Theorem 1.1 given
in Dow and Vyborn^ (1972) replace

exp ( 1 j'^ds) by exp (-1 J\s)ds)

in the definition of z and similarly in the constant ct. Let the auxiliary linear
operator be

n— 1 n

Pow = I a>7(x,M,0)Dow + I bj(x,u,O)Dtw
i.j = 1 i = 1

+ d(x,u,0)w(x) + h(x,u,O) [VV(JC) - I/].

Since h{x, u, 0) ^ 0 and w(x0) ̂  u(y) = C/ ̂  0 at a maximum x0 of w, we still have
Pow(xo) ^ 0. The contradictory result Pow(xo) > 0 follows as before using the
conditions assumed on /iMM.

Theorems 2.1-2.3 extend to systems in the same way. In Theorem 2.1,
inequalities Q{e) and <2(/) are added to condition Q of IC. The conclusion is that
if «M attains a non-negative maximum over $Y at Y and «v ̂  uM(7) on $ythen MM

is constant on TY. In Theorem 2.2, Q(e) is added to condition Q/(3) of P/C,
/iM(l(x, M, 0) is assumed bounded below on compact subsets of G and in P/C(iii) the
constants cH must satisfy

cH > c0 -jr^ exp I — ^ — , — -) .
PH \ Pa I

In Theorem 2.3, the same changes are made to condition PIC as for Theorem 2.2
and inequalities Q(e) and Q(f) are added to condition QB. We also assume
«v(x) £ uu(Y) on SY.

From these theorems and their analogues for minima we can prove a uniqueness
theorem. A function u = (u1,---,up) is a solution to the problem (W) if
«„ e C1(G) n D2(G) and

p
P ^ + I /IMVMV = 0 on G,

V = 1

Buuu = <xltDluu + f}vuu = 0 on Z, and

uM(x) = 0 on Z

for n = 1, • • •, p with aM ̂  0, ̂ M ̂  0 and ajj + j8jj > 0; / is any admissible vector at x
and may vary with x and ju.

THEOREM 3.2. Let u be a solution to the boundary value problem W with
DtJ bounded. Let a"(x,MH,0) • wH(x) g 0 and d*(x,uu,0) ^ 0 on G for n = 1, -,p.
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Let each &JJ(X,MM, 0) be negative and bounded away from zero on compact subsets
of G. Suppose each P^ satisfies condition PIC on G relative to «„ and y for every
point y in G and condition BC relative to uM and y for every point y in Z with
changes made to PIC and BC as for Theorems 2.2 and 2.3. Suppose also that
cCy = 0 at some point of 1, for each \i. Then u = 0 on G.

(As before, the condition a\x, uM, 0) • MM(JC) ^ 0 need only hold in a neighbour-
hood of each maximum and minimum.)

PROOF. Suppose the conclusion is false. Then uM(x) # 0 for some n and some x
in G. Suppose uu{x) > 0. Let U = max{wv(x): xeG and v = 1, •••,/?}. It follows
that U > 0 and that U is attained by one of the functions ut at some point of Sx.
Since uv ^ U for all v, Theorems 2.2 and 2.3 and their analogues for minima hold
and the rest of the proof follows in the standard way.

4. A more general parabolic operator

Fix a function u in D2(G). For i = 1, •••, n and k = 1, •••, n — 1 let aik be a
real-valued function defined on some open set Cl containing G. We assume aik is
Lip 1 and differentiable on Q although for interior maximum principles ocik need
only be Lip 1 and differentiable on G. Since u is fixed, ccik may be permitted to
depend on u as well as x. For w in D2(G) let Dkw = Z"= t a^DjW for k = 1, •••,« — 1
and Dw = (Dtw, •••,Dn_1w). Denote by F the operator

«— 1 n

Pu(x)= I afc,(;c,

+ d(x,u,Du)u + a{x,u,Du).

