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We perform interface-resolved simulations to study the modulation of statistically
steady-state homogeneous shear turbulence by neutrally buoyant finite-size particles. We
consider two shapes, spheres and oblates, and various solid volume fractions, up to
20 %. The results show that a statistically steady state is not exclusive to single-phase
homogeneous shear turbulence as the production and dissipation rates of the turbulent
kinetic energy are also statistically in balance in particle-laden cases. The turbulent
kinetic energy shows a non-monotonic behaviour with increasing solid volume fraction:
increasing turbulence attenuation up to a certain concentration of solid particles and then
enhancement of the turbulent kinetic energy at higher concentrations. This behaviour is
observed at lower volume fractions for oblate particles than for spheres. The attenuation of
the turbulence activity at lower volume fractions is explained through the enhancement of
the dissipation rate close to the surface of particles. At higher volume fractions, however,
particle pair interactions induce regions of high Reynolds shear stress, resulting in the
enhancement of the turbulence activity. We show that the oblate particles of the considered
size have larger rotational rates than spheres with no preferential orientation. This is in
contrast to previous studies in wall-bounded flows where preferential orientation close to
the wall and reduced rotation rates result in turbulence attenuation and thus drag reduction.
Our results shed some light on the effect of rigid particles, smaller than the near-wall
turbulent structures but still comparable to the viscous length scale, on the dynamics of
the equilibrium logarithmic layer in wall-bounded flows.

Key words: suspensions

1. Introduction

The occurrence of dispersed two-phase flows is widespread in many environmental and
industrial applications. Sediment transport in estuaries (Mehta 2013), blood flow in the
human body, pyroclastic flows from volcanoes and pulp fibers in paper making (Lundell,
Söderberg & Alfredsson 2011) are among the examples of flows that deserve further
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investigation. When the Reynolds number is sufficiently high, the flow becomes turbulent,
with chaotic and multiscale dynamics. In this regime, any solid object comparable to the
smallest scales of the flow can alter the turbulent structures at or below its size directly and
change the whole picture of the large eddies indirectly (Naso & Prosperetti 2010), leading
to turbulence modulation at large enough volume fractions (Lucci, Ferrante & Elghobashi
2010; Tanaka & Teramoto 2015).

1.1. Homogeneous isotropic turbulence
The dynamics of small particles in homogeneous isotropic turbulence has been the
subject of several earlier direct numerical simulation studies (Squires & Eaton 1990;
Elghobashi & Truesdell 1993; Boivin, Simonin & Squires 1998; Sundaram & Collins
1999). Spherical particles (or droplets) in isotropic turbulence can be categorised by
their size relative to the smallest turbulent length scale – the Kolmogorov length scale η
(Balachandar & Eaton 2010; Dodd & Ferrante 2016). The turbulence modulation induced
by sub-Kolmogorov particles (D < η) is fully characterised by their response time with
respect to the Kolmogorov time scale (Stokes number Sk) (Ferrante & Elghobashi 2003;
Yang & Shy 2005). When the Stokes number is sufficiently large (Sk � 1), the main effect
of these particles is to suppress the energy of eddies of all sizes, while for Stokes number
of the order of unity the turbulence energy of all eddy sizes increases. For Stokes numbers
between these two limits, the energy of the larger eddies is suppressed, whereas the energy
of the smaller ones is enhanced (Poelma & Ooms 2006).

The Stokes number is no longer an appropriate predictor of turbulence modulation when
the particles are larger than the Kolmogorov length scale (D > η) (Lucci, Ferrante &
Elghobashi 2011). The presence of finite-size particles (particles comparable to or larger
than than the smallest hydrodynamic scales of the flow) can change the turbulent structures
at or below the particle size (Naso & Prosperetti 2010; Homann, Bec & Grauer 2013).
These interactions modulate the turbulence activity, i.e. augmentation and attenuation;
see, for example, the studies in homogeneous isotropic turbulence by Lucci et al.
(2010), Fornari, Picano & Brandt (2016b) and Fornari et al. (2019), the latter including
sedimentation. Ten Cate et al. (2004) revealed that large, finite-size particles reduce the
turbulent kinetic energy at large scales, while noticeably increasing the dissipation rate due
to the fluid motion at particle scales. Lucci et al. (2010) further showed that particles of
the order of the Taylor length scale always reduce the turbulent kinetic energy, contrary to
the sub-Kolmogorov particles. Those authors attributed this to the increased rate of strain
close to the particle surface which in turn increases the dissipation rate. More recently,
Schneiders, Meinke & Schröder (2017) showed that spherical particles of the Kolmogorov
length scale absorb energy from the large scales of the carrier flow while the small-scale
turbulent motion is determined by the inertial particle dynamics as the rotational motion
of the particles decouples from the local fluid vorticity.

The dynamics of homogeneous isotropic turbulence in the presence of finite-size
non-spherical particles is less understood (Prosperetti 2015). Recent experimental
measurements shed light on the dynamics of finite-size elongated particles and their
interaction with homogeneous isotropic turbulence. Bellani & Variano (2012) showed that
prolate spheroids inject in the flow more turbulent kinetic energy at small scales than
spherical particles. Bordoloi & Variano (2017) reported that large elongated particles,
unlike sub-Kolmogorov ones, do not exhibit a preferential rotation about the symmetry
axis. Schneiders et al. (2019) studied heavy Kolmogorov-size spheroidal particles in
decaying isotropic turbulence. Those authors found that the decay rates of the fluid and
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particle kinetic energy increase with the particle aspect ratio and are substantially larger
than those for spherical particles.

1.2. Wall-bounded turbulent flows
In wall-bounded flows, the turbulence modulation by finite-size particles is more complex
and less predictive as the confinement effect of the wall creates additional implications.
The first simulations of finite-size particles in a turbulent channel flow were performed
by Pan & Banerjee (1996). Those authors revealed that turbulent fluctuations and stresses
increase in the presence of the solid phase. Matas, Morris & Guazzelli (2003), Loisel
et al. (2013) and Yu et al. (2013) reported a decrease of the critical Reynolds number
for transition to turbulence in the semi-dilute regime with neutrally buoyant spherical
particles. Picano, Breugem & Brandt (2015) investigated dense suspensions in turbulent
channel flow up to a volume fraction of 20 %. Their study revealed that the overall drag
increase is due to the enhancement of the turbulence activity up to a certain volume
fraction (φ ≤ 10 %) and to significant particle-induced stresses at higher concentrations.
Costa et al. (2016) explained that the turbulent drag of sphere suspensions is always higher
than that predicted by only accounting for the effective suspension viscosity for particle
sizes of the order of 20 viscous units. They attributed this increase to the formation of
a particle–wall layer, a layer of spheres forming near the wall in turbulent suspensions.
Based on the thickness of the particle–wall layer, they proposed a relation able to predict
the friction Reynolds number as a function of the bulk Reynolds number (Costa et al. 2016,
2018). Ardekani, Rosti & Brandt (2019) showed in a numerical experiment that removing
the particle–wall layer results in turbulence attenuation with respect to single-phase flow,
while the presence of this layer contributes to larger velocity fluctuations close to the wall
for lower particle volume fractions.

Studies of finite-size non-spherical particles in a turbulent channel flow are more
scarce in the literature (Do-Quang et al. 2014; Ardekani et al. 2017; Eshghinejadfard,
Hosseini & Thévenin 2017; Eshghinejadfard, Zhao & Thévenin 2018; Ardekani & Brandt
2019). Those studies showed that prolate and oblate spheroids preferentially align with
the wall in its vicinity, experiencing considerably smaller rotational rates with respect
to spheres. This dampens the wall-normal velocity fluctuations and thus attenuates the
turbulence. For prolate particles, this effect is less pronounced since their larger angular
velocities create additional counteracting stresses (Ardekani & Brandt 2019).

1.3. Homogeneous shear turbulence
In the limit of very large Reynolds numbers, particle-resolved simulations of wall-bounded
multiphase flows are no longer feasible. However, investigating particle suspension
in homogeneous shear turbulence (HST) (Tavoularis & Corrsin 1981a,b; Pumir 1996;
Mashayek 1998; Sekimoto, Dong & Jiménez 2016; Rosti et al. 2019) can provide us with
clues on multiphase flow behaviour in this regime. In HST, the flow remains statistically
homogeneous in all spatial directions while the turbulence is sustained through a natural
energy production mechanism, owing to the presence of a mean velocity gradient. Given
a linear mean velocity (constant shear rate), HST simulations reproduce the dynamics
of the equilibrium logarithmic layer in wall-bounded turbulence (Sekimoto et al. 2016).
Even though the ideal HST is self-similar with unbounded energy growth (Sukheswalla,
Vaithianathan & Collins 2013), considering a finite computational domain bounds the
large eddies and affects the flow similarly to the confinement effect enforced by a wall.
Indeed, Pumir (1996) showed that a statistically stationary state can be reached over long
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periods of time, denoted SS-HST. Most of the simulations of Pumir (1996) were performed
in a cubic box, while Sekimoto et al. (2016) revealed that an appropriate box aspect
ratio is essential to reproduce one- and two-point statistics that agree with those in the
logarithmic layers in turbulent channel flows. Dong et al. (2017) further compared the
dynamics between SS-HST and turbulent channel flow.

