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I. INTRODUCTION

SINCE the work of Kronig & Paul (1897), Madsen & Nyman (1907), Ik&la
(1897) arid Chick (1908a, 1910), on disinfectant action, a large number of
observations have been made to determine the shape of time-survivor curves.
Many observers have based their theories of disinfection on the shape of the
time-survivor curves they have obtained. When the logarithm of the survivors
plotted against time gave a straight line, "mechanistic theories have been
generally applied (Chick, 1908a, 1910; Balm, 1929,1930; Lee & Gilbert, 1918).
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When, on the other hand, the logarithm of the survivors (or the percentage
survivors) gave sigmoid curves or curves with a 'lag' or induction period, then
theories involving the distribution of resistances in a bacterial population were
advanced (Brooks, 1918; Smith-Henderson, 1921, 1923). Some of the results
and theories of different observers are collected in Table 1. This shows the shape
of time-survivor curve obtained with both vegetative organisms and spores,
together with the results when more highly organized individuals were used.

Table 1
Author

Kronig & Paul (1897)

Madsen & Nyman (1907)

Chick (1908a)

Chick (1910)

Chick (1912)
Chick (1913)

Chick & Martin (1908)
Clark* Gage
(see Chick, 1910)

Paul (1909)
Paul, Birstoin & Reuss (1010)
Paul & Prall (1907)
Cohen (1922)

Harvey (1909)
Burbury (1928)
Eijkmann (1912)
Eijkmann (1908,1909)

Smith-Henderson (1921)

Smith-Henderson (1923)
Peters (1920)
Boycott (1920)
Falk & Winslow (1926)

Fulmer & Buchanan (1923)

Phelps (1911)
Reichenbach (1911)

Arrhenhis & Madsen (1903)
Henri (1905)
Von Liebermann &

Von Fenyvessey (1912)
Wyekoff (1932)
Wyckoff & Rivers (1930)
Wyekoff (1930)

Bacterieide
Mercuric chloride and

n o t . TFQ.T.AT i

Mercuric chloride and
phenol

Mercuric chloride, sil-
ver nitrate, phenol

infectant '-A'
Phenol

Phenol

Hot water

—
Normal rabbit serum
Normal goat serum
Emulsified tar acids
Sunlight

Drying
Drying and acid
Drying
Weak acid

Hydrochloric acid
Heat
Phenol and heat
Phenol
Hot water
Phenol

Heat
Mercuric chloride
Hot water
Calcium chloride solu-
tion

Phenol, and phenol in
iUCUUUl

Hot water

—

Ultra-violet light
Cathode rays
X-rays

Organism
Anthrax spores

Anthrax spores

Anthrax spores and
Bad. paratyphosum

4th generation of
young cultures of
Bud. paratyphosum

Anthrax spores
Bad. paratyphosum

(4th generation)
Bad. coli, Staph.

aureus
Bad. typhosum
Bad. typhosum
Bad. coli .
P. pestis
Bad. paratyphosum

Staph. aureus, Staph.
albus

Bad. coli
Bad. typhosum
Suotilis spores
Bad. coli

Staphylococcus
Staphylococcus
Staphylococcus
Bad. coli, Bad.

typhosum
Chtamydomonas
Virus
Yeast
Bad. coli \
Bad. coli J
Botrytis spores

Botrtftis spores
Colptdium
Tadpoles
Bad. coli

Yeast

_
Bad. paratyphosum

Haemolysis
Haemolysis
Haemolysis

'Colon bacilli'
'Colon bacilli'
E. coli, Bad. typhi-

murium

Remarks
Exponential rates

Observed exponential rates themselves
and showed Kronig & Paul's work the
same

Anthrax spores—exponential, Bad. para-
typhosum—k fell throughout reaction

k fell throughout, but to a much smaller
degree than above

Exponential curves
Exponential curves

Short lag period then exponential rate

Exponential curves
Exponential curves
Exponential curves
Exponential curves
Short period when reaction quicker than

theoretical, then, exponential
Exponential, lag phase, and as Bad. para-
typhosum above

Resume
Exponential
Exponential
Exponential rate
Exponential rate

Exponential rate
Exponential and sigmoid
Exponential rate
Exponential rate

Exponential rate
Exponential rate
Sigmoid curves
Sigmoid, logarithmic rate in middle for

short period
Sigmoid, and as cone, of phenol in-
creased—exponential

Sigmoid curves
Sigmoid curves
Sigmoid curves
Sigmoid and exponential

Irregular—(no counts)