This is similar to operator introduced by Redheffer (1971). It differs in that non-
linearity of the first order term appears here in the coefficients of D-u, and a term
d{x,u,Du)u is included in order to generalize Pucci's result (1958); also, we have
limited the summation of k and / to 1, •••,n — 1. The functions a, d, bt and akl are
defined on G x R1 x R"~l. We assume the bt{x,M,0) are defined and Lip 1 on £2
although again this is not always needed.

The operator P is assumed to be degenerate elliptic-parabolic in the sense that

n - l

for all X in R"~l and all x in G. This is somewhat different from the corresponding
assumption made by Redheffer (1971).

With Hill (1970) we define a trajectory of a vector field Z to be a curve F in Rn

satisfying the parametric condition x'(t) = Z(x(t)) and x'(t) ^ 0. Then a diffusion
trajectory is a trajectory generated by one of the vector fields
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Xk(x) = (a , ( (x) , - - - . a ^ x ) ) , k = 1, •••,n - 1.

A drift trajectory is a trajectory generated by the vector field

X0(x) = (*>!(*,«,()),• ••,&„(*,«,()));

it is given the orientation induced by Xo. A generalized trajectory is a trajectory
generated by a linear combination Z = L"=J ykXk with % constant, y0 ^ 0 and
with orientation induced by Z. If y0 = 0 such a trajectory is called a generalized
diffusion trajectory.

Points x and y are connected by a cfta/n o/ trajectories oriented from y to x
if there is finite sequence of points y = Pu •••,Pr = x such that each consecutive
pair Pt and Pi+l belong to the same diffusion, drift, generalized diffusion or
generalized trajectory oriented from P{ to Pi+1 in the appropriate cases. If H is
an open subset of G and yeH, the propagation set Sy{H) is the set of points x in
H connected to y by a chain of trajectories all lying in H except possibly for y and
oriented from y to x. For y in H, Ty is the set of points in H connected to y by a
chain of generalized diffusion trajectories all lying in H except possibly for y.
When H = G, we simply write Sy and Ty. Closure of Sy relative to G (or H) is
denoted by Sy (or Sy(H)) and relative to R" by Sy (or Sy(H)); similarly for Ty.

Obviously Ty <= Sy. Also, if x e Ty then Tx c 7; and if x e fy then f, <= fy.
Similarly, if x e Sy then Sx <= Sy, and if x £ Sy then 5* c ,§,,. Hill proved these
facts for y in G and his method applies equally well for y in dG (see Hill (1970),
p. 216). As Redheffer pointed out, a theorem of Bony (1969) implies that all points
of Sy are connected to y by a chain consisting only of diffusion and drift trajec-
tories and oriented from y to x. Let Sy and Ty denote the propagation sets des-
cribed in §1 and denoted there by Sy and Ty. It is not difficult to prove the follow-
ing proposition, which gives conditions under which Sy and Ty as defined above
reduce to Sy and Ty

N.

PROPOSITION. Let yeG.If Xu---,Xn_1 span xy-xn-rspace for all x in G
then fy = fy. If also bn(x,u,0) < 0 on G, then Sy = S%.

Let yedG. If Xu •••,.XB_1 span Xj •••xn-l-space for all x in G O {y}, then
the following hold.

(a) If G n (xn = yn) contains an interior cone at y then Ty is the connected
component of G O(xn = yn) containing the cone and having y in its boundary.

(b) Let bn(x, u,0) < /?„ < 0 on G. Suppose there is a neighbourhood of y
such that any two points x° and xl in N CiG with x° ^ x,J can be connected by
a path in N C\G with xn non-decreasing from x° to x1. Suppose also that G has an
open interior cone at y that has non-void intersection with the half-space (xn ^ yn).
Then §y = Sf.

