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GENUS 2 CURVES WITH BAD REDUCTION AT ONE ODD PRIME

ANDRZEJ DĄBROWSKI and MOHAMMAD SADEK

Abstract. The problem of classifying elliptic curves over Q with a given

discriminant has received much attention. The analogous problem for genus

2 curves has only been tackled when the absolute discriminant is a power of 2.

In this article, we classify genus 2 curves C defined over Q with at least two

rational Weierstrass points and whose absolute discriminant is an odd prime.

In fact, we show that such a curve C must be isomorphic to a specialization of

one of finitely many 1-parameter families of genus 2 curves. In particular, we

provide genus 2 analogues to Neumann–Setzer families of elliptic curves over

the rationals.

§1. Introduction

A well-known result of Shafarevich [28] states that the number of isomorphism classes

of elliptic curves over a given number field that have good reduction outside a finite set

of primes is finite. The online tables by Cremona [7] exhibit all elliptic curves over the

rational field of conductors up to 500,000, together with additional arithmetic data such

as the torsion subgroup and the Mordell–Weil rank. In [8], Cremona and Lingham give an

explicit algorithm to find all elliptic curves over a number field with good reduction outside

a given finite set of primes.

We remark that all results concerning explicit classifications of elliptic curves over Q

with bad reduction outside a finite set of primes S target the case when S consists of at

most two primes. In what follows, we give a short overview of such known results. Such

elliptic curves were completely classified when S = {2} by Ogg [21], and when S = {3} by

Hadano [11]. Setzer [27] classified all elliptic curves with prime conductor and a rational

point of order 2. Ivorra [14] classified elliptic curves over Q of conductor 2kp, where p is

an odd prime, with a rational point of order 2. Bennett, Vatsal, and Yazdani [1] classified

all elliptic curves over Q with a rational 3-torsion point and good reduction outside the set

{3,p}, for a fixed prime p. Furthermore, Howe [12], Sadek [26], and Dąbrowski-Jędrzejak [9]

studied the classification of elliptic curves over Q with good reduction outside two distinct

primes and with a rational point of fixed order ≥ 4. In addition, Best and Matschke [2]

presented a database of elliptic curves with good reduction outside the first six primes.

Shafarevich [28] conjectured that for each number field K, finite set of places S, and

integer g ≥ 2, there are only finitely many K -isomorphism classes of curves of genus g

over K with good reduction outside S. The proof was sketched by him in the hyperelliptic

case (for details, see the papers by Parshin and Oort [22], [23]). Merriman and Smart [19]

determined all curves of genus 2 with a rational Weierstrass point and with good reduction

away from 2, up to an equivalence relation which is coarser than the relation of isogeny

between the associated Jacobian varieties. Smart [29] produced an explicit list of all genus
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2 A. DĄBROWSKI AND M. SADEK

2 curves with good reduction away from 2 by transforming the problem into the problem of

solving some S -unit equations. Rowan [25] adapted the latter method in order to produce

examples of genus 2 curves with good reduction away from the prime 3. Recently, infinitely

many examples of genus 2 curves over quadratic fields were presented when S is empty;

more precisely, the authors furnished examples of genus 2 curves defined over the rational

field that attain everywhere good reduction after a quadratic base change [10]. Genus 2

Curve Search Results from LMFDB [3, 7] give many (probably not all) genus 2 curves

with absolute discriminant up to 106, together with additional arithmetic information. An

expository paper by Poonen [24] contains some potential relevant projects.

It can be seen that genus 2 curves with good reduction away from an odd prime have not

been studied thoroughly in literature. In this article, we are interested in genus 2 curves C

with Q-rational Weierstrass points. We attempt to extend the existing lists of genus 2 curves

in [19], [31], to include curves with bad reduction at only one prime different from 2. The

aim of this article is to find explicitly genus 2 curves with Q-rational Weierstrass points and

with odd prime absolute discriminant. We assemble lists of such genus 2 curves, analogous

to existing lists of elliptic curves with bad reduction at only one odd prime.

In this work, we consider genus 2 curves C that can be described by globally minimal

Weierstrass equations over Q of the form y2+Q(x)y = P (x), where degQ(x)≤ 2 and P (x)

is monic of degree 5. Moreover, we assume that these curves possess at least two Q-rational

Weierstrass points. This implies that they can be described by integral equations of the form

y2 = xf(x), where f(x) is monic of degree 4. Moreover, the latter equation may be assumed

to be minimal at every prime except at 2. It turns out that if f(x) is reducible, then the

absolute discriminant of C can never be an odd prime, except when f(x) = (x−b)g(x) and

g(x) is irreducible. We show that there are many (conjecturally, infinitely many) genus 2

curves C defined by y2 = x(x−b)g(x) (with g(x) irreducible) and such that the discriminant

of C is ±p, where p is an odd prime. Let us give two families of such curves. In fact, we

prove in §7 that these are the only families of such curves.

(i) Let f(t) = 256t4−2,064t3+4,192t2+384t−1,051. The hyperelliptic curve Ct defined

by the (non-minimal) equation

y2 = x(x+1)(x3+64tx2+64(t+4)x+256), t ∈ Z,

has discriminant ±p for some odd prime p if and only if f(t) = ±p. One can easily

check that for 0< t < 100, f(t) is a prime exactly when

t ∈ {3,4,5,7,13,20,26,31,40,42,43,46,48,51,55,82,83,90,98},

and for such values of t, the discriminant ΔCt = f(t). For instance, one has ΔC3 =2,837,

ΔC4 = 997, ΔC5 = 7,669, ΔC7 = 113,749, ΔC13 = 3,489,397, and ΔC20 = 26,131,429.