Resume
Both logarithmic, sigmoid, 'and concave',

curves
Exponential rate
Exponential rate
Exponential rate

Exponential rate
Exponential rate
Exponential rate
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Table 1 (continued)
Author

Hollaender & Duggar (1936)
Hefcik (1936)

Coblentz & Fulton (1924)
Baker & Nanavutty (1929)
Gates (1929o,6, 1930)
Hollaender & Claus (1936)
Lea & Haines (1940)

Bactericide
Ultra-violet light
Ultra-yiolet light

Ultra-violet light
Ultra-violet light
Ultra-violet light
Ultra-violet light
Ultra-violet light

Lea, Haines & Coulson (1937) a and ft rays

Lea, Haines & Bretscher
(1941)

Axelrod, Aebersold & Spear
(see Lea, Haines & Bret-
scher, 1941)

Habermann & Ellsworth
(1940)

Salmonsen & Dreyer (1907)

Dreyer & Hanssen (1907)

Darwin & Blackmann (1909)
Arrhenius (1915)
Geppert (1889)

Mioni (1905)

Dienes (1911)

Brooks (1918)

Hewlett (1909)

Loeb & Northrop (1917)
Ballner (1902)
Porodko (1926, 1927)

Woerz (see Kahn, 1930)
Holweck (1929)

Myers (see Rahn, 1930)

Sattler (1928)
Groves (1917)
Lloyd (1920)
Falk (1923)

Tamilian (1895)
Heller (1941)

Withell (1938)

Lee & Gilbert (1918)
Oothuisen (1935)

X-rays, neutrons and
radioactive radiations

Neutrons

X-rays

Ultra-violet rays and
radium

Ultra-violet light

Mercuric chloride

Saturated steam
Hot water

Hot water
X-rays

Alkali

Heat
Heat
Lead arsenate

Heat
Drying

Phenol

Ultra-violet light
Moist heat

Organism
Plant virus
B. megatherium, both
spores and vegeta-
tive

Bact. coli
Staph. aureus
E. coli
Bact. coli, Ch. pro-
digiosum, B. mesen-
tericus

Bact. coli, B. mesen-
tericus

Bact. coli, B. mesen-
tericus

B. mesentericus

spores

Staph. aureus

Haemolysis

Haemolysis

Death of seeds

Haemolysis

Haemolysis

Mustard seeds

Anthrax spores
Wheat grains

Torula cremoris
Staph. aureus
Ps. pyocyanea
'Bacillus 25'

'Pink yeast'
Dry wheat seeds
Tomato-moth larvae

Enzymes
Sir. pyogenes, Bact.
coli

Bact. coli

Bact. coli
The confused flour
beetle

Remarks
Exponential rate
Exponential rate

Sigmoid curves
Sigmoid curves
Slightly sigmoid, flat part in the middle
Slightly sigmoid, flat part in the middle
Exponential rate

Exponential rate

Exponential rate

Exponential rate

Exponential rate

Exponential rate, but lag period at be-
ginning

Exponential rate, but lag period at be-
ginning

Exponential rate
Resume
Resume; rate of disinfection due to indi-
vidual variation

Criticized Henri's work on the ground that
he neglected individual variation

Suggested degrees of resistance were distri-
buted in accordance with Quetelet's Law

Spirited defence of the variation of re-
sistances argument

Exponential rate, but disagrees with the
application of the monomolecular law
to process

Resume
Exponential rate; Q for saturated steam
Exponential rate and decrease in k as
reaction proceeds

Exponential for higher temperatures
Logarithmic rate due to clumping
Logarithmic rate with 4 A° no t so with 8 A".
All experiments but one showed an in-
creasing death-rate

Some experiments showed decreasing rate
Sigmoid curves
Sigmoid curves
Resume^ when material homogeneous—
logarithmic, when not—sigmoid

