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Abstract
This paper presents some of the first results of global linear stability analyses performed using a bespoke eigensolver
that has recently been implemented in the next generation flow solver framework CODA. The eigensolver benefits
from the automatic differentiation capability of CODA that allows computation of the exact product of the Jacobian
matrix with an arbitrary complex vector. It implements the Krylov–Schur algorithm for solving the eigenvalue
problem. The bespoke tool has been validated for the case of laminar flow past a circular cylinder with numerical
results computed using the TAU code and those reported in the literature. It has been applied with both second-order
finite volume and high-order discontinuous Galerkin schemes for the case of laminar flow past a square cylinder. It
has been demonstrated that using high-order schemes on coarser grids leads to well-converged eigenmodes with a
shorter computation time compared to using second-order schemes on finer grids.

Nomenclature
A Shift-invert Jacobian operator
b Residual vector of Schur form
CL, CD Coefficients of lift and drag
D Diameter of circular cylinder or length of side of square cylinder
H Upper-Hessenberg matrix
J, J† Jacobian operator and its adjoint
M Weight matrix
q Orthogonal basis (Arnoldi) vectors
Q Matrix of orthogonal basis vectors
p Eigenvector of matrix in Schur form
R Residual vector
s Diagonal element of matrix in Schur form
S Matrix in Schur form
t Time coordinate
T Matrix before similarity transformation to return to Schur form
U∞ Freestream velocity
V Orthogonal matrix for similarity transformation
W State vector of conservative variables
Ŵ, Ŵ

+ Eigenvectors of Jacobian operator and its adjoint
W Matrix of eigenvectors of the Jacobian operator
x, z Cartesian spatial coordinates

C© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society. This is an Open Access article, distributed
under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use,
distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/aer.2023.108 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.108
https://orcid.org/0000-0002-2777-3754
https://orcid.org/0000-0002-4577-2595
https://orcid.org/0000-0002-2409-1686
mailto:sebastian.timme@liverpool.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/aer.2023.108


The Aeronautical Journal 1165

Greek Symbol
ε Error norm
λ Eigenvalue
σ Complex shift

1.0 Introduction
Stability analysis of numerical steady-state solutions plays an important role in our understanding of the
onset and dynamics of self-sustained unsteadiness in aerodynamic and aeroelastic applications [1–3].
The large but sparse eigenvalue problem formulated on the discretised governing equations is typically
solved for the leading and physically relevant modes, i.e. the few eigenvalues with the largest real part.
Knowledge of these modes is useful for identifying the physical mechanisms responsible for the ampli-
fication of small-amplitude perturbations and, consequently, for designing effective control strategies.
At the same time, considering the high-dimensional system involved when simulating unsteady non-
linear aerodynamics, the extraction of dominant modal features can aid in constructing low-dimensional
models and/or can avoid the long time integration of the original system.

While the stability analysis of flow, and modal analysis in general, has a long-standing history, it
remains a very active topic in fluid mechanics. The focus herein is on the continued development
of operator-based modal identification using computational fluid dynamics (CFD). On the one hand,
high-performance computing has seen remarkable progress in efficiency and scalability with hetero-
geneous computing that combines distributed memory message passing interface (MPI) parallelisation
and shared memory OpenMP/GPU parallelisation. On the other hand, advanced numerical schemes
and physical models have improved the modelling accuracy of CFD simulations. These include high-
order schemes, advanced turbulence models (such as Reynolds stress models) and transition models.
Despite these profound advances, current generation CFD tools predominantly use simple models such
as the one-equation Spalart–Allmaras turbulence model and, relating to the stability analysis, often rely
on older-generation eigensolver libraries, such as ARPACK [4], that are limited to MPI parallelisation
only.

The next generation flow solver CODA (CFD for ONERA, DLR and Airbus) [5, 6] is being developed
to take advantage of emerging computing capabilities to eliminate limitations faced by current gen-
eration codes. The newly incorporated automatic differentiation (AD) capability allows matrix-vector
products with the Jacobian operator to be evaluated accurately (and matrix-free for reduced memory
footprints) regardless of the complexity of the underlying discretisation schemes and physical models.
This is an important step forward from computing the Jacobian matrix by hand-differentiation (or finite-
differencing) which becomes cumbersome (and inaccurate) for complex models. The exactness of the
matrix-vector product operation is crucial for the iterative Krylov subspace methods used in linear sta-
bility analysis of large problems of engineering relevance. The linear systems in CODA are solved using
preconditioned Krylov subspace methods that are available in CODA’s sparse linear algebra library
Spliss [7]. Spliss operates on two levels of parallelism with partitioning across MPI processes as well as
OpenMP/GPU threads for enhanced scalability. This allows for more effective preconditioning with full
parallelisation at the shared memory level while maintaining a strict block-Jacobi type approach (i.e. no
parallel communication) at the distributed memory level.