(ii) Let g(t) = 256t4+768t3− 800t2− 2,064t− 6,343. The hyperelliptic curve Ct given by

the (non-minimal) equation

y2 = x(x−4)(x3+(4t+1)x2−4(4t+5)x+64), t ∈ Z,

has discriminant ±p for some odd prime p if and only if g(t) = ±p. For 0 < t < 100,

g(t) is a prime exactly when

t ∈ {3,6,10,12,13,18,23,25,27,31,35,44,51,58,74,80,82,93,95},

https://doi.org/10.1017/nmj.2023.35 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.35


GENUS 2 CURVES WITH BAD REDUCTION AT ONE ODD PRIME 3

and for such values of t, ΔCt = g(t) is an odd prime, for example, ΔC3 = 21,737,

ΔC6 = 450,137, ΔC10 = 3,221,017, ΔC12 = 6,489,209, ΔC13 = 8,830,537, and ΔC18 =

31,050,137.

Conjecturally, each of the above two families contains infinitely many genus 2 curves

of prime discriminant. Such a statement follows from the above discussion, and a

classical conjecture by Bouniakovsky [5] concerning prime values of irreducible polynomials

f(x) ∈ Z[x] : if the set of values f(Z+) has no common divisor larger than 1, then |f(x)|
represents infinitely many prime numbers. It is not difficult to give examples with very

large discriminants, for instance, f(49,983) = ΔC49,983 = 1,597,567,383,051,905,525,717

and f(69,945)=ΔC69,945 =6,126,558,731,378,331,096,629 are primes, where f(t)= 256t4−
2,064t3+4,192t2+384t−1,051, and Ct belongs to the family (i) above.

In §8, we give two explicit (conjecturally, infinite) families of genus 2 curves with absolute

prime discriminant described by y2 = xf(x), with f(x) an irreducible monic polynomial.

We remark that the fact that we are looking for Weierstrass equations with odd prime

absolute discriminant describing these curves implies that these Weierstrass equations are

globally minimal.

It is worth mentioning that the families of genus 2 curves that we obtain in this work can

be seen as the genus-2 analogue to the famous Neumann–Setzer families of elliptic curves

over the rationals [27]. We recall that a Neumann–Setzer elliptic curve possesses a rational

point of order 2 and its discriminant is an odd prime. Moreover, these elliptic curves may

be described by the following globally minimal Weierstrass equation

y2+xy = x3+
1

4
(t−1)x2−x, t≡ 1 mod 4,

where the discriminant is an odd prime p if and only if t2+64 = p; hence, it is conjectured

that there are infinitely many such curves.

Our explicit families of genus 2 curves with odd prime (or odd square-free) discriminants

lead to abelian surfaces (Jacobians) with trivial endomorphisms, and may be useful when

testing the paramodular conjecture of Brumer and Kramer. If C is such a curve, then

the conjecture of Brumer and Kramer predicts the existence of a cuspidal, nonlift Siegel

paramodular newform f of degree 2, weight 2, and level NC with rational Hecke eigenvalues,

such that L(Jac(C), s) = L(f,s,spin). The interested reader may consult [6].

§2. Preliminaries on genus 2 curves

Let C be a smooth projective curve of genus 2 over a perfect field K. Let σ be the

hyperelliptic involution of C. Given a generator x of the subfield of K(C) fixed by σ over

K, and y ∈K(C) such that K(C) =K(x)[y], a Weierstrass equation E of C is given by

E : y2+Q(x)y = P (x), P (x),Q(x) ∈K[x], degQ(x)≤ 3, degP (x)≤ 6.

If E′ : v2+Q′(u)v = P ′(u) is another Weierstrass equation describing C, then there exist( a b

c d

)
∈GL2(K), e ∈K \{0}, H(x) ∈K[x] such that

u=
ax+ b

cx+d
, v =

ey+H(x)

(cx+d)3
.
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4 A. DĄBROWSKI AND M. SADEK

If charK �= 2, then we define the discriminant ΔE of the Weierstrass equation E to be

ΔE = 2−12disc(4P (x)+Q(x)2).

One has ΔE �= 0 if and only if E describes a smooth curve. Moreover,

ΔE′ = e20(ad− bc)−30ΔE (2.1)

(see, e.g., [17, §2]).
Assuming, moreover, that K is a discrete valuation field with discrete valuation ν and ring

of integers OK , E is said to be an integral Weierstrass equation of C if both P (x),Q(x) ∈
OK [x]. This implies that ΔE ∈ OK . A Weierstrass equation E describing C is said to be

minimal if E is integral and ν(ΔE) is the smallest valuation among all integral Weierstrass

equations describing C. In the latter case, ν(ΔE) is the discriminant of C over OK .

If K is a number field with ring of integers OK , then a Weierstrass model E describing

C is integral if P (x),Q(x) ∈ OK [x]. A Weierstrass equation E is globally minimal if it is

minimal over OKp
for every prime ideal p of OK , where Kp is the completion of K at p.

