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AN INVENTORY SYSTEM WITH BOTH DELAYED
AND IMMEDIATE DELIVERY

PETER W. HOVEY,* University of Dayton Research Institute
PETER PURDUE,** University of Kentucky

Abstract

An MlG]» queue that is cleared whenever the level Q is exceeded
plays the role of the outstanding orders process in an inventory
system. The stationary version of the process is examined and an
interesting property of the variance is illustrated.

INFINrrE-SERVER QUEUE

1. Introduction

Let us consider an inventory system in which single demands occur according to a
Poisson process at rate A, and each demand must be met at once. When a demand
arrives, an item is removed from inventory and an order for a replacement is sent which
requires a random length of time with d.f. G, for delivery. All outstanding orders are
delivered as soon as a demand arrives to an empty system. Let Q be the initial size of
the inventory; then as soon as the system is completely depleted the number of
outstanding items is Q + 1. We shall assume here that Q is known and examine the
behavior of the inventory system.

Let I(t) denote the number of items in stock, and Z(t) the number of items on order
at time t. Then for all t, 0 ~ Z(t) ~ Q, and

(1) I(t) = Q - Z(t).

The process [Zfr): t~O} behaves as an Ml G}» queue that is cleared back to 0 at the
time of entry into state Q + 1. Following Miller (1972), it is easy to see that this process
is regenerative and is built up from a tour [X(t), T] where Xfr) is the content at t of an
MlGli» queue and T is the first-passage time of this process into state Q + 1. Let
{Z*(t); t ~ O} be the stationary version of the Z process; we study the behavior of the
variance of Z*(O) and, consequently, of the stationary inventory process. Related work
on cleared processes is due to Stidham (1974) and Whitt (1981).
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2. Main results

Let T(k, 0) denote the time spent, during a tour, in state k. Then, from Ross (1970)
we have

k =0,1, ... ,0.(2) P[Z*(t) = k] = E[T(k, 0)]
E(T) ,

Letting q(t) = AS:> [1- G(x)] dx, we have

(3) P[Z*(t) = k] = _1_1 00

{e~q(t)qk(t) P[X(t) = k, T~ tJ} dt (k ~ 0).
E(T) 0 k!

This follows from the law of total probabilities. When G is exponential with mean 1/ IJ- a
major simplification of (3) is possible.

Theorem 1. When the delivery time is exponential then

(i) E(T).: f (0 + 1) k~ , (ii) E[Z*(t)J =P[l- Q(+ 1)]
A i=() k+ 1 pET

(iii) Var [Z*(t)] = P[l- 0+1 {O + 2 _ P(l-°+ I)}]
AE(T) 2 E(D

where, p = A/IJ-.
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Figure 1. Mean and variance, P = 10
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Prooi. The result (i) is well known. Result (ii) follows after some tedious algebra from
Equation (3). An important step in deriving (ii) is to note that P[X(t) = k, T~ t] =
S~P[X(t - s) = k IX(O) = Q + 1] ds. Result (iii) also follows directly. Now, from Equation
(1),

E[I*(t)] = Q - E[Z*(t)], Var[I*(t)] = Var [Z*(t)].

3. Comments

As Q increases, we expect that the mean and variance of Z*(t) should converge to p;
a little algebra shows that this is indeed so. For the mean, E[Z*(t)] converges
monotonically to p as Q ~ 00. However, this is not so for Var [Z*(t)]. For p small, the
convergence is monotonic but it fails to be so as p increases. We can best illustrate this
by examining some numerical results. For p = 20 the lack of monotonicity is obvious
and this departure from monotone convergence increases as p increases (see Figures 1,
2 and 3; means are represented by crosses and variances by squares for increasing values
of Q). Although we do not have an analytic result, the peak value of the variance seems
to occur when Q and p are roughly equal. We can offer an informal explanation for the
phenomenon. For a given value of p when Q is small there is very little chance that any
orders will be delivered before the inventory level hits 0 and so there is little variability.
When Q is very large the system is for all intents and purposes an MJM}» queue and
this again is not very variable. The only possiblity for any high degree of variability is
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Figure 2. Mean and variance, p = 12
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Figure 3. Mean and variance, P = 20

when 0 is neither too big nor too small. We note that when p is large and the queue
size is small, the number of departures is small compared to the number of arrivals. In
this case the system acts much like a pure birth or Poisson process. Stidham has shown
that the limiting distribution for a Poisson process cleared at level 0 + 1 is uniform on
[0,0]. The mean and variance would then be 0/2 and [0(0+2)]/12, respectively. For
large values of o, the curves of the variance of V*(O) tend to follow the variance of a
uniform distribution. As 0 gets larger, and into the 'likely' range of the limiting
distribution of an MlM]» queue, the variance decreases again.
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