The focus of this work is the Krylov–Schur algorithm [8] for solving large-scale eigenvalue problems
that has been implemented in CODA to benefit from the latest capabilities in both CODA and Spliss.
It extends upon the linear frequency domain solver that has been successfully implemented in CODA
earlier [9]. The paper continues with a discussion of the relevant theory, including the Krylov–Schur
method, in Section 2.0, before outlining the numerical methodology in Section 3.0. Results for two
test cases, specifically the laminar flow at Reynolds number Re = 50 around the circular and square
cylinders, are presented in Section 4.0.
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2.0 Theory
2.1 Basics
To derive the eigenvalue problem for linear stability analysis, we begin with the unsteady Navier–Stokes
equations written in a semi-discrete form

dW
dt

+ R (W) = 0, (1)

where W = [ρ, ρu, ρE, . . .] denotes the vector of conservative variables (depending on the chosen flow
model which can include additional equations for modelling turbulence and transition) and R (W)

denotes the corresponding non-linear residual vector in discretised form. Linearising Equation (1) about
a steady-state solution �W , while assuming small-amplitude perturbations of the form Ŵexp (λJt), yields
the eigenvalue problem

JŴ = λJŴ , (2)

where J = −∂R/∂W is the Jacobian operator, and Ŵ and λJ are the complex eigenvector and eigenvalue,
respectively. The imaginary part of λJ corresponds to the frequency of the oscillations, while the real
part of λJ indicates if the oscillation amplitude grows (�e (λJ) > 0) or decays (�e (λJ) < 0) with time.
The adjoint eigenvalue problem is similarly defined as

J†Ŵ+ = λ∗
JŴ

+
, (3)

where the adjoint Jacobian operator J† satisfies the duality relation 〈a, Jb〉 = 〈J†a, b〉 (with a suitable
inner product defined as 〈a, b〉 = aHMb for arbitrary vectors a and b and a positive definite weight
matrix M), and Ŵ+ is its corresponding adjoint eigenvector with the eigenvalue λ∗

J which is the complex-
conjugate of λJ . Both J and J† have the same set of eigenvalues λJ . The adjoint Jacobian operator can
be explicitly given as J† = M−1JTM. The weight matrix M is the diagonal matrix of cell (or element)
volumes for the finite volume (FV) scheme and it is simply the identity matrix for the discontinuous
Galerkin (DG) schemes as the DG schemes in CODA use an orthonormal polynomial basis.

To compute the relevant eigenvalues of the Jacobian operator J (or its adjoint) close to a given com-
plex shift σ , often available from engineering insight, we apply the shift-invert spectral transformation
such that A = (J − σ I)−1 and cast the problem into the form

AŴ = λAŴ , (4)

where λA = (λJ − σ)
−1 is the transformed eigenvalue. The eigenvector Ŵ is unchanged by the transfor-

mation. The closer an eigenvalue λJ is to the shift σ , the larger the absolute value of the transformed
eigenvalue λA, which is beneficial for many iterative solution schemes such as the Krylov–Schur algo-
rithm because desired eigenvalues are amplified. The drawback is that each application of A is a costly
operation that involves solving a large sparse linear problem with the coefficient matrix A−1 = (J − σ I).

2.2 Krylov–Schur algorithm
The Krylov–Schur algorithm [8, 10] is a Krylov subspace method that can be used to determine a small
number of eigenvalue-eigenvector pairs (eigenpairs) of a large sparse complex linear operator A. Since
the Krylov subspace cannot be extended indefinitely due to memory constraints and the cost of orthog-
onalisation over a large subspace, a suitable restart technique is needed to filter the existing subspace
while preserving the relevant information. The Krylov–Schur algorithm improves upon the implicitly
restarted Arnoldi algorithm [11] by proposing a simple but robust restarting technique.

The key to the restarting technique is the Schur form

AQj = Qj+1

[
Sj

bH
j

]
= Qj+1S̃j, (5)
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Figure 1. Schematic of S̃m during a restart for m = 5 and t = 3.

where Qj+1 = [
Qj qj+1

]
is an orthogonal matrix with Q1 = [

q1

]
, Sj is a j × j upper-triangular matrix and

bH
j is a 1 × j row vector. The eigenvalues of Sj, which are found along its diagonal, are good approxima-

tions to the largest eigenvalues of A, i.e. the wanted eigenvalues of J after shift-invert transformation,
once the elements of bH

j fall below a user-defined tolerance.
Upon reaching some maximum specified subspace size j = m, the Schur form is split into two parts,

one consisting of the first t columns and the other consisting of the remaining (m − t) columns, such
that

A
[

Qt Qm−t

] = [
Qt Qm−t qm+1

] ⎡⎢⎣ St St,m−t

0 Sm−t

bH
t bH

m−t

⎤⎥⎦ . (6)

The restart technique simply involves discarding the last (m − t) columns of Qm and Sm yielding a
contracted Schur form

AQt =
[

Qt qm+1

] [
St

bH
t

]
= Qt+1S̃t. (7)

Note that vector qm+1 is retained and re-labelled as qt+1 to be consistent with the Schur form notation.
The contraction procedure from Sm to St is shown schematically in Fig. 1 for m = 5 and t = 3. It was
previously shown [8] that this restart technique is equivalent to applying a polynomial filter, p (r) =
(r − st+1) × · · · × (r − sm) where sj is the jth diagonal element in Sm. If the diagonal elements of Sm are
arranged such that the last (m − t) elements belonged to the unwanted part of the spectrum, then the
contraction procedure effectively purges the decomposition of the unwanted part of the spectrum.