Globally, minimal Weierstrass equations do not exist in general, yet if K has class number

one, then C has a globally minimal Weierstrass equation (see [17, Remarque 6]). In the

latter case, the discriminant of a globally minimal Weierstrass equation describing C is the

discriminant of C.

One notices that since we will be looking for Weierstrass equations with odd prime

absolute discriminant, it follows that these equations are globally minimal; hence, the

corresponding discriminants are minimal.

§3. Rational Weierstrass points

In this section, we assume that C is a smooth projective genus 2 curve defined over a

number field K of class number one. We assume, moreover, that C possesses a K -rational

Weierstrass point. It follows that C can be described by a Weierstrass equation of the form

E : y2+Q(x)y = P (x), where P (x),Q(x) ∈K[x] (3.1)

and degQ(x)≤ 2, and P (x) is monic of degree 5.

Moreover, such an equation is unique up to a change of coordinates of the form x �→
u2x+ r, y �→ u5y+H(x) where u ∈K \{0}, r ∈K, and H(x) ∈K[x] is of degree at most 2

(see [18, Prop. 1.2]).

Throughout this paper, we will assume that C is defined over Q by a globally minimal

Weierstrass equation E of the form in (3.1). After the following transformation x �→ x and

y �→ y+Q(x)/2, then C is described by 4y2 =4P (x)+Q(x)2. Now, using the transformation

x �→ x/22, y �→ y/25, an integral Weierstrass equation describing C is E′ : y2 =G(x) where

G(x) ∈ Z[x] is monic of degree 5 and ΔE′ = 240ΔE .

Lemma 3.1. Let C be a smooth projective curve of genus 2 defined over Q by a globally

minimal Weierstrass equation of the form y2+Q(x)y = P (x), where degQ(x)≤ 2 and P (x)

is monic of degree 5, with odd discriminant Δ. Assume, moreover, that C has at least two

Q-rational Weierstrass points. Then C can be described by a Weierstrass equation of the

form E : y2 = xF (x), where F (x)∈Z[x] is a monic polynomial of degree 4, and ΔE = 240Δ.

In particular, E is minimal over every p-adic ring Zp except when p= 2.
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Proof. This follows from the argument above together with the fact that one of the

rational Weierstrass points is sent to infinity, while the other point is sent to (0,0) ∈ C(Q)

via a translation map. We notice that all the transformations used do not change minimality

at odd primes.

Let C be a smooth projective curve of genus 2 defined by a Weierstrass equation of the

form E : y2 = P (x), where P (x) ∈ Z[x] is of degree 5 (not necessarily monic). The Igusa

invariants J2i, 1≤ i≤ 5, associated with E were defined in [13, §4]. In fact, these invariants

can be defined for any Weierstrass equation describing C (see [16]). These invariants can

be used to identify the reduction type of C at a given prime p (see [13], [15]). For instance,

the following result is [15, Théorème 1].

Theorem 3.2. Let C be a smooth projective curve of genus 2 defined by the Weierstrass

equation y2+Q(x)y = P (x) over Q. Then C has potential good reduction at the prime p if

and only if J5
2i/J

i
10 ∈ Zp, for every 1≤ i≤ 5, where Zp is the ring of p-adic integers.

One remarks that if C does not have potential good reduction at a prime p, then C does

not have good reduction at p.

§4. Curves with six rational Weierstrass points

We assume that C is a smooth projective curve of genus 2 over Q. If C has six Q-rational

Weierstrass points, then C may be described by a Weierstrass equation of the form

E : y2 = x(x− b1)(x− b2)(x− b3)(x− b4), bi ∈ Z, i= 1,2,3,4.

Theorem 4.1. Let C be a smooth projective curve of genus 2 defined over Q. Assume

that C has six Q-rational Weierstrass points. If C is described by a globally minimal

Weierstrass equation E such that |ΔE | is of the form 2apb, where p is an odd prime,

a≥ 0, b≥ 1, then C is isomorphic to one of the following curves described by the following

Weierstrass equations:

E0 : y2 = x(x−1)(x+1)(x−2)(x+2), ΔE0 = 218×34,

E1 : y2 = x(x−3)(x+3)(x−6)(x+6), ΔE1 = 218×314.

Proof. The curve C can be described by an integral Weierstrass equation of the form

E : y2 = x(x− b1)(x− b2)(x− b3)(x− b4), where E is minimal at every odd prime. The

discriminant ΔE of E is described by

ΔE = 28b21(b1− b2)
2b22(b1− b3)

2(b2− b3)
2b23(b1− b4)

2(b2− b4)
2(b3− b4)

2b24.

Now, we assume that ΔE = 2mpn, where m≥ 8, n≥ 1.