Most recently, suspensions of finite-size solid spherical particles in transient HST have
been investigated in the dilute regime (Tanaka & Teramoto 2015; Tanaka 2017). It has
been shown in those numerical studies that the turbulence kinetic energy is attenuated
in the presence of spherical particles. Motivated by this, we study here the modulation
of SS-HST at high particle concentration and by particles of different shapes, for the
first time. We use interface-resolved simulations to investigate neutrally buoyant spherical
and oblate particles (with aspect ratio 1/3) in SS-HST up to volume fractions of 20 %
and 10 %, respectively. The particle size is ≈ 20 Kolmogorov length scales, of the order
of the Taylor microscale. The results are compared with those for wall-bounded flows
(Ardekani & Brandt 2019). The paper is organised as follows. The governing equations,
numerical method and the flow geometry are introduced in § 2, followed by the results of
the numerical simulations in § 3. The main conclusions and final remarks are presented
in § 4.

2. Methodology

2.1. Governing equations
The evolution of the fluid phase is described by the incompressible Navier–Stokes
equations for a Newtonian fluid:

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = −∇p
ρ

+ ν∇2u + f , (2.2)

where u is the fluid velocity vector, ρ and ν the fluid density and kinematic viscosity and p
the pressure. The last term on the right-hand side of (2.2) accounts for the presence of the
particles through immersed boundary method (IBM) forcing, active close to their surface
(see § 2.2.3).

By decomposing the velocity field into u = U + u′, where U = (Sy, 0, 0) is the mean
shear flow, with S the shear rate, and u′ = (u′, v′,w′) the velocity fluctuations in the
streamwise, normal and spanwise directions, the equations for the fluctuations are

∇ · u′ = 0, (2.3)

∂u′

∂t
+ Sy

∂u′

∂x
+ Sv′ x̂ + (

u′ · ∇)
u′ = −∇p

ρ
+ ν∇2u′ + f . (2.4)

Here, the third term on the left-hand side of (2.4) denotes the advection of the mean shear
by the velocity fluctuations and is responsible for the turbulent energy production in HST.

The dynamics of the rigid particles is governed by Newton–Euler equations for the
conservation of linear and angular momentum:

mp
dup

dt
=

∮
∂Ωp

τ · n dA + F col, (2.5)
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Ip
dωp

dt
=

∮
∂Ωp

r × (τ · n) dA + T col, (2.6)

where up and ωp are the particle linear and angular velocity vectors, mp and Ip denote the
particle mass and moment of inertia, r is the position vector with respect to the particle
centre and n is the outward-pointing normal to the particle surface ∂Ωp. The fluid stress
tensor is given by τ = −pI + νρ(∇u + ∇uT). Finally, F col and T col denote the force and
torque resulting from short-range particle–particle interactions, such as lubrication and
collisions.

The sets of equations governing each phase are coupled through the no-slip and
no-penetration condition at the particle surface, i.e.

u|∂Ωp = up + ωp × r. (2.7)

2.2. Numerical method
The governing equations are solved numerically, using the method proposed by Gerz,
Schumann & Elghobashi (1989), which employs the shear-periodic boundary condition.
This was later modified by Tanaka (2017) to also handle the dispersed phase, using IBM,
and is explained briefly here.

2.2.1. Fluid phase
To solve the equation for the fluid velocity fluctuations (equation (2.4)), we treat the

advection by the mean shear flow Sy(∂u′/∂x) separately, by means of discrete Fourier
interpolation. All other terms are evolved using a three-step Runge–Kutta method, except
the pressure gradient term, for which the Crank–Nicolson scheme is used. The equations
are discretised in space on a uniform, staggered Cartesian grid with the finite-volume
method in which spatial derivatives are estimated with the central-differencing scheme;
see Breugem (2012) for details of convergence proof, order of accuracy and validation of
the flow solver. In particular, the first prediction velocity u∗ is obtained as

u∗ = (u′)q−1 + Δt
(

− 1
ρ
(αq + βq)∇pq−3/2 + αqRHSq−1 + βq ̂RHS

q−2
)
, (2.8)

where RHS ≡ −Sv′ x̂ − ∇ · (u′u′)+ ν∇2u′, q = 1, 2, 3 denotes Runge–Kutta substeps
and αq = (8/15, 5/12, 3/4) and βq = (0,−17/60,−5/12) are the Runge–Kutta
coefficients. Note that the term R̂HS

q−2
is advected by the mean shear. This modification,

introduced by Tanaka (2017), enhances the stability and accuracy of the scheme and is
performed by discrete Fourier interpolation:

̂RHS
q−2
(x, y, z) = RHSq−2(x − S(αq−1 + βq−1)Δty, y, z). (2.9)

In the next step, the first prediction velocity and pressure are advected by the mean shear
flow, again using discrete Fourier interpolation:

û(x, y, z) = u∗(x − S(αq + βq)Δty, y, z), (2.10)

p̂(x, y, z) = pq−3/2(x − S(αq + βq)Δty, y, z). (2.11)
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The second prediction velocity u∗∗ is then obtained as

u∗∗ = û − (αq + βq)Δt
ρ

∇q−1/2p̂, (2.12)

where the operator ∇q−1/2 evaluates the pressure gradient at the substep q − 1/2 and is
defined as in Tanaka (2017) as

∇q−1/2 =
(
∂

∂x
,
∂

∂y
+ S(αq + βq)

Δt
2
∂

∂x
,
∂

∂z

)
. (2.13)

Given the source term f , which accounts for the interaction between the dispersed phase
and the carrier fluid using IBM (Breugem 2012; § 2.2.3), the third prediction velocity u∗∗∗

is obtained as

u∗∗∗ = u∗∗ + (αq + βq)Δtf q−1/2. (2.14)

Finally, after solving the Poisson equation for the correction pressure p̃,

∇∇q−1/2p̃ = ρ

(αq + βq)Δt
∇ · u∗∗∗, (2.15)

the velocity and the pressure are corrected as

(u′)q = u∗∗∗ − (αq + βq)Δt
ρ

∇q−1/2p̃, (2.16)

pq−1/2 = p̂ + p̃. (2.17)

2.2.2. Shear-periodic boundary condition
The advection by the mean shear flow makes it impossible to seek for periodic solutions

in the normal direction. In this direction, the so-called shear-periodic boundary condition
holds (Gerz et al. 1989), which, for an arbitrary quantity h, reads as

h(t, x, y + Ly, z) = h(t, x − StLy mod Lx , y, z), (2.18)

where Lx and Ly are the size of the computational domain in the streamwise and normal
directions.

2.2.3. Dispersed phase and IBM forcing
The fluid and solid phases interact through the direct forcing IBM; see, for example,

Kajishima & Takiguchi (2002) where the authors used a volume of fluid approach to
account for the presence of the particles and Uhlmann (2005) and Breugem (2012)
where the surface of the particles is tracked via a set of Lagrangian points. The method
has been validated and used extensively for unbounded (see e.g. Ardekani et al. 2016;
Fornari, Ardekani & Brandt 2018) and wall-bounded (see e.g. Lashgari et al. 2017;
Ardekani & Brandt 2019) flows laden with finite-sized spheroidal particles. In this
approach, the particles are discretised by a set of Lagrangian points, uniformly distributed
along their surface. The procedure to integrate the Newton–Euler equations is similar to
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that for the fluid phase. First, we decompose the particle velocity up into the mean fluid
velocity at the centroid of the particle ū(xp) and a fluctuation velocity u′

p:

up = ū(xp)+ u′
p = Syp x̂ + u′

p, (2.19)

where xp = (xp, yp, zp) is the position vector of the particle centroid. Next, the particles
and the Lagrangian grid points attached to them are advected by the mean shear flow:

x̂p
q−1 = xq−1

p + (αq + βq)Δtū(yq−1
p ), (2.20)

X̂ l
q−1 = X q−1

l + (αq + βq)Δtū(yq−1
p ), (2.21)

where X l denotes the position vector of the lth Lagrangian grid point. The next steps to
calculate the IBM force are similar to Breugem (2012): first, interpolation of the first fluid
prediction velocity u∗ from the Eulerian to the Lagrangian grid; then, calculation of the
IBM force, using the slip velocity between the fluid velocity fluctuations and that of the
particles at the location of each Lagrangian grid point; finally, spreading the resulting IBM
force from the Lagrangian to the Eulerian grid. The interpolation and spreading operations
are done using the regularised Dirac delta function of Roma, Peskin & Berger (1999),
which acts over three grid points in all coordinate directions.