It is evident from the preceding discussion that it is crucial to maintain (or, at least, to be able to return
to) the Schur form to benefit from the simple restarting technique. In the present implementation, the
Schur form is preserved at the end of each Krylov–Schur iteration. The dense matrix operations required
to do so are relatively inexpensive compared to the application of the linear operator A which involves
solving a large linear problem. Let us assume that we begin with the Schur form given in Equation (5).
Performing an Arnoldi iteration on vector qj+1 results in

AQj+1 = Qj+2

⎡⎢⎣ Sj f j

bH
j g

h

⎤⎥⎦ = Qj+1Tj+1 + h qj+2 eT
j+1, (8)
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Figure 2. Schematic of S̃k during a Krylov-Schur iteration for j = 3.

where the j × 1 column vector f j and the scalars g and h are obtained by orthogonalising Aqj+1 over
Qj+1. Since the Arnoldi iteration has disrupted the Schur form, we must perform a series of orthogo-
nal similarity transformations to bring Tj+1 back to the Schur form [12]. First, Tj+1 is brought into the
upper-Hessenberg form Hj+1 = VH

1 Tj+1V1 using Householder reflections. Then, Hj+1 is brought into the
complex Schur form S′

j+1 = VH
2 Hj+1V2 using the shifted QR algorithm [13, 14]. Finally, the diagonal ele-

ments of the upper-triangular matrix S′
j+1 are reordered in descending order of their absolute values using

special orthogonal matrices (see Appendix B) which yields the ordered Schur form Sj+1 = VH
3 S′

j+1V3.
The reordering is necessary so that the restart discards information about the eigenvalues farthest away
from σ . The combined effect of these three operations can be represented by a single similarity trans-
formation Sj+1 = VHTj+1V where V = V1V2V3 is an orthogonal matrix. Substituting Tj+1 = VSj+1VH into
Equation (8) results in

AQj+1 = Qj+1

(
VSj+1VH

) + h qj+2 eT
j+1. (9)

Multiplying both sides of the latter equation by V from the right and setting Qj+1 = Qj+1V and bH
j+1 =

heT
j+1V results in

AQj+1 = Qj+1Sj+1 + qj+2 bH
j+1 (10)

which is the sought-after Schur form. The expansion from Sj to Sj+1 during the Krylov–Schur iteration
for j = 3 is shown schematically in Fig. 2. Last but not least, we observe that the Arnoldi iteration is
equivalent to a Krylov–Schur iteration for j = 0. Starting from a random unit vector q1, we perform an
Arnoldi iteration to obtain

AQ1 = [
Q1 q2

] [
S1

bH
1

]
, (11)

where S1 and bH
1 are just scalars and Q1 = [

q1

]
. Nonetheless, it can be seen that Equation (11) is in the

Schur form and requires no further transformation.
The desired k ≤ j eigenvectors of A can be approximated from the Schur form as

Wk = QkPk, (12)

where matrix Wk = [
Ŵ1 . . . Ŵk

]
contains the approximate eigenvectors (Ritz vectors) of A and Pk =[

p1 . . . pk

]
is a k × k matrix whose columns are the eigenvectors of Sk which is the k × k matrix formed

from the top-left corner of Sj. The eigenvectors pi for i = 1 . . . k can be computed from the relationship
Skpi = sipi combined with the fact that both Sk and Pk are upper-triangular.

The error in the ith eigenvector approximation can be computed as

εi =‖ AŴ i − siŴ i‖2. (13)

Substituting Ŵ i = Qkpi and sipi = Skpi into Equation (13) leads to

εi =‖ (AQk − QkSk) pi‖2 =‖ qk+1b
H
k pi‖2 =‖ bH

k pi‖2 (14)
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where bk is formed from the first k elements of bj. The second equality in Equation (14) arises from
the Schur form itself and the last equality is due to qk+1 having unit norm. The approximation errors
are computed at the end of each Krylov–Schur iteration. Once the ith error norm has dropped below
a prescribed threshold value (e.g. 10−10), the eigenpair is deemed to have converged and is locked by
setting the ith component of bj to zero. Subsequent transformations on Sj are only applied from the
(i + 1)th row and column leaving the top-left i × i part of Sj and the first i columns of Qj unchanged.
The computation is terminated when the last desired eigenpair has converged. The entire algorithm is
summarised in Appendix A. Note that we have used Fortran indexing with the indices starting from 1.