We claim that at least two of the bi’s are even. Assume on the contrary that b1 =±pα1 ,

b2 =±pα2 , and b3 =±pα3 (α1 ≥ α2 ≥ α3 ≥ 0) are all odd. Then |b1−b2|= 2s1pl1 , |b1−b3|=
2s2pl2 , and |b2−b3|=2s3pl3 , with si ≥ 1, i=1,2,3. If all bi’s are of the same sign, then using

Catalan’s conjecture (Mihăilescu’s theorem), we obtain α1 =α2+2=α3+2 and α2 =α3+2,

a contradiction. Now, if some bi and bj are of opposite signs, then we obtain αi = αj ; in

particular, it follows that α1 = α2 = α3. This will imply that two of bi’s are equal, which is

a contradiction.
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6 A. DĄBROWSKI AND M. SADEK

This justifies considering the following subcases:

(i) In case two of the bi’s are even, we may assume without loss of generality that

b1 =±2c1pd1 , b2 =±2c2pd2 , b3 =±pd3 , and b4 =±pd4 , with c1 ≥ c2 > 0. Elementary, but long

case-by-case calculations show that necessarily we have d1 = d2 = d3 = d4 = d; in particular,

b3 = −b4. Now, it is easy to check that p = 3 and c1 = c2 = 1; in particular, b1 = −b2.

Hence, b1 = 2× 3d, b2 = −2× 3d, b3 = 3d, and b4 = −3d, which leads to the Weierstrass

equation Ed : y
2 = x(x− 2× 3d)(x+2× 3d)(x− 3d)(x+3d). A straight forward change of

variables yields that the Weierstrass equations Ed and Ed+2 describe two isomorphic genus

2 hyperelliptic curves; hence, we only obtain two non-isomorphic genus 2 curves C0 and

C1 in the latter family described by E0 and E1 with minimal discriminants 218× 34 and

218×314, respectively.

(ii) We assume now without loss of generality that b1 = ±2c1pd1 , b2 = ±2c2pd2 , b3 =

±2c3pd3 , and b4 = ±pd4 , with c1 ≥ c2 ≥ c3 > 0. Again, long case-by-case calculations show

that necessarily we have d1 = d2 = d3 = d4 = d. In this case, we obtain b1 = 23× 3d, b2 =

−22×3d, b3 =2×3d, and b4 =−3d, which leads to the curves C ′
d described by theWeierstrass

equations y2 = x(x− 23× 3d)(x+22× 3d)(x− 2× 3d)(x+3d). Again, it is easily seen that

the curves C ′
d and C ′

d+2 are isomorphic. Moreover, using the function IsIsomorphic(,) in

MAGMA, we can verify that the curves C0 and C ′
0 are isomorphic, and that the curves C1

and C ′
1 are isomorphic.

(iii) We assume now without loss of generality that b1 = ±2c1pd1 , b2 = ±2c2pd2 , b3 =

±2c3pd3 , and b4 =±2c4pd4 , with c1 ≥ c2 ≥ c3 ≥ c4 > 0. Again, long case-by-case calculations

show that necessarily we have d1 = d2 = d3 = d4 = d. In this case, we obtain b1 = 2t+3×3d,

b2 =−2t+2×3d, b3 = 2t+1×3d, and b4 =−2t×3d, which leads to the curves Ct,d described

by y2 = x(x−2t+3×3d)(x+2t+2×3d)(x−2t+1×3d)(x+2t×3d). Now, the curves Ct,d and

Ct,d+2 are isomorphic. Moreover, we may check using the function IsIsomorphic(,) that

the curves Ct,d and Ct+1,d are isomorphic. Therefore, we obtain only two non-isomorphic

curves C1,0 and C1,1. Finally, in a similar fashion, one notices that C0 and C1,0 are

isomorphic, and the genus 2 curves C1 and C1,1 are isomorphic.

Remark 4.2. One sees easily that none of the curves C described in Theorem 4.1 can

be described by a globally minimal Weierstrass equation whose discriminant is square-free.

This holds because ΔE is always a square. Moreover, if C is a curve that is described by

neither E0 nor E1, and C has bad reduction at exactly two primes, then both primes must

be odd.

Corollary 4.3. Let C be a smooth projective curve of genus 2 defined over Q. Assume

that C has six Q-rational Weierstrass points. If C is described by a globally minimal

Weierstrass equation E, then |ΔE | can never be a power of a prime. In other words, C

cannot have bad reduction at exactly one prime.

Proof. Theorem 4.1 asserts that if C has bad reduction at exactly one prime, then this

prime must be 2. However, according to [19, §6.1], there is no such curve with bad reduction

only at 2.

§5. Curves with exactly four rational Weierstrass points

We assume that C is a smooth projective curve of genus 2 over Q described by a

globally minimal Weierstrass equation of the form E : y2+Q(x)y=P (x), P (x),Q(x)∈Z[x],
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degQ(x) ≤ 2, and P (x) is monic of degree 5. If C has exactly four Q-rational Weierstrass

points, then C may be described by a Weierstrass equation of the form

E′ : y2 = x(x− b1)(x− b2)(x
2+ b3x+ b4), bi ∈ Z, i= 1,2,3,4,

with ΔE′ = 240ΔE (see Lemma 3.1).

Theorem 5.1. Let C be a smooth projective curve of genus 2 defined over Q. Assume

that C has exactly four Q-rational Weierstrass points. If C is described by a globally minimal

Weierstrass equation of the form E : y2+Q(x)y = P (x), degQ(x) ≤ 2 and P (x) is monic

of degree 5, then |ΔE | is never an odd prime.