When the gap between two particles is smaller than the grid spacing, the IBM fails
to resolve the hydrodynamic interactions. Therefore, we use a lubrication correction
model, based on the asymptotic analytical expression for the normal lubrication force
between spheres of different sizes (Jeffrey 1982), for subgrid hydrodynamic interactions.
Spheroidal particles are approximated as spheres with radius equal to the local radius
of curvature of the spheroidal particle (Ardekani et al. 2016). This lubrication force is
kept constant below a second threshold for the distance between particles, to account for
the surface roughness of the particles. When particles are in collision, the lubrication
force is turned off, and a collision force based on the soft sphere model is activated. The
collision model works based on a mass–spring–damper system in the directions normal
and tangential to the contact line between the overlapping particles, and calculates the
collision force based on the particle relative velocity and overlap. Details of the collision
model are provided in Costa et al. (2015), later adapted by Ardekani et al. (2017) to model
the close-range interactions between spheroidal particles.

2.3. Computational set-up
In this study, we simulate a suspension of rigid neutrally buoyant spherical/oblate particles,
subjected to a uniform mean shear flow. The spherical and oblate particles have the
same volume V and their characteristic length is denoted by Deq = (6 V/π)1/3, i.e. the
diameter of a sphere with the same volume. The dimensions of the computational
box are Lx × Ly × Lz = 40Deq × 20Deq × 19Deq, with Nx × Ny × Nz = 1280 × 640 ×
608 Eulerian grid points in the streamwise, normal and spanwise directions. The aspect
ratios of the computational box are chosen as Lx/Lz ≈ 2.1 and Ly/Lz ≈ 1.05; the
steady-state simulations of HST are considered as minimal in the spanwise direction,
i.e. containing on average only a few large-scale structures along the spanwise direction
(Rogers & Moin 1987; Sekimoto et al. 2016). The flow is periodic in the streamwise and
spanwise directions, with the shear-periodic boundary condition imposed at the top and
bottom boundaries.

The non-dimensional numbers that characterise the fluid phase are the Taylor microscale
Reynolds number Reλ and the shear-rate parameter S∗, which manifests the ratio of the
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Case AR Np φ η/Deq λ/Deq l0/Deq Sk Sτη

Si — — — 0.041 0.932 15.81 — 0.073
Sp1 1 291 1 % 0.041 0.931 15.91 48.15 0.073
Sp5 1 1455 5 % 0.042 0.929 16.13 45.04 0.078
Sp10 1 2910 10 % 0.042 0.922 16.40 48.15 0.073
Sp20 1 5820 20 % 0.038 0.901 17.72 58.18 0.060
Ob5 1/3 1455 5 % 0.042 0.915 16.11 45.04 0.078
Ob10 1/3 2910 10 % 0.041 0.912 16.42 49.87 0.070

TABLE 1. Parameters of the main simulation cases: Np denotes the number of particles; l0 ≡∫ ∞
0 k−1E(k) dk/

∫ ∞
0 E(k) dk is the integral length scale, with E(k) the energy spectrum at each

wavenumber k; Sk = τp/τη denotes the Stokes number, with τp = (ρf + 2ρp)D2
eq/(36ρf ν) the

particle response time and τη = (ν/ε)1/2 the Kolmogorov time scale. The reported quantities
are statistically averaged when the flow has reached the stationary state.

‘eddy turnover’ time 2K/3ε to the time scale of the mean deformation 1/S (Lee, Kim &
Moin 1990):

Reλ ≡
(

2K
3

)1/2
λ

ν
=

(
5

3νε

)1/2

2K, (2.22)

S∗ = 2SK
3ε

, (2.23)

where the Taylor microscale is defined as λ ≡√
10νK/ε,K = 1/2〈u′2〉1/2 denotes the

turbulent kinetic energy per unit mass, ε = ν〈ω′2〉 is the energy dissipation rate, ω′ =
∇ × u′ is the fluctuating part of the vorticity vector and 〈·〉 indicates statistical average.
To obtain the initial field, we start a single-phase flow case from a homogeneous isotropic
turbulence velocity field with a prescribed energy spectrum and a random phase at the
non-dimensional time St = 0 (Tanaka 2017). The initial microscale Reynolds number
Reλ(St = 0) and shear-rate parameter S∗(St = 0) are set to 113 and 2.9 and change as the
turbulent field develops. When the statistically stationary state (SS-HST) is reached, the
velocity field is saved and used for the particle-laden cases (see § 2.4). The ratio between
the grid spacing and the Kolmogorov length scale – defined as η = (ν3/ε)1/4 – is equal
to 0.16 at the beginning of the simulation and reaches to 0.78 at the steady state, which
guarantees that all scales are well resolved.

The particles are neutrally buoyant, with a relative size of Deq/η ≈ 20 at St = 0.
We consider particles with aspect ratio (ratio of polar over equatorial radius) AR = 1
(spheres) and AR = 1/3 (oblates). The surface of the particles is tracked, using 3219
Lagrangian grid points for spheres and 3720 in the case of oblates. The particles are
introduced randomly into the computational domain, with initial velocity equal to the local
mean flow velocity. The physical and computational parameters of the main simulation
cases are summarised in table 1. The cases pertaining to spherical particles are denoted
as Spx , whereas Obx is used for oblate particles. The number x defines the solid volume
fraction. We perform simulations at four different volume fractions φ = 1 %, 5 %, 10 %
and 20 % for the spheres and at two volume fractions φ = 5 % and 10 % for the oblates,
with a single-phase case for direct comparison. Due to the higher computational cost of the
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FIGURE 1. (a) Time history of the turbulent kinetic energy K = 〈u′
iu

′
i〉/2 (black line) and

enstrophy Ω (green line), normalised by their mean values. (b) Probability density function
(p.d.f.) of the streamwise (blue), normal (red) and spanwise (green) components of the velocity,
normalised by their r.m.s. values for the case Si. (c) Time history of the ratio between the
turbulent production P = −S〈u′v′〉 and the turbulent dissipation rate ε = μ〈∂u′

i/∂xj∂u′
i/∂xj〉

for the cases Si (black) and Sp5 (red).

interface-resolved simulations of oblate particles, we do not simulate a case with φ = 20 %
and φ = 1 %; in the latter case, however, it has been shown in previous studies that shape
effects, like excluded volume effect, are not significant for volume fractions φ < 5 % (see
e.g. Fornari et al. 2016a; Ardekani et al. 2017). Hence, the statistics would be relatively
close to those pertaining to the case of spheres at φ = 1 % and to the single-phase flow.

2.4. Validation and characteristics of statistically stationary state
To test the numerical code for the specific case of HST, the single-phase HST case
Si is assessed against the results of Pumir (1996). The initial homogeneous isotropic
turbulence field, described in the previous section, is subjected to the shear rate S at
St = 0 and statistics are collected afterwards. Figure 1(a) shows the time history of the
box-averaged turbulent kinetic energy (black line) and enstrophyΩ = 〈ωiωi〉 (green line),
normalised by their time-averaged values. Two distinct states are distinguishable through
the time evolution of the flow. First, until St ≈ 30, the turbulent kinetic energy grows
faster than enstrophy, which indicates excess production over dissipation. After the initial
transient state, the flow reaches a statistically stationary state when the production and the
dissipation rates of the turbulent energy are almost in balance. This is characterised by a
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sequence of spikes of the turbulent energy, followed by spikes of enstrophy with a delay
of approximately 5St, which is evident in our results and in those of Pumir (1996).

Figure 1(b) shows the normalised probability density function of the velocity
components. The figure shows that the distributions of the normal and spanwise
components have more extended tails than that of the streamwise component. This is
in agreement with the results of Pumir (1996), suggesting that the strong anistropy may
arise from the anisotropic forcing of HST. In particular, we simulated Run No. 2 in Pumir
(1996) in a cubic box with 256 grid points in each direction. The velocity anisotropy tensor
components bij = 〈u′

iu
′
j/u

′
ku

′
k − δij/3〉 in our simulation are b11 = 0.231, b22 = 0.129 and

b12 = 0.147, and have a maximum difference below 5 % from those reported in the cited
reference.