3.0 Methodology
3.1 Non-linear steady-state problem
The steady-state problem R

(�W) = 0 was solved first since the Jacobian operator J = −∂R/∂W for the
eigenvalue problem must be computed about a suitable reference state �W . The non-linear flow solutions
were computed in CODA using the implicit backward Euler scheme with local time stepping until the
density residual norm dropped by 10 orders of magnitude. No special solution stabilisation techniques
(such as selective frequency damping) were required to achieve convergence herein. Courant–Friedrich–
Levy (CFL) number ramping of the local time steps was employed to accelerate non-linear convergence.
The linear system at each outer iteration was solved using a restarted generalised minimal residual
(GMRES) solver [15] until the linear residual norm dropped by one order of magnitude. The solver
used a maximum of 100 Krylov vectors before restart with 50 iterations of a block-Jacobi solver as
preconditioner. The GMRES solver utilises a matrix-free approach using AD to compute the matrix-
vector products Jx exactly for an arbitrary real (or complex) vector x. The preconditioner, on the other
hand, uses an explicitly formed matrix whose block-diagonal (i.e. the coupled governing equations for
all spatial degrees of freedom within a cell) is factorised using LU decomposition. The explicit matrix is
formed with the help of AD as well using compact stencils. The compact stencil for a cell consists of the
cell and its immediate face-neighbours only. Since DG schemes use compact stencils, the explicit matrix
is exact. For the FV scheme, which relies on extended stencils, the explicit matrix is approximate and
essentially only first-order accurate. However, this is not a severe disadvantage. In fact, the approximate
matrix is more diagonally dominant leading to improved stability of the preconditioner [16].

Spatial discretisation was performed herein using both FV and DG methods. In the FV method, the
solution is computed as the cell averages of the conservative variables, i.e. each cell represents one
degree of freedom (DOF) per variable. In the DG method, each variable is represented as an nth order
polynomial in three dimensions where we limit our interest herein to n ∈ [2, . . . , 8]. Therefore, each
cell represents n+2C3 = (n + 2) (n + 1) n/6 DOF for each variable where nCk is the binomial coeffi-
cient. For the two-dimensional cases considered in this study, the DOF per cell can be significantly
reduced (only n+1C2) since the third dimension is redundant. However, as CODA does not currently sup-
port such a two-dimensional DG formulation, the full three-dimensional formulation was used despite
the redundancy.

The inviscid fluxes were computed using the Roe scheme with no entropy fix based on the face
values. In the FV method, the face values at the face centroids were first approximated using distance-
weighted interpolation of the face-adjacent neighbours’ cell averages. Then, cell average gradients were
computed from the approximate face values using the Green–Gauss method. The final face values were
computed as a linear function of the cell average values and gradients. In the DG method, the face values
were computed by evaluating the polynomial at the face quadrature points. The flux over each face was
integrated as a weighted average of the fluxes computed at the quadrature points. The viscous fluxes
were computed based on face gradients. In the FV method, the face gradients were computed as the
distance-weighted averages of the neighbouring cell average gradients with edge-normal augmentation
[17]. In the DG method, the viscous fluxes were computed using the second approach proposed by Bassi
and Rebay known as the BR2 scheme [18].
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Figure 3. Grid used for laminar flow past circular cylinder case.

3.2 Eigenvalue problem
With the steady-state solution computed, the Krylov–Schur algorithm, implemented as part of this work,
was used to determine the rightmost (in the complex plane) eigenpair. Observe that the chosen flow con-
ditions are such that �e (λJ) > 0 for the leading eigenmode and it describes unstable flow, specifically
vortex shedding in the wake behind bluff bodies. In the Krylov–Schur algorithm, unless otherwise spec-
ified, the subspace was allowed to expand to a maximum size m = 20 before a restart, when it was
truncated to t = 5. The linear system of the form (J − σ I) x = q in each Krylov–Schur iteration was
solved using the GMRES solver with the same settings as that used for the steady-state problem except
that 100 block-Jacobi iterations were used as preconditioner. CODA’s linear algebra library Spliss can
deal with the necessary complex algebra and further details on solving the complex linear problems can
be found in previous work [9]. The shift σ was chosen close to the unstable eigenvalue based on the prior
knowledge of the physics and numerical experiments to ensure fast convergence. During the numerical
experiments, the approximation error of a converged eigenpair was observed to be directly dependent on
the convergence of the linear solver in each Krylov–Schur iteration. To achieve a relative approximation
error below 10−10, the linear system in each Krylov–Schur iteration was solved until the residual norm
dropped below 10−10.

4.0 Results and discussion
4.1 Laminar flow past circular cylinder
We first consider laminar M = 0.2 flow past a circular cylinder as a validation case, which has been
widely documented in the literature. The unstructured grid shown in Fig. 3 was used, which includes a
quasi-structured near-field region and a total of 11,638 cells (corresponding to 9,743 vertices in a two-
dimensional set-up). The computational domain has a radial extent of 100D, where D = 1 is the diameter
of the circular cylinder, and a unit extent in the spanwise direction. The far-field view in Fig. 3(a) shows
the wake refinement. The quasi-structured grid around the cylinder has a first wall-normal cell spacing
of D/1000 and becomes unstructured starting at a radial distance of 4.25D from the origin as seen in
Fig. 3(b).