Proof. In accordance with Lemma 3.1, C is described by E′ : y2 = x(x−b1)(x−b2)(x
2+

b3x+ b4), bi ∈ Z, and x2 + b3x+ b4 is irreducible. Moreover, ΔE′ = 240ΔE ; hence, E
′ is

minimal at every odd prime. We have the following explicit formula for the discriminant

of E′:

ΔE′ = 28b21(b1− b2)
2b22(b

2
3−4b4)b

2
4(b

2
1+ b1b3+ b4)

2(b22+ b2b3+ b4)
2. (5.1)

We now assume that ΔE′ =±240p, where p is an odd prime. It follows that:

(a) b1 =±2a, b2 =±2b, b1− b2 =±2c, b4 =±2d,

(b) b23− 4b4 = ±2ep (note that b23− 4b4 is the only non-square factor, and hence it is the

only one that can be divisible by p),

(c) b21+ b1b3+ b4 =±2f , b22+ b2b3+ b4 =±2g,

where a,b,c,d,e,f,g are nonnegative integers such that 2a+2b+2c+2d+e+2f +2g = 32.

We will consider the following three cases.

(i) a= b=0. Then necessarily, b1 =−b2, c=1, and combining the equations (c), we obtain

b4 =±2f−1±2g−1−1 and b3 =±2f−1±2g−1. The first one gives 1±2d =±2f−1±2g−1.

If d≥ 1, then f = 1 (and, therefore, g = d+1) or g = 1 (and, therefore, f = d+1). In this

case, b3 is odd, and hence e= 0, and we obtain 4d+6 = 32, which is impossible.

If d = 0, then ±2f−1± 2g−1 = 1± 2d = 2 or 0. In the first case, f = g = 1 and b3 = 0 or

±2, and there are no p satisfying (b). In the second case, f = g ≥ 1, and b3 = 0 or ±2f . In

the last case, (b) implies e= 2, 4f = 28, and hence p= 212±1, which is not a prime.

(ii) a=0, b≥ 1. Then, necessarily, b=1 and c=0. We obtain a contradiction, considering

carefully all possible tuples (d,e,f,g) satisfying 2d+ e+2f +2g = 30, and combining the

equations (b) and (c).

(iii) a,b ≥ 1. Then a = b, b1 = −b2, and c = a+1. We have 2a+2b+2c = 6a+2; hence,

we have five cases to consider: a= b≤ 5. For each such a, we consider d≥ 0, and try to find

e, f, and g using (b) and (c). None of these cases lead to genus 2 curve E with odd prime

value of |ΔE |. We omit the details.

§6. Curves with exactly two rational Weierstrass points and a quadratic

Weierstrass point

Let C be a smooth projective curve of genus 2 over Q described by a globally minimal

Weierstrass equation of the form E : y2+Q(x)y = P (x), P (x),Q(x) ∈ Z[x], degQ(x) ≤ 2,

and P (x) is monic of degree 5. If C has exactly two Q-rational Weierstrass points and a
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8 A. DĄBROWSKI AND M. SADEK

quadratic Weierstrass point, then Lemma 3.1 implies that C is described by a Weierstrass

equation of the form

E′ : y2 = x(x2+a1x+a2)(x
2+ b1x+ b2), ai, bi ∈ Z,

where both x2+a1x+a2 and x2+ b1x+ b2 are irreducible, and ΔE′ = 240ΔE .

Theorem 6.1. Let C be a smooth projective curve of genus 2 defined over Q. Assume

that C has exactly two Q-rational Weierstrass points and a quadratic Weierstrass point. If C

is described by a globally minimal Weierstrass equation of the form E : y2+Q(x)y = P (x),

degQ(x)≤ 2 and P (x) is monic of degree 5, then |ΔE | is never an odd prime.

Proof. As seen above, C can be described by an integral Weierstrass equation E′ : y2 =

x(x2+a1x+a2)(x
2+b1x+b2) with ΔE′ = 240ΔE . In particular, E′ is minimal at every odd

prime. We have the following explicit formula for the discriminant of E :

ΔE′ = 28(a21−4a2)a
2
2(b

2
1−4b2)b

2
2K

2, (6.1)

where K = a22− a1a2b1+ a2b
2
1+ a21b2− 2a2b2− a1b1b2+ b22. We assume that ΔE′ = ±240p,

where p is an odd prime. It is clear that |a2|= 2a and |b2|= 2b, with a,b≥ 0. Therefore, we

can assume without loss of generality that

|a21−4a2|= 2c (6.2)

and

|b21−4b2|= 2dp, (6.3)

where c,d ≥ 0. Note that K is necessarily a power of 2. We will solve systems of these

equations, controlling the condition 2a+2b+c+d+2v2(K)= 32, where v2 is the 2-valuation.

We will consider the following four cases, with many subcases.

(i) a+2 = c, and both a and c are even. Note that

(a,c) ∈ {(0,2),(2,4),(4,6),(6,8),(8,10),(10,12)}.

(ii) a+2 = c, and both a and c are odd. Note that

(a,c) ∈ {(1,3),(3,5),(5,7),(7,9),(9,11)}.

(iii) a+2 > c, then necessarily c is even. Using (6.2), we obtain that a+2− c = 1 or 3.

This gives rise to the following 11 pairs (a,c):

(iiia) (1,2), (3,4), (5,6), (7,8), (9,10),

(iiib) (1,0), (3,2), (5,4), (7,6), (9,8), (11,10).

(iv) a+2 < c, then necessarily a is even. Using (6.2), we obtain that c−a−2 = 1 or 3.

This yields the following 10 pairs (a,c):

(iva) (0,3), (2,5), (4,7), (6,9), (8,11),

(ivb) (0,5), (2,7), (4,9), (6,11), (8,13).