When the single-phase case Si reaches the statistically stationary state, in which the
production and the dissipation rates of the turbulent kinetic energy are statistically in
balance P ≈ ε (see the black line in figure 1c), the flow field is used to initialise the
multiphase cases. At this point, the turbulence flow parameters evolve from the initial
values to Reλ = 103 and S∗ = 2.4. The rigid particles are introduced randomly with
volume fraction ranging from 1 % to 20 %. The time history of the ratio between the
production and the dissipation rates of the turbulent kinetic energy for case Sp5 (the red
line in figure 1c) confirms that the stationary state is not exclusive to the single-phase
HST; after the introduction of the dispersed phase, the flow goes through a relatively
short transient state and reaches a second steady state, in which the production and the
dissipation rates of the turbulent energy are statistically in balance. In their recent study,
Rosti et al. (2019) documented the existence of a steady state in the presence of deformable
droplets for a similar initial field and geometry.

3. Results

We start by showing snapshots of the flow field and particles. In figure 2 we show the
two cases Sp10 and Ob10, with the instantaneous streamwise velocity u′ contours depicted
on the vertical and horizontal planes. Only particles with streamwise centre coordinate
larger than 0.75Lx are shown in the figure for better clarity. We observe that the level of
the streamwise fluctuations is higher for the case of oblates, suggesting higher turbulent
activity and hence Reλ. Also, more distinct patches of low-speed velocity fluctuations are
present for the case Ob10 compared to Sp10.

3.1. Turbulence modulation
In this first section, we quantify the turbulence modulation by the presence of the particles
by discussing the statistically averaged flow parameters for all the cases. The averaged
Eulerian fluid statistics reported here correspond to mean intrinsic averages. The intrinsic
average of a quantity ξ is computed as

〈ξ〉 =

∑
ijk,t

ξijk,tΨijk,t

∑
ijk,t

Ψijk,t

, (3.1)

where Ψijk,t is the fluid volume fraction at the grid cell ijk and instant t.
Figure 3(a) depicts the Taylor microscale Reynolds number Reλ = (2K/3)1/2λ/ν as a

function of the particle volume fraction φ. The results show that increasing the volume
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(a) (b)
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y
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FIGURE 2. Instantaneous contours of the streamwise velocity u′ on the orthogonal planes xy,
xz and yz for the cases Sp10 (a) and Ob10 (b); for clarity, only particles with streamwise location
larger than 0.75Lx are shown.
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FIGURE 3. (a) Taylor microscale Reynolds number, (b) normalised turbulent kinetic energy K,
(c) Taylor microscale λ and (d) shear-rate parameter S∗ as a function of φ.

fraction of spheres up to φ = 10 % decreases Reλ with respect to the single-phase flow.
However, at φ = 20 % a considerable jump (≈ 17 %) in Reλ is observed, indicating a
non-monotonic effect of the volume fraction. The same behaviour can also be observed
for the oblate particles, with the increase in Reλ happening at a lower volume fraction, i.e.
Reλ is lower for Ob5 compared to Sp5, but attains a higher value than single phase (Si) and
Sp10 at a concentration of 10 % (Ob10).

Figure 3(b,c) displays the change of the turbulent kinetic energy K = 〈u′
iu

′
i〉/2 and of

the Taylor microscale λ =√
10νK/ε, the two parameters defining Reλ, as a function of the

solid volume fraction. The data reveal that the variation of Reλ can be mainly attributed
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FIGURE 4. Spectra of the mean turbulent kinetic energy. The inset shows a magnified view of
the smallest wavenumbers (largest structures).

to the modulation of the turbulent energy by the particles, as K shows the same trend
as Reλ (cf. figure 3a). The Taylor microscale λ, conversely, decreases monotonically with
increasing volume fraction for all the cases; this variation, however, is only ∼3 %. Note
that a reduction of the turbulent energy in a dilute suspension of rigid spheres (φ = 0.5 %)
was also observed in the study by Tanaka & Teramoto (2015) in transient HST. Those
authors show that the increase of the viscous dissipation is responsible for the decrease of
the turbulent energy.

Finally, figure 3(d) shows the variation of the shear-rate parameter S∗ = 2SK/3ε as a
function of the volume fraction for all cases under consideration. The trend is similar to
that of the Taylor microscale that can be seen in figure 3(b). The shear-rate parameter
is defined using the dissipation length ld = (2K)3/2/ε, the length scale associated with
energy-containing eddies (Lee et al. 1990). Therefore, we infer from figure 3(c,d) that the
length and time scales of the energy-containing eddies are decreasing with increasing solid
volume fraction.

The averaged spectra of the turbulent kinetic energy are reported in figure 4. As
expected, we observe a range at intermediate wavenumbers where E ∝ k−5/3, similar
to that found in the logarithmic layer of wall-bounded flows (Sekimoto et al. 2016).
Nonetheless, the presence of the solid particles has a significant effect on the energy
spectrum; they increase the energy level at large wavenumbers (small scales), while
they slightly reduce the energy of the low-wavenumber (large) structures. This effect is
amplified by increasing the volume fraction of the solid phase, while the shape effects
(spherical versus oblate particles) are observed to be rather negligible. The characteristics
of the energy spectrum are similar to the observations of Lucci et al. (2010) for solid
particles in decaying homogeneous isotropic turbulence and Rosti et al. (2019) for droplets
in HST; the spectrum modifications have been attributed to the breakup of the large eddies
and to the increase of the frequency of the small eddies as a result of the presence of the
dispersed phase.

The probability distributions of the fluctuating quantities are of obvious interest in the
study of turbulent flows. Therefore, we compare the p.d.f. of the normalised velocity
components for the different cases under investigation in figure 5. The values of the
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FIGURE 5. The p.d.f. of the normalised velocity components: (a) streamwise, (b) normal and
(c) spanwise; the insets show the p.d.f.s in linear scale. (d) The averaged velocity components
normalised by the single-phase value (u′

i)Si.

first four central moments of the p.d.f.s, shown in figure 5, are reported in table 2 in
the appendix. First, it is worth noticing that all the multiphase cases show anisotropy
in the fluid velocity fluctuations, similarly to the single-phase HST statistics reported
in the literature (see e.g. Pumir 1996), i.e. the streamwise component has a higher
root-mean-square (r.m.s.) value than the normal and spanwise ones. Interestingly, the
difference between the spanwise and the normal components of the fluid velocity increases
in the presence of the solid particles (cf. figure 1b).

To understand the role of particle volume fraction, we first compare the cases laden with
spherical particles. Up to φ = 10 %, the normal velocity has a similar distribution to the
single-phase HST, whereas the streamwise and spanwise components have stronger tails.
Increasing the volume fraction to 20 % leads to an increase in the probability of strong
fluctuations in all velocity components, which consequently results in a higher magnitude
of the turbulent kinetic energy and Reλ. On the other hand, the main difference for oblate
particles is in the distribution of the normal velocity for φ = 10 %, where the probability
of extreme fluctuations has increased significantly. The higher value of the p.d.f. in the
range |v′|/(SDeq) > 5 again results in the higher values of the turbulent energy and Reλ
documented above for oblates when increasing the particle volume fraction.

This can also be observed in figure 5(d), where the r.m.s. velocity fluctuations are
averaged and depicted for all the cases under investigation. Interestingly, the effect of the
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volume fraction is more pronounced on u′ than on the normal and spanwise components
of the velocity fluctuations for spheres up to φ = 10 % and for oblates at φ = 5 %, i.e.
the reduction of the turbulent energy for these cases is associated with the reduction of u′

rather than of the two cross-stream components. However, for cases Sp20 and Ob10 all the
components experience a significant increase with respect to the single-phase case, owing
to the long tails of the p.d.f.s. The relation between these results and the particle dynamics
will be explained in § 3.2.

Thus far, we have discussed the modification of the fluctuating velocities and related
parameters to quantify the turbulence modulation by the presence of the particles. To have
a better picture of the events responsible for the modification of the turbulence, we present
the weighted Reynolds shear stress contours, computed by multiplying the absolute value
of the Reynolds shear stress by the joint probability density of its occurrence in the u′–v′

plane (Zhou et al. 1999). This method considers the contribution of the different events to
the total stress by locating them on the four quadrants of the u′–v′ plane, denoted Q1–4. The
events on the Q2 (u′ < 0, v′ > 0) and Q4 (u′ > 0, v′ < 0) quadrants result in production
of turbulence, whereas Q1 (u′ > 0, v′ > 0) and Q3 (u′ < 0, v′ < 0) are responsible for
attenuation.