The test case was computed at a slightly supercritical Reynolds number Re = 50 to ensure the pres-
ence of an unstable mode linked to von Kármán vortex shedding. The complex shift, σ = i0.75, was
chosen such that its imaginary part was close to the critical vortex-shedding frequency, which relies on
engineering insight gained from the past study of bluff body aerodynamics. While no attempt was made
in this study to assess the impact of the spectral distance between shift and wanted eigenvalue on the per-
formance of the eigenmode solver, it is clear that there is a compromise between the rate of convergence
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Figure 4. Convergence characteristics of three direct modes closest to chosen shift for laminar flow
past circular cylinder case using CODA.

of the shift-inverted Krylov–Schur algorithm, which improves with a reduced spectral distance, and the
numerical properties of the shifted linear system, which becomes increasingly singular and hence more
difficult to solve with reduced spectral distance. Both the direct eigenvalue problem in Equation (2) and
the adjoint eigenvalue problem in Equation (3) were solved using CODA and TAU.1 For CODA, only
the FV method was used for this case.

But first, to demonstrate the implementation of the Krylov–Schur algorithm in CODA and the conver-
gence characteristics of the cylinder validation case, Fig. 4 shows details of the computation of the three
direct modes closest to the chosen shift. As expected, the modes converge consecutively with increas-
ing spectral distance, |λJ − σ |. Three parameter settings of the Krylov–Schur algorithm were specified
(in terms of maximum and truncated subspace size denoted m and t, respectively); no truncation,
[m = 10, t = 5] and [m = 6, t = 3]. It is evident that the leading, well-isolated wake mode converges
in 12 iterations regardless of the subspace size after restart. Modes 2 and 3 are more difficult to con-
verge; these modes are close to a large number of nondescript, spurious modes [21]. Without subspace
truncation, these modes both converge in just under 60 iterations. For the setting with the bigger limited
subspace, convergence is still straightforward in just over 80 iterations. Convergence is slow using the
final setting, with the algorithm locking onto the incorrect modes repeatedly. Nevertheless, eventually
the sought modes are converged in 170 and 700 iterations, respectively. Essentially, too small a subspace
is insufficient for non-isolated modes.

The leading, physically meaningful, non-dimensional eigenvalues λJ (made non-dimensional using
D and free-stream velocity U∞) of the von Kármán wake mode computed by CODA and TAU are
0.0042507 + i0.72656 and 0.015829 + i0.73105, respectively. The positive real parts of λJ indicate that
the modes are indeed unstable. Overall, the results for λJ are quite close to the numerical predictions by

1 The TAU code of the German Aerospace Center is an industrial second-order code with a cell-vertex finite-volume formulation
capable of dealing with complex geometries and is widely used in the European aerospace community [19]. Spatial discretisation
herein used the code’s default formulation of a central scheme with matrix artificial dissipation for inviscid fluxes and Green–
Gauss gradients for viscous terms. Its extension to solve eigenvalue problems has been detailed previously [2]. Specifically, the
implicitly restarted Arnoldi method from the ARPACK library was used herein, in contrast to the bespoke Krylov–Schur algorithm
in CODA. Resulting linear systems for the stability analysis were solved using the generalised conjugate residual solver with inner
orthogonalisation and deflated restarting with incomplete lower-upper factorisation (zero fill) preconditioning [20].
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Figure 5. Streamwise momentum components of unstable direct and adjoint global modes for laminar
flow past circular cylinder case.

e.g. Crouch et al. [1] and Fabre et al. [22] based on similar stability analyses. The real parts of the stream-
wise momentum component ρ̂u of the eigenvectors are plotted in Fig. 5. The eigenvectors were scaled
such that the maximum of the ρ̂u component has a value of 1 + i0, i.e. a maximum amplitude of one
with zero phase. The direct modes exhibit the well-known vortex shedding pattern downstream of the
cylinder. The regions of high amplitudes of the adjoint modes highlight the locations where a harmonic
forcing has the greatest effect on the global flowfield. It can be seen that the modal features agree quali-
tatively between the codes and also with existing literature in the field. Obviously, the coarseness of the
chosen mesh to demonstrate the implementation of the methods would not allow a fully mesh-converged
solution to be identified. This is exemplified by the streamwise position in the cylinder wake of the max-
imum cross-stream momentum component of the direct mode found at approximately x = 14.6D for
CODA and x = 10.8D for TAU. Compare these with a maximum at approximately 25D for more mesh-
converged results [23]. To address this point, the second test case of a square cylinder in laminar flow
with a more detailed assessment is discussed next.
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Table 1. Degrees of freedom per equation for laminar flow past square cylinder cases discussed herein;
underlined cases are not further visualised for clarity

Grid Vertices (TAU) Cells DG2 DG3 DG4 DG5 DG6 DG7 DG8
L0 608 570 2,280 5,700 11,400 19,950 31,920 47,880 68,400
L1 2,356 2,280 9,120 22,800 45,600 79,800 127,680 191,520
L2 9,920 9,760 39,040 97,600 195,200 341,600
L3 40,300 39,975 159,900 399,750
L4 162,440 161,785
L5 652,240 650,925
L6 2,613,920 2,611,285