Logarithmic curves
Logarithmic curves

0-5% phenol—lag phase, then exponen-
tial; higher strengths exponential

Exponential rate
Sigmoid curves

From this table it can be seen that observers have obtained different results
even when they have used the same organisms and lethal agents. Difficulty
has been experienced in assessing the value and accuracy of the methods
employed and the results obtained, in some cases, because observers have
given no counts. It is doubtful whether the present-day counting methods
are accurate to more than + 5 %, and in the absence of experimental evidence
as to a particular observer's accuracy of counting organisms, variations greatly
in excess of this- figure can be suspected. If this is so, then the correct inter-
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pretation of the type of time-survivor curve by quoting mathematical formulae
derived from single experiments is almost impossible. This is because varia-
tions of even 5 % in the counts mean that fundamentally different formulae
can be applied to the same set of figures. Clark (1933) showed this well
when he made calculations to indicate how many different formulae could be
used to interpret the same set of figures if a variation of ± 5 % was allowed.
He found that the following relations between concentration (a;) and action (y)
could be fitted to the same set of figures:

(2) ky = log (ax + l){k = 0-0166, a = 5-3). \

(3) kxn = y {k = 49, n = 0-5).
From similar data in bacteriology it is obvious that bacterial counts can

also be interpreted in several different ways.
In many of the papers listed in Table 1 the conclusions as to the course

of the reaction mechanism have been derived from a few experiments. Often
the statement is made that other experiments yield 'similar' results. How
far this latter statement is true and how far the other experiments were
'similar' can never be ascertained from the published works. In my ex-
perience with vegetative organisms and phenolic bactericides a considerable
variation occurs in the type of time survivor curve when experiments are
made as nearly identical as possible. The object of the second part of this
paper is to show the variation that does occur when strictly comparable
experiments are performed. In the third part the results are considered as
a whole and an analysis of the curves made with the idea of constructing an
average time-survivor curve. In the fourth part it is shown that this variation
of types of curve, which some would consider fundamental, does not occur if
the curves are plotted on the assumption that the logarithms of the survivor
times are normally distributed. In that case all the variations observed can
be explained by a variation in the way the resistances are distributed.

None of the experiments has been omitted. The counts from which the
graphs are drawn, and on which the arguments are based, will be found in
Appendix II (p. 174).

II. VARIATIONS IN TIME-SURVIVOR CURVES FROM SINGLE EXPERIMENTS

(a) Technique employed

The roll-tube capillary dropping pipette method was used throughout this
work. The technique has been previously described (Withell, 1938; Wilson,
1922). Withell (1938) made a statistical inquiry into the accuracy of the
method when applied to Bad. coli and arrived at the conclusion that if the
suspension was diluted serially three times and the mean roll-tube count was
200 the standard error was approximately 5%. The technique in the cases
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128 Variation in shape of time-survivor curves
quoted included three serial dilutions of the suspension. If fewer dilutions
are used the standard error is reduced. Jennison & Wadsworth (1940) have
recently applied somewhat the same method to the problem of the accuracy
of viable counts and have arrived at similar figures.

Throughout the work the dilution of the suspension in the bactericide
was of such an order that all bacteriostatic effects were nullified. The phenolic
bactericides used in this work have a very high concentration exponent
(Watson, 1908) and were easily diluted out. The smallest dilution that was
used with success for phenol 0-5% and para-chlor-meta-cresol 0*05% corre-
sponded to a dilution of approximately one to two thousand, and at this
concentration (phenol 0-00025% and para-chlor-meta-cresol 0-000025%) no
bacteriostatic effect of any sort was observed.

The organisms used

One of the most important attributes of any organism used in experiments
involving counting is that of forming a suspension which is free from clumps,
and which will remain free from clumps when inoculated into the bactericide
solution. The importance of this factor has been emphasized by Glynn, Powell,
Eees & Cox (1913), Knaysi (1935), Ziegler & Halvorsen (1935) and Jennison
(1937). A strain of Staphylococcus from the Lister Institute proved unsuitable
from this point pf view, but a Gram-positive Micrococcus which was isolated
from the atmosphere was used successfully for counting experiments with no
evidence of clumping when microscopic observations or viable counts were
made. A strain of Bact. coli (Type I), recently isolated, and kindly supplied
by Prof. G. S.' Wilson, was also found very suitable. These were the two
organisms used throughout in the work quoted in this paper, and in every
case a 24 hr. culture was used.

The medium

For some of this work a 6 hr. pancreatic digest of lean bullock buttock
beef was used, but when supplies of this were exhausted 'C.C.Y.' medium
(Gladstone &'Fildes, 1940) was used with success. There was no significant
difference in the counts of a suspension when dilutions were seeded into
pancreatic digest'medium and C.C.Y. medium.