The general strategy of the proof is as follows:

• Fix a pair (a,c) as above (we have 32 such pairs).

• We have a2 =±2a, and hence we can calculate a1 using (6.2).

• Now consider b2 =±2b, for all nonnegative integers b satisfying 2a+2b+c≤ 32. Then, of

course, d+2v2(K)≤ 32−2a−2b− c.
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• For each triple (a,b,c), check whether there exist b1 and K satisfying (6.3) and d+

2v2(K) = 32− 2a− 2b− c. Here, we use a more convenient expression for K, namely

K = (a2− b2)
2+(a1− b1)(a1b2−a2b1).

The cases with large 2a+ c are the easiest to consider, and the cases with small 2a+ c

are the longest ones (many subcases, etc.). Let us illustrate the method in one of the

easiest cases, (a,c) = (11,10). Here, we have a2 = ±211 and a1 = ±253. If b2 = ±1, then

K = (211 ± 1)2 + (±253− b1)(±253± 211b1) = (211 ± 1)2 +25(±253− b1)(±3± 26b1) = ±1.

Note that b1 is odd (otherwise d > 0 and 2a+2b+ c+d > 32); hence, the second summand

in K is of the form 25s, with odd s. On the other hand, note that (211±1)2+1 = 2× s±,

and (211 ± 1)2 − 1 = 212 × t±, with odd s± and t±, a contradiction. If b2 is even, then

2a+2b+ c > 32, again a contradiction.

We will discuss smooth curves of genus 2 with exactly two rational Weierstrass points

and no quadratic Weierstrass points separately.

§7. Curves with exactly three rational Weierstrass points

In this section, we assume that C is a smooth projective curve of genus 2 over Q

described by a globally minimal Weierstrass equation of the form E : y2+Q(x)y = P (x),

where P (x),Q(x) ∈ Z[x], degQ(x)≤ 2, and degP (x) = 5. Assume, moreover, that ΔE is an

odd square-free integer. In particular, C has good reduction at the prime 2. If, moreover,

C has exactly three Q-rational Weierstrass points, then it follows from Lemma 3.1 that C

is described by a Weierstrass equation of the form

E′ : y2 = x(x− b)(x3+dx2+ex+f), b,d,e,f ∈ Z,

whose discriminant ΔE′ =240ΔE , and such that x3+dx2+ex+f is irreducible. This implies

that E′ is minimal at every odd prime. In this section, we find explicitly all such genus

2 curves. In fact, we show that there are only two one-parameter families of the latter

Weierstrass equations.

One has

ΔE′ = 28b2f2(b3+db2+eb+f)2(d2e2−4e3−4d3f +18def −27f2) = 240ΔE , (7.1)

where Δ is an odd square-free integer.

Setting εi =±1, i= 1,2,3,4, one has:

(a) b= ε12
k, f = ε22

l,

(b) b3+db2+eb+f = ε32
m,

(c) d2e2−4e3−4d3f +18def −27f2 = ε42
nΔE ,

where 2k+2l+2m+n= 32.

Theorem 7.1. Let C be a smooth projective curve of genus 2 defined over Q with good

reduction at the prime 2. Assume that C has exactly three Q-rational Weierstrass points. If

C is described by a globally minimal Weierstrass equation of the form E : y2+Q(x)y=P (x),
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degQ(x)≤ 2 and P (x) is monic of degree 5, such that |ΔE | is a square-free odd integer, then

E lies in one of the following two one-parameter globally minimal Weierstrass equations

(i) Et : y
2−x2 y = x5+16tx4+(16+8t)x3+(8+ t)x2+x,

(ii) Ft : y
2+(−x2−x)y = x5+(−1+ t)x4+(−2−2t)x3+(2+ t)x2−x,

where t ∈ Z.

Proof. As explained above, the curve C can be described by an integral Weierstrass

equation of the form E′ : y2 = x(x− b)(x3 + dx2 + ex+ f), where ΔE′ = 240ΔE ; and

conditions (a)–(c) are satisfied. The values of b and f are determined by (a). Condition

(b) implies that m ≥ min(k, l). If l ≥ k, then e(t) = ε1ε32
m−k − ε1(2

2kε1 +2kt+2l−kε2),

where d = t. If l < k, then m = l; if ε2 = ε3, then e(t) = −(22k +2kε1t) and d = t; whereas

if ε2 =−ε3, then k = l+1, e(t) =−ε1ε2− ε1(2
2kε1+2kt), and d= t. Therefore, in any case,

the Weierstrass equation E′
t : = E′ is described as follows:

E′
t : y

2 = x(x−2kε1)(x
3+ tx2+e(t)x+2lε2), t ∈ Z. (7.2)

The strategy of the proof now is as follows. Given a fixed pair of positive integers (k, l)

such that 0 ≤ k+ l ≤ 16, m is chosen such that 0 ≤ m ≤ 16− k− l, m ≥ min(k, l), and

n = 32− 2k− 2l− 2m ≥ 0. One checks now which of these tuples (k, l,m,n) yields a curve

with good reduction at the prime 2, given that condition (c) is satisfied; in particular,

2n||(d2e2−4e3−4d3f +18def −27f2). (7.3)

Let E′
t be the corresponding integral Weierstrass equation, and we first check whether it

has potential good reduction at the prime 2. This can be accomplished using Theorem 3.2.