The contours of the weighted Reynolds shear stress, statistically averaged in the fluid
phase for all the cases, are displayed in figure 6. For all cases, the diagrams are symmetric
with respect to the origin, which fulfils the symmetry of the HST under the transformation
(x, y, z) → (−x,−y, z), and, expectedly, confirms that the inhomogeneity observed in the
quadrant analysis of the wall-bounded flows (see e.g. Wallace 2016) vanishes in unbounded
ones. Figure 6(a–d) shows the results for the cases laden with spheres. For cases Sp1
(figure 6a), Sp5 (figure 6b) and Sp10 (figure 6c), the contribution of events Q2 and Q4 to
the production and the quenching events Q1 and Q3 have not changed considerably (see
iso-line of 0.6 in figure 6a–c). The top contributor events of the Q2 and Q4 quadrants
have higher magnitude of the streamwise component u′ compared to the normal one
v′. Conversely, in case Sp20 (see figure 6d), the production associated with Q2 and Q4
events becomes more predominant as the magnitude of the velocity fluctuations for the
top contributor events increases for both the streamwise and the normal components; at
the same time, the attenuation induced by Q1 and Q3 events is much weaker than for the
cases with lower volume fraction of spherical particles. Note also that the importance
of the streamwise and normal components of the velocity vector in the production and
damping mechanisms is more balanced in case Sp20.

To conclude this analysis, figure 6(e, f ) displays the contours of the weighted Reynolds
shear stress for cases Ob5 and Ob10. Here, we see that the area of the contours contributing
to both production and attenuation increases slightly when increasing the volume fraction,
indicating the importance of the contribution from rare but highly energetic events. When
comparing the flow laden with oblate particles with the case of spheres at the same volume
fraction, we note that the contours are more skewed towards higher values of the velocity,
which confirms the increased role of the higher-intensity events in the case of oblate
particles.

3.1.1. Turbulent kinetic energy budget
To quantify the effect of the dispersed phase on the modulation of the turbulence, we

look at the turbulent kinetic energy budget for the fluid phase. The governing equation for
the evolution of the turbulent kinetic energy K reads

dK
dt

= P − ε + I, (3.2)
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FIGURE 6. Contours of the weighted Reynolds shear stress, given by multiplying the absolute
value of the Reynolds shear stress by the joint probability density of its occurrence in the u′–v′
plane: (a) Sp1, (b) Sp5, (c) Sp10, (d) Sp20, (e) Ob5 and ( f ) Ob10.

P = −S〈u′v′〉, (3.3)

ε = μ

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
, (3.4)

I = 〈u′
i fi〉, (3.5)
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FIGURE 7. Contribution of turbulent production P , dissipation rate ε and the interphase
interaction term I to the turbulent kinetic energy budget for the different cases under
consideration. Each term is normalised by the product of the shear rate S and the averaged
turbulent kinetic energy of the single-phase case Si.

where I denotes the energy transfer through the interphase interaction (Tanaka
& Teramoto 2015), which can act as a source or a sink of turbulent energy
(Ferrante & Elghobashi 2003). At the steady state, the rate of change of K is obviously
zero and the remaining terms are in balance. For a more clear comparison, we normalise
each term on the right-hand side of (3.2) by the product of the shear rate S and the averaged
turbulent kinetic energy of the singe-phase case Si:

σ1 = P
SKSi

= − 2〈u′v′〉
〈u′

ku
′
k〉Si
, (3.6)

σ2 = − ε

SKSi
= − 2ε

S〈u′
ku

′
k〉Si
, (3.7)

σ3 = I
SKSi

= 2〈u′
kfk〉

S〈u′
ku

′
k〉Si
. (3.8)

The relative contribution of each term σ1–3 to the turbulent kinetic energy budget for all the
cases under consideration is displayed in figure 7. The data reveal that the production and
the dissipation rates are almost in perfect balance for all cases, and that the contribution
of the interphase interaction term is less than 3.5 % of the total. Note that despite the
very small contribution of σ3, its presence is necessary to have a correct energy balance.
Also, the presence of the solid phase affects the production and dissipation rates of the
turbulent kinetic energy, i.e. the variations of σ1 and σ2 due to the presence of particles.
Comparing to the single-phase case Si, the production and the dissipation rates decrease
and the interphase interaction increases monotonically with the sphere volume fraction for
φ ≤ 10 %, whereas at φ ≤ 20 % the production and the dissipation rates are greater than
in the single-phase flow and the interphase interaction contributes to the production of the
kinetic energy, instead of being a sink of energy as at lower volume fractions.

In the case of the oblate particles, the same trend is observed at lower volume fractions,
i.e. case Ob10 has greater production and dissipation rates than cases Ob5 and Si, and the
contribution of the interphase interaction to the dissipation of the kinetic energy is lower.
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FIGURE 8. (a) Normalised translational kinetic energy of the particles Kp = 0.5(u′2
p + v′2

p +
w′2

p ), (b) Kp normalised by the turbulent kinetic energy of the carrier fluid, (c) the spanwise
angular velocity of the particles normalised by the angular velocity of the mean shear flow and

(d) the magnitude of the average particle angular velocity vector |Ωp| =
√
ω2

x,p + ω2
y,p + ω2

z,p

as a function of the volume fraction. Symbols and colour scheme as in figure 3.

3.2. Particle dynamics
In this section, we investigate the link between the dynamics of the particles and the
modulation of the turbulence by examining the Lagrangian statistics of the solid particles.
Figure 8(a) displays the normalised translational kinetic energy of the solid particles,
defined as Kp ≡ 0.5(u′2

p + v′2
p + w′2

p ), as a function of the volume fraction φ, whereas
figure 8(b) depicts Kp normalised by the turbulent kinetic energy of the carrier fluid. The
amplitude of the particle velocity fluctuations follows the same trend as that of the carrier
fluid, displayed in figure 3(b). The kinetic energy of the spherical particles first decreases
when increasing the solid volume fraction until φ = 10 %, and then increases significantly
when the volume fraction is increased to φ = 20 %. In the case of oblate particles, the
increase of the particle kinetic energy occurs at a lower volume fraction, and in fact we
only observe an increase of Kp for the two volume fractions considered here, φ = 5 %
and 10 %. Scaling the particle kinetic energy by the turbulent kinetic energy of the carrier
fluid (cf. figure 8b), we see that rigid particles tend to fluctuate less than the fluid. This is
similar to the results of Tanaka & Teramoto (2015), who show that the ratio between the
magnitude of the fluctuating particle velocity and that of the fluid for dilute suspensions of
spherical particles in transient HST is around 0.85, and to the observations of Picano et al.
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FIGURE 9. The p.d.f.s of the particle velocity: (a) streamwise, (b) normal and (c) spanwise
components. (d) The p.d.f. of the particle translational kinetic energy Kp. The insets show the
p.d.f.s in linear scale.

(2015) for a channel flow laden with neutrally buoyant spherical particles for the region
which lies in the near-wall range 30 < y+ < 70 in inner units. By comparing figures 8(a)
and 8(b), we infer that increasing the volume fraction of the solid particles, for spheres
from 10 % to 20 % and for oblates from 5 % to 10 %, has a larger impact on the increase
of the fluid velocity fluctuations than on that of the particle velocity fluctuations.

The spanwise component of the particle mean angular velocity, normalised by the
rotation associated with the mean shear flow −S/2, is displayed in figure 8(c). First, note
that the average spanwise rotation rates are around 8 % more for the spheres than for the
oblates. Moreover, for both spheres and oblates, the changes of the averaged spanwise
angular velocity by the increase of the volume fraction φ do not show a clear trend. The
value obtained by Tanaka & Teramoto (2015) for spherical particles in the dilute regime
in transient HST is around 0.9, larger than those obtained here at higher φ. Finally, the
magnitude of the particle angular velocity vector |Ωp| =

√
ω2

x,p + ω2
y,p + ω2

z,p is shown
in figure 8(d). The rotation rate |Ωp| is around 20 % larger for the oblates than for the
spheres and an increase of the volume fraction of the solid particles only slightly increases
its value. A comparison between figures 8(c) and 8(d) reveals that the oblate particles
have larger angular momentum in the shear-plane directions than spherical particles and
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also have a clearer tendency to rotate opposite to the mean shear flow vorticity vector (see
figure 10c).