4.2 Laminar flow past square cylinder
We now consider the case of laminar M = 0.2 flow past a square cylinder at Re = 50, with a special focus
on the high-order DG scheme in CODA. When using high-order DG schemes, it becomes necessary to
use high-order grids to represent the curved geometries to achieve optimal accuracy [24]. However,
since a square cylinder has no curves, it can be represented exactly (and easily) with linear grids. Hence,
the added complexity of generating high-order grids was avoided for this case. All CODA cases were
computed on a single compute node that comprises 384 GB of memory and two Intel Xeon Gold 6230
(Cascade Lake) central processing units (CPUs) each consisting of 20 hardware cores. The cases were
run using two MPI processes with 20 OpenMP threads per process.

The square cylinder was computed using seven structured grids (labelled as L0 to L6) with levels of
varying refinement. A systematic global refinement approach with halving the mesh spacing and dou-
bling the cell count in each spatial dimension was chosen. Thus, each new level has approximately four
times as many cells as the previous level. The number of DOF per equation is listed in Table 1 for the FV
schemes in TAU (vertex-centred) and CODA (cell-centred) and for the DG schemes in CODA for the
cases discussed herein. The number of DOF for DG schemes is computed for the three-dimensional for-
mulation including the spanwise direction which is redundant for the two-dimensional square cylinder
case. Far-field and near-field views of grids L0 and L2 are shown in Fig. 6. The computational domain
extends to a circular far-field distance of approximately 200D where D = 1 is the length of the side of the
square cylinder. DG schemes were employed in this study on grids L0 to L3 only, which is instructive
when comparing with standard FV results. On grid L0, DG computations were performed from second
order up to the maximum (currently) available order of eight. On grids L1 through L3, DG computations
were performed from second order up to (at least) the minimum order that is needed for the lift coeffi-
cient CL to become smaller than (an arbitrarily chosen) 10−8 in magnitude. Note that the theoretical lift
coefficient for this symmetrical case is zero. Hence, deviation from the theoretical value is indicative of
the adequacy of the spatial resolution for a given scheme.

The steady-state lift and drag coefficients for all cases computed (except for DG on grid L3 to aid
clarity of the presentation) are plotted in Fig. 7. Since lift coefficients were sometimes negative, their
magnitudes are plotted instead for visualisation purposes. The FV scheme in CODA is slightly less accu-
rate than that in TAU for the coarse grids L0 to L2, but it improves from grid L3 onward until eventually
it surpasses TAU on the fine grids L4 and L5. This should be expected considering the very estab-
lished inviscid flux discretisation in TAU. The steeper slope of CODA’s FV scheme indicates that grid
refinement has a more significant effect on accuracy for CODA than TAU. This is, of course, an intricate
discussion considering inherent differences of cell-centred and cell-vertex schemes. Nonetheless, the FV
schemes in both CODA and TAU achieve the specified tolerance of 10−8 for the lift coefficient on grid
L6. In contrast, a sufficiently high-order DG scheme in CODA was able to achieve the expected accuracy
requirement for the lift coefficient on all four grids tested; a sixth-order DG scheme was required on grid
L0 while a fifth-order scheme was adequate on grids L1 and L2. The lift coefficient does not drop much
further on grid L0 when moving to seventh- and eighth-order DG schemes which suggests that using
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Figure 6. Grids L0 (top) and L2 (bottom) used for laminar flow past square cylinder case.

Figure 7. Steady-state lift and drag coefficients for laminar flow past square cylinder case. Faint lines
for lift coefficients are plotted based on a theoretical purely two-dimensional DG formulation.

a finer mesh might be useful. For grid L3, our criterion on the lift coefficient was met with third-order
DG. The slopes for the DG curves are significantly steeper than those for the FV schemes indicating
that, for a given problem size, increasing the order of the DG scheme (p-refinement) results in better
accuracy than using a finer mesh (h-refinement) with a FV scheme. It must be emphasised that the DG
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Figure 8. Streamwise momentum component of unstable direct modes computed on grid L0 with CODA.

results are plotted against the number of DOF for the three-dimensional formulation. Using the number
of DOF actually required for this purely two-dimensional problem would lead to even better estimates
for the accuracy of DG schemes as this would not only shift the curves to the right but also increase their
slopes as seen from the faint lines in Fig. 7(a). Figure 7(b) indicates that the drag coefficient converges
to a value of approximately CD = 1.5274, judging from the results of the FV computation in TAU and
the DG computations in CODA. Using this approximate value as a reference, it can be seen that the FV
scheme in TAU is more accurate than that in CODA on a given grid. For a given number of DOF, third-
and higher-order DG schemes are more accurate than the FV scheme in CODA.