If it has potential good reduction at 2, then one checks for which congruence classes of t,

condition (7.3) is satisfied.

In fact, the only Weierstrass equations E′
t that describes a curve C with potential good

reduction at 2, that is, J5
2i/J

i
10 ∈ Z2, for every 1≤ i≤ 5, and such that (7.3) is satisfied are

the ones corresponding to the following tuples (k, l,m,n):

(0,0,8,16), ε1 =−ε2, t≡ 3 mod 64,

(2,5,5,8), t≡ 2 mod 4,

(1,6,3,12), ε1 = ε3, t≡ 0 mod 8,

(4,4,4,8), ε2 = ε3, t≡ 0 mod 4,

(2,6,6,4), t≡ 1 mod 2,

(0,8,0,16), ε1 = ε3, t≡ 0 mod 64.

Any other tuple (k, l,m,n) will yield an integral Weierstrass equation for which J5
2i/J

i
10 �∈Z2

for some i, 1 ≤ i ≤ 5; or condition (7.3) is not satisfied by the corresponding Weierstrass

equation. More precisely, any other tuple (k, l,m,n) that is not in the above list yields

an integral Weierstrass equation for which there is some i, 1 ≤ i ≤ 5, such that J5
2i/J

i
10 =

xi(t)/yi(t) where xi(t)−xi(0) ∈ 2Z[t], xi(0) is an odd integer, and yi(t) ∈ 2Z[t]; or else it is

impossible for 2n to exactly divide (d2e2−4e3−4d3f +18def −27f2) for any choice of an

integer value of t.

https://doi.org/10.1017/nmj.2023.35 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.35


GENUS 2 CURVES WITH BAD REDUCTION AT ONE ODD PRIME 11

For the tuple (2,6,6,4), the minimal discriminant equals (16t2+56t+157)2 if (ε1, ε2, ε3) =

(1,1,−1), and it equals (16t2−40t+133)2 if (ε1, ε2, ε3)= (−1,−1,1) (hence it is never square-

free).

Note that the models Y 2 = X(X − ε1)(4X
3 + (4t+ 2)X2 + 2(−2ε1t− 2− ε1 − ε1ε2 +

ε1ε3)X +2ε2) for (2,5,5,8) and Y 2 = X(4X − 2ε1)(X
3 +2X2 + (−ε1t− 2ε1ε2)X + ε2) for

(1,6,3,12) have discriminants of the form 220× odd. Such models are minimal at 2, since

the polynomials on the right-hand side are twice a stable polynomial (root multiplicities

< 3) and it is not congruent to a square modulo 4 (see [17, corollaire 2, p. 4594] and [20]).

The tuple (4,4,4,8), where ε2 = ε3 = 1 and t ≡ 0 mod 4, yields an integral Weierstrass

equation E′
t that defines a curve with good reduction at 2 and 240||ΔE′

t
. Replacing t with

4t and minimizing the equation E′
t yields the curve described by

E1
t (ε1) : y

2−xy = x5+(−4ε1+ t)x4+(−16−8ε1t)x
3+(64ε1+16t)x2− ε1x,

with 2 �ΔE1
t
for any integer t.

The tuple (0,8,0,16), where ε1 = ε3 =−1 and t≡ 0 mod 64, yields an integral Weierstrass

equation E′
t that defines a curve with good reduction at 2 and 240||ΔE′

t
. Replacing t with

64t and minimizing the equation E′
t yields the equation

E2
t (ε2) : y

2−x2 y = x5+16tx4+(16ε2+8t)x3+(8ε2+ t)x2+ ε2x,

with 2 �ΔE2
t
for any integer t.

The tuple (0,0,8,16), where ε1 = 1 and ε2 = −1, gives rise to an integral Weierstrass

equation E′
t that defines a curve with good reduction at 2 and 240||ΔE′

t
, when t≡ 3 mod 64.

Minimizing the equation E′
t yields

E3
t (ε3) : y

2+(−x2−1)y = x5+(−5+64ε3−16t)x4+(9−208ε3+56t)x3

+(−9+252ε3−73t)x2+(4−135ε3+42t)x+(−1+27ε3−9t),

such that 2 �ΔE3
t
for any integer t.

Now, we can check, using MAGMA, that the following tuples of Weierstrass equations

describe isomorphic genus 2 curves:

(E2
t (1), E

2
t−4(−1), E1

t+4(−1)); (E1
t (1), E

1
−t(−1)); (E3

t (1), E
2
−t(−1)); (E3

t (−1), E2
−t(1)).

Similarly, for the tuple (2,6,6,4) when t≡ 1 mod 2 and (ε1, ε2, ε3) �∈ {(1,1,−1),(−1,−1,1)},
this yields E4

t (ε1, ε2, ε3):

y2+(−x2−x)y = x5+(−ε1+ t)x4+(−3/2− ε1/2− ε1ε2+ ε1ε3−2ε1t)x
3

+(ε1+2ε2− ε3+ t)x2− ε1ε2x

after minimization where 2 �ΔE4
t (ε1,ε2,ε3)

for any integer t. Using MAGMA, one checks that
the following pairs of equations describe isomorphic genus 2 curves:

E4
t (1,−1,1) and E4

t+1(1,1,1); E4
t (1,−1,−1) and E4

t+2(1,1,1); E4
t (−1,1,1) and E4

t−3(1,1,1);

E4
t (−1,1,−1) and E4

t−2(1,1,1); E4
t (−1,−1,−1) and E4

t−1(1,1,1).