Next, we wish to give further insight into the behaviour of the solid phase by examining
the velocity probability functions. To this end, we display in figure 9 the p.d.f.s of
the three particle velocities (figure 9a–c) together with that of the particle translational
kinetic energy Kp (figure 9d); see table 2 in the appendix for the values of the different
statistical moments. Note that since particles have a considerable size with respect to the
flow structures (Deq ≈ 25η) and follow a rigid-body motion, they are able to couple the
fluctuations of the fluid velocity in the cross-flow directions, which therefore exhibit a
more isotropic behaviour. This is evident in table 2 in the appendix, where the r.m.s. of
the particle velocity fluctuations in the cross-flow directions are shown to assume values
approximately equal to the average of the r.m.s. of the normal and spanwise fluid velocity
fluctuations. Moreover, we observe no significant change in the distributions of the normal
and spanwise components of the particle velocity when increasing the volume fraction
of the spherical particles up to φ = 10 %, so that the decrease of the translational kinetic
energy of the particles Kp (figure 9d) can be associated with the decrease of the streamwise
component (figure 9a). At the highest volume fraction considered, φ = 20 % (case Sp20),
however, we observe an increase in all the p.d.f.s of the velocity components in the range
5 < |up,i/(SDeq)| < 10. This isotropic increase in all components can be an indication
that at this solid-phase concentration, particle–particle interactions become relevant. The
effect of the shape of the particles is evident comparing the distributions for the cases
Sp10 and Ob10. The data indicate a higher probability of larger values of the particle
translational kinetic energy in the range 100 < Kp/(SDeq)

2 < 200 in the flow laden with
oblate particles, which relates to the higher probability of extreme fluctuations of the
streamwise velocity component u′

p.
The p.d.f.s of the components of the particle angular velocity are displayed in

figure 10(a–c), whereas that of the magnitude of the angular velocity vector |Ωp| is
shown in figure 10(d); the values of the statistical moments can be found in table 2 in
the appendix. The data in the figure reveal that an increase of the volume fraction alone
only extends the tails of the p.d.f.s slightly, while the shape of the particles has a more
noticeable effect, i.e. the cases laden with oblate particles have significantly longer tails
compared to the cases with spheres. The spanwise angular velocity of the particles is of
particular interest, as this is driven by the imposed shear. The p.d.f.s are clearly skewed
towards negative values, which indicates that particles, expectedly, rotate in the direction
imposed by the mean shear for most of the instances; the mean values are reported in
table 2 in the appendix. One can also note that oblates happen to rotate opposite to the
direction of the angular velocity of the mean shear more frequently and at higher rates; this
explains why they have lower averaged values of ωz,p than spheres, as shown in figure 8(c).

Next, we investigate possible particle clustering by computing the pair distribution
function P(r), which denotes the conditional probability of finding a particle at distance r
given one at the origin (see e.g. Kulkarni & Morris 2008):

P(r) = P(r, θ, ψ) = H(r, θ, ψ)
ntsΔV

, (3.9)

where θ is the polar angle measured from the positive z axis, ψ is the azimuthal angle
measured counterclockwise from the positive x axis, n is the average particle number
density, ts is the total number of sampling points, ΔV = r2 sin(θ)ΔθΔψΔr is the volume
of the sampling bin and H(r, θ, ψ) is the histogram of particle pairs. More specifically,
the particle-pair histogram H(r, θ, ψ) is progressively built by discretising the pair space
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FIGURE 10. The p.d.f.s of the particle angular velocity: (a) streamwise, (b) normal and
(c) spanwise components. (d) The p.d.f. of the magnitude of the particle angular velocity vector
|Ωp|. The insets show the p.d.f.s in linear scale.

in r, θ and ψ and putting each separation vector r into the corresponding bin of size ΔV
at each sampling time.

The pair distribution function has been calculated in a spherical shell with diameter of
5Deq around the mass centre of the particles and displayed in figure 11, where the data
are shown in the x–y plane (θ = π/2) for the cases Sp10, Sp20 and Ob10. Note that in
this figure and subsequent sections, the oblate particles are visualised by a sphere with a
diameter equal to their minor axis. All panels show a relative accumulation of particles in
the compressional quadrants and a depletion in the extensional quadrants, similar to results
from previous experiments and simulations of suspensions in simple shear flow at low
Reynolds number (Morris 2009). On increasing the volume fraction, the narrow strips with
high values of P become more uniform around the surface of the particle (see figure 11b).
This can be another indication that at φ = 20 %, particle–particle interactions significantly
affect the particle dynamics. In the case of oblates, the contour levels are below unity
around the reference particle and no clustering is observed (see figure 11c). Still, the
contours of P have lower values in the extensional quadrants compared to compressional
ones. The absence of clustering together with the higher probability of extreme events
observed in the p.d.f.s of the linear and angular velocities of the oblates can be indicative
of strong collisions between them, as they depart rapidly after contact.
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FIGURE 11. Pair distribution function P(r, ψ) in the plane normal to the spanwise direction
(θ = π/2) for the cases (a) Sp10, (b) Sp20 and (c) Ob10.

The dynamics of the particle pairs is not only determined by their relative position, i.e.
by the pair distribution function, but also by their relative velocity (Lashgari et al. 2016).
Following the study by Sundaram & Collins (1997), we therefore compute the normal
relative velocity of the particle pairs as a function of the separation distance r (the distance
between the centres). Considering particles p and q, the normal relative velocity of the
particle pair is obtained as the inner product of their relative velocity and relative distance:

Δvn(rp,q) = (up − uq) · (rp − rq)

|(rp − rq)| . (3.10)

The normal relative velocity can be either negative, Δv−
n , for approaching particles

or positive, Δv+
n , when the two particles depart from each other. Figure 12 shows the

magnitude of the negative relative velocity |Δv−
n | as a function of the separation distance

r for some different cases. The relative velocity increases almost monotonically with r
as the pairs are more likely to approach with higher velocity when farther away. The
approaching velocities are observed to increase slightly with increasing volume fraction,
meaning that particles experience stronger pair interactions at higher volume fractions.
Note that the abrupt decrease of the approaching velocity for separation distances close
to r/Deq = 1 shows the effect of the lubrication force on the dynamics of the spherical
particles. In addition, oblate particles can get closer to each other (r/Deq < 1) due to their
shape, while maintaining high relative velocities. This creates stronger pair interactions
for oblate particles, resulting in higher turbulent kinetic energy when the number of pair
interactions increases (high volume fractions).

To better characterise the effect of the shape of the particles, we examine the orientation
with respect to the underlying flow of the oblate particles. Figure 13(a) shows the p.d.f.s of
the magnitude of the components of the unit vector associated with the particle symmetry
axis ô = (ôx , ôy, ôz) for the cases Ob5 and Ob10. The data reveal that oblate particles have
an almost random distribution of orientations, with a weak tendency to be aligned with
the normal and the spanwise directions. Figure 13(b) shows the orientation correlation
function OCF(r), which quantifies the relative orientation of close particles:

OCF(r) = 〈2|Ôp · Ôq| − 1〉, (3.11)

where Ôp and Ôq denote the orientation of particles p and q at distance r between their
centres. The value OCF(r) = 0 indicates a suspension with random particle orientation,
while OCF(r) = 1 means particle pairs at distance r perfectly aligned. The results show
that oblate particles tend to be more aligned with each other for separation distances in the
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FIGURE 12. Magnitude of relative (approaching) normal velocity |Δv−
n | as a function of the

separation distance between particle pairs.
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FIGURE 13. (a) The p.d.f. of the magnitude of the components of the unit vector associated
with the particle symmetry axis ô = (ôx , ôy, ôz). (b) Orientation correlation function OCF(r)
versus centre separation r/Deq.

range 0.5 < r/Deq < 1.5, i.e. as long as they are in contact with each other they move as
a small cluster with similar alignment – something that, however, the data in figure 11(c)
show to happen rarely. The correlation function vanishes very quickly when increasing the
separation distance, showing decorrelation in the alignment of the particles for distances
above 1.5Deq. Ardekani et al. (2017) performed the same analysis for oblate particles in a
turbulent channel flow. Those authors showed that the correlation distance is significantly
smaller in the core of the channel, compared to the near-wall particles experiencing strong
shear. The data in figure 13(b) are comparable to the results of the wall-bounded flow
for particles in the core region, indicating the negligible effect of the mean shear on the
particle orientation.