(A statement analogous to (b) holds when bn(x, u, 0) is positive.)
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The theorems of §§1-3 are easily extended to this operator. We assume
throughout that Xu ••-,Xn_1 spanxt •••xn_1-spacefor all x in G. In condition Q,
Du is replaced by Du in (a) and D{j and atJ by DkD, and akl in (b). Theorem 1.1
holds in this setting if K is an upper bound for |5tJD,u|, if Dt, Dj and aiS are
replaced by Dk, Dt and akl in the non-degeneracy condition, and if the constant M
in the inequality involving c is replaced by

T = sup {\DT(X) I: x e N O G}.

This last quantity is finite because atk and Dt are bounded. We call this Theorem
1.1*. The proof follows as before except that Pow ^ 0 is derived from the fact
that at an interior maximum

n - l
Dkw(x) = 0,

I lkl,DkDlw(x') ^ 0 for all XeR"-\ and

X0(x) • £>w(x) = Z bi(^,",0)£>iw(x) g 0.
i = l

This is proved as in Lemma 4 of Redheffer (1971).
A generalization of Theorem 2.1, namely Theorem 2.1*,holds with analogous

changes in condition IC and the hypothesis. (Furthermore, positive maxima
spread to Tyfor more general operators in which summation in the second order
term runs from 1 to some m with 1 ^ m < n.) A theorem of Bony (see Bony
(1969) and Redheffer (1971)), Lemma 3) implies the following.

LEMMA 4.1. If yeG and all spheres H in G for which u < u(y) in H n§y

but w(x°) = u(y) for some point x° in OH C\Sy have the property that the unit
normal v to H at x° is orthogonal to each of the vectors Xk(x°), k = 1, •••, n — 1,
then u = u(y) on any generalized diffusion trajectory passing through y.

Similarly, if each such sphere H has the property that v • X0(x°) ^ 0, then
u s u(y) on any drift trajectory passing through y.

If each such sphere has both properties, another theorem due to Bony
(Bony (1969) and Redheffer (1971)), Lemma 2) implies u = u(Y) on §y.

Thus to prove Theorem 2.1* it is sufficient to show that all such spheres have
the property Xk(x°) • v = Oforfc = 1, • • •, n — 1. Reduce the size of H if necessary
so that y is the only point of 8H O Sy where u = u(y). Suppose Xk(x°) • v ^ 0 for
some k. Since X^x0), •••,Xn_1(x°) span xx •••xn_1-space, this implies x° is not
the " t o p " or "bottom" of H relative to the xn-coordinate. Therefore, Theorem
1.1* applied to the domain H at x° implies

Dku(x°) = Xk(x°) • Du(x°) = ± lim U(.x) " "(,y) * 0,
x~y \x-y\

r
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where F = Fkr\H and Fk is the diffusion trajectory corresponding to Xk and

passing through x°. However, x° is a local maximum of u relative to §y. Thus

At"(*o) = 0. This contradiction proves Theorem 2.1*.

A Theorem 2.2* with analogous modifications in conditions PIC can be

proved from Lemma 4.1 by showing that all such spheres H have the property

that X0(x°) • v ^ 0. Suppose on the contrary v • X0(x°) > 0. We have already

proved X^x0), •••,Xn-1(x°)are orthogonal to v atx°. Since they spanx! •••xn_1-

space, v must be parallel to the xn-axis. Now bn(x°, u, 0) < 0 and v • -X"0(
x°) > 0

which implies that v points in the negative xn-direction. So xn < x° for all x in H.

The proof now proceeds as for Thsorem 2.2 with the path F replaced by the inte-

gral curve r 0 of Xo passing through x°. Obviously r 0 points into H.

Theorem 2.3 and 2.4 have similar analogues and all of these can be generalized

to systems as in §3.

Acknowledgements

This paper comprises part of a thesis [Dow (1972)] presented to the Uni-

versity of Queensland in fulfillment of the requirements for the degree of Doctor

of Philosophy. The work was carried out under a University of Queensland

Research Scholarship. I am grateful to Professor R. Vyborny for his supervision

and advice during the study and for reading this manuscript.