Reasoning as in the cases of tuples (2,5,5,8) and (1,6,3,12), we obtain that, in the

remaining cases for the tuples (0,0,8,16), (4,4,4,8), (2,6,6,4), and (0,8,0,16), the minimal

discriminants are of the form 220×odd.
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After computing the discriminants for the above families of Weierstrass equations, one

concludes that the Weierstrass equations for which the absolute value of the discriminant

is a square-free odd integer lie only in the families Et := E2
t (1) and Ft := E4

t (1,1,1).

Corollary 7.2. The absolute discriminant |ΔEt0
| (resp. |ΔFt0

|), t0 ∈Z, of the minimal

Weierstrass equation Et0 (resp. Ft0) is a square-free odd integer m if and only if |f(t0)|=m

(resp. |g(t0)| =m) where f(t),g(t) ∈ Z[t] are degree-4 irreducible polynomials described as

follows:

f(t) = 256t4−2,064t3+4,192t2+384t−1,051;

g(t) = 256t4+768t3−800t2−2,064t−6,343.

In particular, ΔEt0
=±p (resp. ΔFt0

=±p), p is an odd prime, if and only if f(t0) =±p

(resp. g(t0) = ±p). It follows that there are, conjecturally, infinitely many integer values t

such that |ΔEt | (resp. |ΔFt |) is an odd prime.

Proof. This follows immediately as direct calculations show that ΔEt = f(t) and ΔFt =

g(t) where Et and Ft are defined as in Theorem 7.1. Moreover, the polynomials f(t) and

g(t) satisfy the conditions of Bouniakovsky’ conjecture [5] for the infinitude of prime values

attained by an irreducible polynomial.

Recall that E4
t (ε1, ε2, ε3) is the Weierstrass equation

y2+(−x2−x)y = x5+(−ε1+ t)x4+(−3/2− ε1/2− ε1ε2+ ε1ε3−2ε1t)x
3

+(ε1+2ε2− ε3+ t)x2− ε1ε2x.

The following statement is a corollary of the proof above.

Corollary 7.3. Let (ε1, ε2, ε3) ∈ {(1,1,−1),(−1,−1,1)}. There are, conjecturally,

infinitely many integer values t such that |ΔE4
t
(ε1, ε2, ε3)|= p2, p is an odd prime.

§8. Curves with exactly two rational Weierstrass points and no quadratic

Weierstrass points

Let C be described by a Weierstrass equation of the form

E : y2 = x(x4+ bx3+ cx2+dx+e), b, c,d,e ∈ Z,

where the quartic is irreducible. Then the discriminant is given by

ΔE = 28e2(b2c2d2−4c3d2−4b3d3+18bcd3−27d4−4b2c3e

+16c4e+18b3cde−80bc2de−6b2d2e+144cd2e

−27b4e2+144b2ce2−128c2e2−192bde2+256e3).

In this section, although we were not able to utilize the methods used before to

classify all such curves, we produce two one-parametric families of curves that will contain

infinitely many curves with an odd prime absolute discriminant. It is worth mentioning
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that ΔE/(2
4e2) is the discriminant of the elliptic curve described by E′ : y2 = x4+ bx3+

cx2+dx+e; therefore, classifying genus 2 curves with an odd prime absolute discriminant

described by E is equivalent to finding elliptic curves with odd prime absolute discriminant

defined by E′.

(i) Let f(t) = 6,912t4+6,912t3+2,592t2+432t−65,509. The hyperelliptic curve Ct given

by the (non-minimal) equation

y2 = x(x4+16(4t+1)x+256), t ∈ Z,

has discriminant ±p for some odd prime p if and only if f(t) = ±p. One can easily check

that for 0< t < 100, |f(t)| is prime exactly when

t ∈ {1,2,14,15,16,29,41,47,52,57,69,71,80,81},

and for such values of t, the discriminant ΔCt = −f(t). For instance, one has ΔC2 =

−111,611, ΔC14 = −284,946,491, ΔC15 = −373,772,171, ΔC16 = −481,901,339, ΔC29 =

−5,059,429,931, and ΔC41 =−20,012,351,339. In a general case, ΔCt is an odd integer.

(ii) Let f(t) = 6,912t4 − 19,712t3 + 167,968t2 − 288,720t+ 134,075. The hyperelliptic

curve Ct given by the (non-minimal) equation

y2 = x(x4+(4t+1)x3−80x2+256x−256), t ∈ Z,

has discriminant ±p for some odd prime p if and only if f(t) = ±p. One can easily check

that for 0< t < 100, f(t) is a prime exactly when

t ∈ {1,4,7,14,36,39,44,67,81,96,99},

and for such values of t, the discriminant ΔCt =−f(t). For instance, one has ΔC1 =−523,

ΔC4 = −2,174,587, ΔC7 = −16,177,963, ΔC14 = −240,455,387, ΔC36 = −10,897,249,403,

and ΔC39 =−1,5065,561,387. In a general case, ΔCt is an odd integer.

Conjecturally, the above families contain infinitely many genus 2 curves with an odd

prime absolute discriminant.
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