TM diluent

For the Micrococcus, Kinger's solution (Wilson, 1922), previously filtered
through a Doulton filter and filled aseptically into sterile screw-cap bottles,
was found satisfactory. When this solution was autoclaved in screw-cap
bottles, fitted with rubber washers, it was found to kill the Micrococcus
rapidly. This effect had been noticed by Withell (1938) in experiments with
Bact. coli. Davis (1940) could not repeat the observation and indeed found
that filtered Einger solution was more toxic than autoclaved Einger. Davis
filtered but 50 c.c. of the Einger solution, and it is probable that adsorption
occurred from this small quantity and disturbed the balance of the solution

https://doi.org/10.1017/S0022172400035361 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400035361


E. R. WlTHELL 129

(he himself suggests the possibility). Fig. 1 shows the same effect as observed
by Withell (1938), but this time using the Micrococcus. I t will be seen that
filtered Kinger solution was markedly superior to autoclaved Kinger. The
effect in this instance was finally ascribed to the rubber washers which her-
metically sealed the screw-cap bottle. Ringer solution autoclaved in the same
bottles, but plugged with wool, showed no bactericidal activity over the
period observed.

X I

i-o 20 5-0 6-030
Time (in hr.)

Kg. 1. Death-rate of a Micrococcus in filtered, autoclaved and steamed Ringer solution.
I, Ringer's solution filtered (Exp. 215). The counts are calculated as deviation per cent, from
the mean. II, Ringer's solution autoclaved 30 miri. at 10 lb. pressure, in contact with rubber
washers (Exp. 217). I l l , Ringer's solution steamed 60 min., in contact with rubber washers
(Exp. 217). The counts from which the figure has been drawn will be found in Appendix II.

For Bad. coli autoclaved tap water was found suitable. It is noteworthy
that no toxic effects were observed with this organism even though the tap
water was autoclaved in screw-cap bottles fitted with rubber disks. These
were disks which had previously been autoclaved, and there is reason to
believe that freshly vulcanized rubber liberates substances which are bacteri-
cidal to some organisms.

The water

The water for every solution used in this work was prepared in the fol-
lowing way: On the day before each experiment tap water was first distilled
in an alembic still with a tinned copper receiver and then immediately re-
distilled in a Pyrex ajl-glass still, fitted with baffle plates, and collected in
sterile 2 1. Pyrex flasks. The flasks were then plugged with cotton wool, the
wool plugs covered with tin foil and the flasks stocked in this way until the
next day. Solutions of bactericides were made up immediately before each
experiment. By this method solutions of constant hydrogen-ion concentration
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were obtained throughout the work. It is important that this should be so,
for small changes in pH. have been found to modify the activity of bactericides,
an effect noted by many observers (Chick, 1908 a; Norton & Hsu, 1916;
Friedenthal, 1919; Bigelow & Esty, 1920; Bittenbender, Digering & Tetrault*
1939; Goedrich, 1938; Joachimoglu, 1923; Vermast, 1921; Waterman &
Kuiper, 1924; Kuroda, 1926; and Keysser & Orstein, 1926).

The bactericides

Phenol of A.R. standard and para-chlor-meta-cresol in fine white crystals,
kindly supplied by Messrs Monsanto, were used throughout the work. In
this paper the experiments recorded were all made with phenol 0'5%, or
para-chlor-meta-cresol 0*05 %. For every experiment the solutions were made
up in 11. quantities to avoid any error associated with the weighing of small
quantities. It was necessary to use hot water to make the solutions of para-
chlor-meta-cresol, as the rate of solution in cold water is very slow, but closed
containers were used in the preparation of these solutions as recommended
by Rapps (1933).

Technique of a complete experiment

Throughout this work the two bactericides at 20° C. were inoculated with
organisms washed, off from the same 24 hr. culture. Temperature was con-
trolled in a thermostatic bath at +0'loC. Each experiment consisted of
following the death-rate of the organisms in the two solutions, which were
treated in exactly the same way. The sample used to determine the first count
(which is indicated throughout at time = 0) was in every case removed within
30 sec. of the inoculation of the bactericide. Thereafter at regular intervals
samples were removed, diluted and seeded into molten agar medium at 42° C.
The tubes were immediately rolled under the tap, inverted and incubated at
37° C. for 3 days.