3.3. Flow statistics around particles
In this section, we focus on the conditionally averaged flow statistics around the surface of
the particles. The ensemble averaging is carried out in a cubic box of side 3Deq around the
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FIGURE 14. Contours of the conditionally averaged statistics around the particles in the x–y
plane. (a–c) The turbulent kinetic energy K, (d–f ) the production P and (g–i) the dissipation
rate ε for cases (a,d,g) Sp5, (b,e,h) Sp20 and (c, f ,i) Ob5. The results are normalised by their
conditionally averaged values for each case, denoted by 〈·〉sur.

mass centre of the particles with a frequency of 0.5St (one sample every 0.5St) and a total
duration of ∼ 150St, after the statistically steady state has been reached. For normalisation,
a space averaging has also been carried out in the cubic box of side 3Deq around the
particles in addition to the ensemble averaging, and the averaged quantities are denoted by
〈·〉sur.

Figure 14 shows contours of the turbulent kinetic energy K (figure 14a–c), the turbulent
production P (figure 14d–f ) and the dissipation rate ε (figure 14g–i) normalised by their
conditional averaged values 〈K〉sur, 〈P〉sur and 〈ε〉sur, for the cases Sp5, Sp20 and Ob5.
Contours are plotted in the x–y plane passing through the centre of the reference particle.
Figure 14(a–c) shows therefore the modulation of the turbulent kinetic energy around
the surface of the particles. The iso-contours of K/〈K〉sur form almost spherical shells
around the surface of the particles and are slightly elongated towards the compressional
quadrants. The value of K/〈K〉sur is around 0.88 close to the surface of the particles and
goes asymptotically to 1 over a distance of ≈ 0.45Deq.

Figure 14(d–f ) shows the contours of the production P and figure 14(g–i) those of the
dissipation rate ε. The production is stronger in the extensional quadrants with a value of
P/〈P〉sur = 1.1 for the spheres and 1.3 for the oblates close to the surface of the particles.
On the other hand, in the compressional quadrants the production is lower than the mean
value and is reduced to P/〈P〉sur = 0.85 for the spheres and 0.7 for the oblates.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

45
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.457


899 A19-24 A. Yousefi, M. Niazi Ardekani and L. Brandt

As regards the dissipation, previous experimental and numerical studies have shown that
the energy dissipation is locally enhanced near the surface of the particles (see e.g. Lucci
et al. 2010; Tanaka & Eaton 2010). Our results (see figure 14g–i) show the same trend.
The dissipation rate ε is enhanced near the surface of the particles and reaches values five
times larger than the mean value in the compressional quadrants in the case of spherical
particles. The enhancement of the dissipation rate is more uniform around the surface
of the oblates with a value of ε/〈ε〉sur ≈ 2.3 uniformly in all directions. Tanaka (2017)
reported similar behaviour for the modulation of the production P and the dissipation rate
ε in transient HST and dilute suspensions of spherical particles.

More details of the origins of flow modulation by the solid phase can be obtained by
the flow structures conditionally averaged around the surface of the particles. Figure 15
shows the fluctuating velocity vectors in the x–y plane, passing through the centre of
the reference particle. In the plot, the velocity vectors are superposed onto the contours
of the magnitude of the fluctuating velocity vector |u′| = √

u′2 + v′2 + w′2; contours are
normalised by the velocity vector magnitude, conditionally averaged in the cubic box of
side 3Deq around the particles, 〈|u′|〉sur. Figure 15(a,b) reports the results for cases Sp5
and Ob5. For both particle shapes, four vortical structures are visible around the reference
particle. To discuss these flow structures in relation to the compressional/extensional
quadrants around the surface of the particle more easily, a schematic is presented in
figure 15(c), where the compressional/extensional quadrants are denoted by χ1–4, while
Γ1–4 indicate the vortical structures.

Figure 15 reveals that the averaged flow field around the particle surface consists of
two pairs of counter-rotating vortices, with the induced velocity field reminiscent of
the one induced by the force dipole (stresslet) in the vanishing inertia regime (see e.g.
Graham 2018). As shown previously in figure 14(d–f ), the production is highly modulated
in all quadrants χ1–4. Hence, any pair of adjacent counter-rotating spanwise vortices
formed around the particle surface modulate the tangential Reynolds shear stress and the
turbulence production in the area between them in all quadrants. In previous studies, Kida
& Tanaka (1994) and Ahmed & Elghobashi (2000) showed that in HST the regions of
high energy production are mainly enclosed by quasi-streamwise counter-rotating vortices,
whereas here the vortices are mainly parallel to the spanwise direction.

Further, Ahmed & Elghobashi (2000) showed that particles increase the dissipation rate
ε by creating local velocity gradients which leads to an increase of the local strain and
dissipation rates. In particular, the increase of the extensional strain has a prominent effect
on the enhancement of the dissipation rate ε, although compressive strain is also increased
by the presence of the solid particles. Our results show an increase of the dissipation rate
in all quadrants (see figure 14g–i), but mainly in χ2 and χ4 where the vortex pairs Γ1–2 and
Γ3–4 are inducing extensional strain rate.

Note that for the oblate particles (figure 15b), the velocity magnitude in quadrants
χ1 and χ3 is slightly larger than that in the other quadrants. This difference appears
because the dynamics of the oblate particles and the flow field around them reflect their
anistropic shape; i.e. the particles sample different flow patterns based on their orientation.
To demonstrate this, we display in figure 16 the joint probability density of the particle
orientation and the spanwise angular velocity. Here, the horizontal axis indicates the
streamwise component of the particle orientation vector multiplied by the sign function
of the normal component, so that positive values correspond to instances when the oblate
particles are perpendicular to the mean shear direction and negative values to instances
when they are aligned with mean shear. The data in the figure reveal the higher probability
of sampling particles that are inclined with the shear direction when they experience larger
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FIGURE 15. Conditionally averaged velocity vectors in the x–y plane, passing through the mass
centre of the reference particles. The contours are the magnitude of the fluctuating velocity vector
|u′| = √

u′2 + v′2 + w′2, normalised by the mean value averaged in the cubic box used for the
conditional averaging, showing the results for cases (a) Sp5 and (b) Ob5. (c) Schematic showing
the resulting vortical structures formed from the interaction between a rotating particle and a
linear shear flow; the compressional and extensional quadrants around the particle are marked
by χ1–4 and the vortical structures by Γ1–4.

angular velocities. This creates a small asymmetry in the flow pattern that is superposed
on top of the symmetric flow pattern that appears around the spherical particles (see
figure 15a). This is consistent with the findings of Ardekani et al. (2017) for the force
and torque experienced by oblate particles in the vicinity of a wall where the shear rate is
strong.

4. Final remarks

We have used interface-resolved simulations to study the turbulence modulation of
particle-laden HST at statistically steady state. Neutrally buoyant spherical and oblate
particles (AR = 1/3) are investigated up to volume fractions of 20 % and 10 %,
respectively. A particle size of ≈ 20 Kolmogorov length scales in the single-phase flow
is considered, which is equal to λ/Deq ≈ 0.9 in terms of the Taylor microscale.

We show that a statistically steady state is not exclusive to single-phase HST as
the production and dissipation rates of the turbulent kinetic energy are observed to
be statistically in balance in the studied particle-laden cases. The simulations show a
non-monotonic trend of the turbulent kinetic energy with increasing volume fraction. Both
particle shapes decrease the turbulent kinetic energy with respect to the single phase up to a
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FIGURE 16. Joint p.d.f. of the particle orientation (streamwise component of the particle
orientation vector times the sign function of the normal one) and the particle spanwise angular
velocity for the case Ob5.

certain volume fraction before the turbulence activity enhances at higher volume fractions.
This increase of the turbulent kinetic energy is observed for both spherical and oblate
particles, starting, however, at a lower volume fraction for the latter (20 % for spheres
and 10 % for oblate particles). Analysis of the turbulent kinetic energy budget shows
a very similar attenuation and then an increase of the production and dissipation rates
of the turbulent energy, while the contribution from the interphase interaction remains
below 3 %.