References

K. Ako (1968), 'Semi-decomposable systems and vector subfunctions', Funkcialaj Ekvacioj 8,
91-97.

J.-M. Bony (1969), 'Principe du maximum, inegalite de Harnack et unicite du probleme de
Cauchy pour les opsrateurs elliptiques degeneres', Ann. Inst. Fourier (Grenoble) 19, fasc.
1,277-304.

M. A. Dow (1972), Maximum principles for some quasilinear degenerate elliptic-parabolic operators
of second order, Dissertation, (University of Queensland, 1972).

M. A. Dow and R. Vyborny (1972), 'Maximum principles for some quasilinear second order
partial differential equations', Rend. Sem. Mat. Univ. Padova 47, 331-351.

C. D. Hill (1970), 'A sharp maximum principle', Indiana Univ. Math. J. 20, 213-229.
O. Horacek and R. Vyborny (1966),'Ober eine fastlineare partielle Differentialgleichung vom

nichthyperbolischen Typus', Comment. Math. Univ. Carolinae 7, 3, 261-264.
A. M. Il'in, A.C. Kalashnikov and O. A. Oleinik (1962), 'Linear second order equations of parabo-

lic type', (Russian) Uspekhi Mat. NaUk 17,1-146. English transl. Russian Math. Surveys
17,1-143.

N. V. Khusnytdinova (1967), 'The limiting moisture profile during infiltration into a homoge-
neous soil', (Russian) Prikl. Mat. Mekh. 31, 770-776. English transl. / . Appl. Math.
Mech. 31, 783-789.

T. Kusano (1963),'On the maximum principle for quasilinear parabolic equations of the second
order', Proc. Japan Acad. 39, 211-216.

O. A. Ladyzhenskaia, V. A. Solonnikova and N. N. Ural'tseva (1968), Linear and quasilinear

https://doi.org/10.1017/S1446788700023582 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023582


120 M. A. Dow [18]

equations of parabolic type, Translations of Mathematical Monographs 23 (Amer.
Math. Soc., 1968).

P. P. Moisak (1971), 'A generalized maximum principle and an estimate of the error in Rothe's
method for second order parabolic systems', (Ukrainian) Dopovidi Akad. Nauk Ukrain.
RSR Ser A, 109-113, 187.

L. Nirenberg (1953), 'A strong maximum principle for parabolic equations', Comm. Pure Appl.
Math. 6, 167-177.

M. H. Protter and H. F. Weinberger (1967), Maximum principles in differential equations (Prent-
ice Hall, 1967).

C. Pucci (1957-58), 'Propsrieta di massimo e minimo delle soluzioni di equazioni a derivate
parziali del secondo ordine di tipo ellittico e parabolico I, II', Atti Accad. Naz. Lincei
Rend. Cl. Sci. Fis. Mat. Natur. (8) 23, 370-375; 24, 3-6.

R. M. Redheffer (1962), 'An extension of certain maximum principles', Monatsh. Math. 66,32-42.
R. M. Redheffer (1971), 'A sharp maximum principle for nonlinear inequalities', Indiana Univ.

Math. J. 21, 227-248.
D. W. Stroock (1970), 'On certain systems of parabolic equations', Comm. Pure Appl. Math.

23, 447-457.
R. Vyborny (1958), 'Some basic properties of solutions to boundary value problems for parabo-

lic partial differential equations', (Russian) Czechoslovak Math.J. 8 (83), 537-551.
R. Vyborny (1963), 'On certain extension of the maximum principle', Differential Equations and

Their Applications (Proc. Conf. Prague, 1962) pp. 223-228. (Publ. House Czechoslovak
Acad. Sci., Prague; Academic Press, New York, 1963).

J. Wasowski(1970), 'Maximum principles for a certain strongly elliptic system of linear equations
of second order', Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 18,741-745.

Department of External Studies
University of Queensland, Brisbane
Australia

https://doi.org/10.1017/S1446788700023582 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023582