Similar to the circular cylinder case earlier, this case also possesses an unstable mode at the chosen
flow conditions. The complex shift for the Krylov–Schur computations was chosen based on numerical
experiments on the coarse L0 and L1 grids, specifically σ = 0.1 + i0.63. Only the direct eigenvalue
problem in Equation (2) was considered for this case. Figure 8 shows the real parts of the streamwise
momentum component ρ̂u of the unstable mode computed on grid L0 with CODA. The DG results
were mapped onto grid L4 to visualise the sub-cell variation. The results were scaled as described for
the circular cylinder. It is apparent that the vortex shedding pattern becomes better defined as the order
of the DG scheme increases. Note that at nominal second order, the DG2 formulation gives improved
results compared with the FV scheme, when judging visually from the wake structures.

The non-dimensional eigenvalues λJ for the unstable mode are plotted in Fig. 9. It can be noticed that
the FV scheme in CODA does not predict the leading mode as unstable on grids L0 to L2, as evident
from the negative real parts of the eigenvalue, but the FV scheme in TAU does so on all grids. With
the exception of the second-order DG scheme on grids L0 and L1, all the DG computations are able
to capture the unstable mode. The eigenvalues appear to converge with both h- and p-refinements. The
closeup view in Fig. 9(b), which shows the most converged eigenvalues for each case, suggests that the
remaining error, with respect to the true eigenvalue of the continuous equations, for the accomplished
refinement levels is less than 0.03% (taking eighth-order DG on grid L0 and fifth-order DG on grid L2 as
the worst and best solution, respectively). Since we do not know the true eigenvalue of the continuous
equations, we resort to measuring the convergence of the eigenvalues using relative changes in their
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Table 2. Eigenvalues for laminar flow past square cylinder case using FV schemes

TAU CODA

λJ �λJ λJ �λJ

L0 1.9583e-02 + i5.5053e-01 — −1.3821e-01 + i5.5898e-01 —
L1 4.4385e-02 + i5.9324e-01 8.6e-02 −7.6152e-02 + i5.7223e-01 1.1e-01
L2 3.7634e-02 + i6.3509e-01 6.9e-02 −8.7558e-03 + i6.1066e-01 1.3e-01
L3 2.0590e-02 + i6.4032e-01 2.8e-02 1.2061e-02 + i6.3210e-01 4.8e-02
L4 1.6503e-02 + i6.3962e-01 6.5e-03 1.4823e-02 + i6.3792e-01 1.0e-02
L5 1.5505e-02 + i6.3935e-01 1.6e-03 1.5145e-02 + i6.3890e-01 1.6e-03
L6 1.5255e-02 + i6.3927e-01 4.1e-04 1.5205e-02 + i6.3912e-01 3.6e-04

Figure 9. Non-dimensional eigenvalues of the unstable mode for laminar flow past square cylinder
case.

magnitudes instead. For the FV computations, the relative changes are computed over successive grid
levels (h-refinement), whereas for the DG computations, they are computed over successive orders of
the DG scheme (p-refinement) for a fixed grid level. Given the eigenvalues on successive refinement
levels upon h- or p-refinement, specifically λ

j
J and λ

j−1
J , the relative change is defined as

�λJ =
∣∣λj

J − λ
j−1
J

∣∣
1
2

(∣∣λj
J

∣∣ + ∣∣λj−1
J

∣∣) . (15)

The non-dimensional eigenvalues λJ and their relative changes �λJ are given in Table 2 for FV
computations and in Tables 3–5 for DG computations.

As expected, the value of the relative changes in the eigenvalues decreases with refinement in general.
Initially, the eigenvalues computed using CODA’s FV scheme undergo larger changes with grid refine-
ment than those computed using TAU’s FV scheme indicating that the eigenvalues computed on the
coarser meshes using the former solver are further away from the exact value than those computed using
the latter. Despite the initial slow convergence, FV computations on the finest grids L5 and L6 show
similar convergence trends (cf. Table 2). This can also be confirmed in Fig. 9(b) in which the eigenval-
ues computed on grid L5 using the FV schemes in CODA and TAU are somewhat equidistant from the
true value of the continuous equations, which should be in the vicinity of the eigenvalue computed using
fifth-order DG scheme on grid L2. It can be seen from Table 3 that a sixth-order DG scheme on grid
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Table 3. Eigenvalues for laminar flow past square
cylinder case using DG on grid L0

λJ �λJ

DG2 −8.8413e-02 + i5.9145e-01 —
DG3 1.0756e-02 + i6.1276e-01 1.7e-01
DG4 1.7415e-02 + i6.3747e-01 4.1e-02
DG5 1.5754e-02 + i6.3848e-01 3.0e-03
DG6 1.5004e-02 + i6.3884e-01 1.3e-03
DG7 1.5106e-02 + i6.3922e-01 6.0e-04
DG8 1.5342e-02 + i6.3931e-01 4.0e-04

Table 4. Eigenvalues for laminar flow past square
cylinder case using DG on grid L1

λJ �λJ

DG2 −1.5398e-02 + i6.0585e-01 —
DG3 1.6835e-02 + i6.3604e-01 7.1e-02
DG4 1.5345e-02 + i6.3888e-01 5.0e-03
DG5 1.5235e-02 + i6.3905e-01 3.2e-04
DG6 1.5235e-02 + i6.3908e-01 4.1e-05
DG7 1.5217e-02 + i6.3909e-01 3.4e-05