We have documented two main mechanisms for turbulence modulation in the presence
of particles. First we show that the dissipation rate is significantly larger in the vicinity
of solid particles (see figure 14) due to the enlargement of extensional strain rate in these
regions (see also Ahmed & Elghobashi 2000). This leads to turbulence attenuation as
observed in the results of this study for lower volume fractions. This is in line with the
numerical study of Tanaka & Teramoto (2015) of transient HST, where the turbulence
kinetic energy is attenuated in the dilute regime. In agreement, the additional reduction
of the turbulence activity for oblate particles at lower volume fractions reported here
can be related to the larger surface area of the oblate particles with respect to spheres
at fixed volume. On the other hand, we also observe that two pairs of counter-rotating
vortices form around the particle surface, thus increasing the production of turbulence
kinetic energy, locally. Theses vortices, which have also been observed in the study by
Tanaka & Teramoto (2015), increase the Reynolds shear stress in the region between them
(Tanaka 2017). When the volume fraction is large enough, this mechanism (see figure 15)
and the particle–particle interactions (see figure 11b) generate strong velocity fluctuations
(see figure 9) that overall enhance the turbulence activity. Oblate particles, on the other
hand, have higher rotation rates compared to spheres and also a tendency to rotate more
in the opposite direction to the mean shear flow, which increases mixing and the level
of turbulent fluctuations more than in the case of spheres. Even though clustering is not
observed for oblate particles, it should be interpreted as a sign of strong collisions between
them as they depart from each other rapidly after a collision takes place. Also, due to their
shape, oblate particle pairs can have interactions at smaller separation distance between
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their centres (see figure 12). The associated strong fluctuations can be observed in the tails
of the p.d.f.s of particle linear and angular velocities (see figures 9 and 10).

As discussed in previous works on SS-HST, this configuration reproduces the dynamics
of the equilibrium logarithmic layer in wall-bounded turbulence (Sekimoto et al. 2016). As
a consequence, we can interpret the results presented here as indicative of the behaviour
of small particles, smaller than the logarithmic layer in wall-bounded high-Reynolds
turbulence, but still finite size in viscous units. We recall that the simulations of finite-size
oblate particles, of size of the order of the streak spacing and logarithmic layer width, in
turbulent channel flow show that oblate particles with small enough aspect ratio experience
small rotational rates while aligning with the wall in its vicinity (Ardekani et al. 2017;
Ardekani & Brandt 2019). This shields the walls from the bulk region and thus induces
turbulence attenuation by lowering the wall-normal velocity fluctuations. This decrease in
the turbulence activity manifests itself as drag reduction in wall-bounded flows. We show
in this study that oblates in HST do not show any noticeable clustering or preferential
orientation and they instead increase the turbulence activity. Therefore we can speculate
that as the size of oblate particles reduces with respect to the logarithmic-layer extension,
the observed drag reduction would disappear. This is expected to occur when the Reynolds
number is relatively large, so in a range not yet reachable by interface-resolved numerical
simulations; nevertheless, this prediction is consistent with the recent experimental
measurements of Zade (2019) in high-Reynolds pipe flow laden with oblate particles.
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Appendix. Statistics of p.d.f.s

In this appendix, we summarise the statistics of the different p.d.f.s discussed in the main
text. In particular, we report the first four central moments, i.e. mean, r.m.s., skewness and
flatness, of fluid and particle velocity fluctuations, together with the Reynolds shear stress
u′v′, the linear kinetic energy Kp and the magnitude of the angular velocity vector |Ωp| of
the particles. The statistics are collected over a period of SΔt = 170.
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Case Mean r.m.s. Skewness Flatness

Si u′/(SDeq) ≈0 3.888 −0.051 2.814
v′/(SDeq) ≈0 2.666 0.025 3.299
w′/(SDeq) ≈0 2.791 −0.011 3.263

u′v′/(SDeq)
2 −5.329 5.913 ≈0 ≈0

Sp1 u′/(SDeq) ≈0 4.077 −0.033 3.002
v′/(SDeq) ≈0 2.319 0.047 3.758
w′/(SDeq) ≈0 3.013 0.005 3.462

u′v′/(SDeq)
2 −5.231 5.825 ≈0 ≈0

u′
p/(SDeq) 0.021 4.068 −0.036 2.983
v′

p/(SDeq) −0.001 2.809 0.047 3.478
w′

p/(SDeq) −0.001 2.894 −0.009 3.367
Kp/(SDeq)

2 16.411 16.15 2.228 10.91

ωx,p/S 0.004 1.121 0.039 5.027
ωy,p/S −0.004 1.118 0.027 4.613
ωz,p/S −0.421 1.032 −0.348 5.427
|Ωp|/S 1.667 0.985 1.436 6.747

Sp5 u′/(SDeq) 0.003 4.029 −0.034 3.238
v′/(SDeq) ≈0 2.332 0.007 3.743
w′/(SDeq) ≈0 2.938 −0.003 3.593

u′v′/(SDeq)
2 −5.148 5.933 ≈0 ≈0

u′
p/(SDeq) 0.002 4.002 −0.042 3.297
v′

p/(SDeq) 0.004 2.783 0.028 3.737
w′

p/(SDeq) 0.002 2.795 0.017 3.557
Kp/(SDeq)

2 15.790 16.84 2.521 13.32

ωx,p/S 0.004 1.186 −0.254 5.407
ωy,p/S ≈0 1.165 −0.003 4.949
ωz,p/S −0.411 1.095 −0.358 5.837
|Ωp|/S 1.734 1.062 1.565 7.597

Sp10 u′/(SDeq) −0.001 4.118 −0.021 2.923
v′/(SDeq) ≈0 2.474 −0.005 3.489
w′/(SDeq) ≈0 3.113 0.013 3.296

u′v′/(SDeq)
2 −4.791 5.216 ≈0 ≈0

u′
p/(SDeq) 0.001 3.825 −0.025 2.934
v′

p/(SDeq) 0.006 2.694 −0.019 3.317
w′

p/(SDeq) −0.003 2.801 −0.009 3.332
Kp/(SDeq)

2 14.867 14.28 2.225 10.88

ωx,p/S ≈0 1.245 −0.035 4.894
ωy,p/S −0.001 1.212 −0.039 4.527
ωz,p/S −0.415 1.137 −0.318 5.162
|Ωp|/S 1.829 1.067 1.414 6.595

TABLE 2. For caption see next page.
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Case Mean r.m.s. Skewness Flatness

Sp20 u′/(SDeq) −0.004 4.839 −0.001 2.784
v′/(SDeq) ≈0 3.114 0.007 3.214
w′/(SDeq) ≈0 3.563 0.003 3.329

u′v′/(SDeq)
2 −7.939 8.935 ≈0 ≈0

u′
p/(SDeq) −0.011 4.696 0.011 2.881
v′

p/(SDeq) 0.006 3.391 0.011 3.226
w′

p/(SDeq) ≈0 3.354 0.004 3.309
Kp/(SDeq)

2 22.411 21.41 2.102 10.11

ωx,p/S −0.001 1.294 0.094 5.073
ωy,p/S −0.001 1.259 0.073 4.687
ωz,p/S −0.407 1.147 −0.323 5.453
|Ωp|/S 1.869 1.118 1.464 6.741

Ob5 u′/(SDeq) −0.001 4.078 0.008 3.282
v′/(SDeq) ≈0 2.421 0.001 3.781
w′/(SDeq) ≈0 3.015 0.001 3.751

u′v′/(SDeq)
2 −4.947 5.656 ≈0 ≈0

u′
p/(SDeq) ≈0 3.941 0.003 3.339
v′

p/(SDeq) ≈0 2.711 −0.016 3.792
w′

p/(SDeq) −0.002 2.794 −0.003 3.753
Kp/(SDeq)

2 15.344 16.72 2.556 12.71

ωx,p/S −0.002 1.532 −0.026 5.841
ωy,p/S −0.002 1.436 −0.007 6.056
ωz,p/S −0.386 1.401 −0.407 6.551
|Ωp|/S 2.122 1.426 1.752 8.358

Ob10 u′/(SDeq) ≈0 4.284 0.007 3.099
v′/(SDeq) ≈0 2.686 −0.052 3.683
w′/(SDeq) ≈0 3.121 0.015 3.564

u′v′/(SDeq)
2 −5.873 6.795 ≈0 ≈0

u′
p/(SDeq) −0.005 4.062 −0.011 2.701
v′

p/(SDeq) ≈0 2.854 0.044 2.931
w′

p/(SDeq) ≈0 2.841 0.017 2.961
Kp/(SDeq)

2 16.361 14.04 1.793 8.295

ωx,p/S ≈0 1.536 0.023 5.182
ωy,p/S −0.005 1.436 0.336 5.141
ωz,p/S −0.382 1.399 −0.429 5.687
|Ωp|/S 2.167 1.355 1.554 7.371

TABLE 2 (cntd). First four central moments of the density probability functions of the fluid and
particle velocity components, together with the Reynolds shear stress u′v′, the particle kinetic
energy and magnitude of the angular velocity vector for different cases. Values smaller than
10−3 in magnitude are set to zero.
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