Table 5. Eigenvalues for laminar flow past square
cylinder case using DG on grid L2

λJ �λJ

DG2 1.0705e-02 + i6.2766e-01 —
DG3 1.5314e-02 + i6.3891e-01 1.9e-02
DG4 1.5217e-02 + i6.3912e-01 3.6e-04
DG5 1.5207e-02 + i6.3915e-01 5.9e-05

L0 surpasses this with only 0.13% change in the eigenvalue, while an eighth-order DG scheme on grid
L0 achieves similar accuracy as the FV scheme in TAU on grid L6. The convergence of the eigenvalues
computed using DG schemes improves on grid L1 with 0.0034% change for a seventh-order scheme and
grid L2 with 0.0059% change for a fifth-order scheme. Finally, the mode computed on grid L3 using
third-order DG is almost identical (with a 0.002% difference) to that of the fifth-order DG scheme on
grid L2.

While the advantages of DG schemes for the non-linear flow problem are often stated in the lit-
erature in terms of computational cost, for the herein presented linearised stability analysis it can be
said that high-order DG schemes were able to achieve a given level of convergence (measured using
�λJ) much faster than the FV scheme. For instance, CODA FV computation on grid L5 and sixth-order
DG scheme on grid L0 both achieved the same level of convergence but the computation time for the
latter was an order of magnitude lower than the former. However, this is a rather intricate discussion;
for instance, convergence can be strongly affected by the condition number of the shift-invert matrix
eigenvalue problem.
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5.0 Summary
The Krylov–Schur algorithm for solving large eigenvalue problems has been implemented within the
framework of the next-generation flow solver CODA. The implementation was validated using laminar
flow past a circular cylinder case for which the eigenvalues and eigenvectors computed using the FV
scheme in CODA were shown to agree qualitatively with those computed using the FV scheme in TAU
for both the direct and adjoint eigenvalue problems. The case of laminar flow past a square cylinder was
used to investigate the possible benefits of using high-order DG schemes over FV scheme for solving the
eigenvalue problem. The results presented herein demonstrate that, unlike the FV schemes which require
very fine meshes, high-order DG schemes lead to well-converged eigensolutions on coarser meshes at
a lower computational cost.
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Appendix A

Algorithm 1. Krylov–Schur algorithm.
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Appendix B
The diagonal elements of the upper-triangular matrix Sk need to be reordered using orthogonal similarity
transformations prior to the restart. Without loss of generality, let us consider a 2 × 2 upper-triangular
matrix

S2 =
[

a b

c

]
, (16)

to which we apply an orthogonal similarity transformation S′
2 = US2UH which swaps the diagonal ele-

ments a and c while keeping S′
2 upper-triangular. Let us assume that a = c since if a = c, no swapping

would be needed in the first place. A 2 × 2 orthogonal matrix U can be written as

U =
[

p q

qH −pH

]
, (17)

where ppH + qqH = 1. Since we require the bottom-left element of S′
2 to be zero, we arrive at the

condition

qH
(
dpH − bqH

) = 0, (18)

where d = c − a. Setting qH = 0 satisfies the condition but it leads to the trivial case U = I which does
not swap the diagonal elements. Therefore, the term inside the brackets must vanish and Equation (18)
reduces to

pH

qH
= b

d
. (19)

Since a = c, the denominator on the right-hand side does not vanish. Similarly, since qH = 0 is not
considered, the denominator on the left-hand side also does not vanish. Multiplying Equation (19) with
its complex conjugate and substituting qqH = 1 − ppH leads to

ppH = bbh

bbH + ddH
. (20)

We can choose p to be real and positive with a magnitude equal to the square root of the value on the
right-hand-side of Equation (20). The value of q can be obtained from Equation (19) as q = pdH/bH .

To prove that the diagonal elements are indeed swapped, let us compute the top-left element of S′
2

and show that it is equal to c;

appH + bpqH + cqqH = appH + bpqH + c
(
1 − ppH

)
= c − dppH + bpqH

= c − p������(
dpH − bqH

)
= c

The cancellation in the third line occurs due to Equation (19). A similar computation of the bottom-
right element of S′

2 shows that it is equal to a. Alternatively, one can reason that since an orthogonal
similarity transformation preserves the eigenvalues and since the eigenvalues of an upper-triangular
matrix appear on its diagonal if the top-left element of S′

2 is c, the bottom-right element of S′
2 must

be a.
In the current implementation, the diagonal elements of Sk are reordered by repeatedly sweeping down

the diagonal and swapping adjacent diagonal elements as needed until no more swaps occur during a
sweep. If we wish to swap diagonal elements sj and sj+1, the similarity transformation matrix V can be
constructed by replacing the 2 × 2 diagonal block of a k × k identity matrix at location (j, j) with the
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2 × 2 orthogonal matrix, specifically

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. . .

p q

qH −pH

. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)
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