The technique of the roll-tube dropping pipette method has been given
in greater detail elsewhere (Wilson, 1922; Withell, 1938).

(b) The results from single experiments

(i) Bactericidal action of phenol 0*5 % on Micrococcus spp.

A series of fifteen experiments was performed using phenol 0-5% and the
aerial Micrococcus. Although each experiment was carried out with the greatest
possible care, considerable variation was observed in the shape of the time-
survivor curves. At the beginning of the series the results seemed to show
that these organisms died in accordance with 'some rule analogous to the
Mass Law, so that if the disinfectant is present in large excess, disinfectant
rate at any moment is proportional to the concentration of bacteria' (Chick,
1910). This is illustrated in Fig. 2, where two experiments are shown which
agree closely with the exponential hypothesis (Chick, 1908a, 1910; Madsen &

" Nyman, 1907; Paul, 1909; Cohen, 1922; etc., see Table 1). Little difference
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was noticed when the concentration of bacteria was varied. Thus the initial
concentration of organisms in Exp. 224 was approximately 100,000 per ml.,
while in Exp. 230 the initial concentration was approximately 20,000,000
per ml. (see Fig. 2).

2-0,

1-9:

2 1-8
o

.> 1-7

c

o

a

s
Time (intervals: I, 2 min.; II, 4 min.)

Fig. 2. Death-rate of a Micrococcus in phenol 0-5%. Temp. 20° C. I, Exp. 224; II, Exp. 230.
All counts given in Appendix. The point signifying 100% viable on the zero time axis, has
been shifted down in II to permit the representation of more than one experiment on the
graph.

2-0

1-9

§ 1-8

•I 1-7

Time (intervals of 30 min.)
Fig. 3. Death-rate of a Micrococcus in phenol 0-5 %. Temp. 20° C. I, Exp. 241; II, Exp. 242.

All counts given in Appendix. The point signifying 100% viable on the zero time axis has
been shifted down in II, to permit the representation of more than one experiment on the
graph. •

As the work progressed it was noticed that this type of curve was not the
only type observed. For example, a definite lag phase sometimes occurred
before the reaction settled down and proceeded approximately in an expo-
nential fashion. Fig. 3 shows the type of curve obtained.
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132 Variation in shape of time-survivor curves
(ii) Bactericidal action of para-chlor-meta-cresol 0-05% on Micrococcus spp.

Thirteen separate and comparative experiments were carried out using
para-chlor-meta-cresol 0*05 % and the aerial Micrococcus. In general the same
type of variation occurred as with phenol 0-5%. Figs. 4 and 5 show the
variation of the time-survivor curves. (The counts are given in Appendix II.)

Time (intervals of 4 min.)
Fig. 4. Death-rate of a Micrococcus in para-chlor-meta-cresol, 0-05% solution. Temp. 20° C.

I, Exp. 224; II, Exp. 229. All counts given in Appendix.
2-0

1-9

g ..7

1
Time (intervals of 15 min.)

Fig. 5. Death-rate of a Micrococcus in para-chlor-meta-cresol 0-05% solution. Temp. 20° C.
I, Exp. 241; H, Exp. 242. AU counts given in Appendix.
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(iii) Bactericidal action of phenol 0-5 % and para-chlor-meta-cresol 0-05 % on
Bact. coli

The two bactericides are considered together in this part of the work
because time-survivor curves of similar type were observed in both cases.
Figs. 6 and 7 show the general shape of curve obtained. These curves did not
vary in type but did vary in detail. Curves of this type have been^interpreted

2-0

V9

1 , 8
§ 1-7

Time (intervals of 10 min.)
Fig. 6. Death-rate of Bact. coli in phenol solution, 0-5%. Temp. 20° C.

I, Exp. 267; II, Exp. 268. All counts given in Appendix.
2-0

1-7

Time (intervals of 5 min.)
Fig. 7. Death-rate of Bact. coli in para-chlor-meta-cresol solution, 0-05%. Temp. 20° C.

I, Exp. 267; II, Exp. 268. All counts given in Appendix.

(a) by drawing a straight line through the points of the lag period and another
through the remainder of the points, or (b) by fitting a curve to the points
when in general a sigmoid curve of very gradual slope is'obtained.

(c) Discussion

It is well known that a variation of the type of time-survivor curve does
occur when cultures of different ages are inoculated into the same strength
bactericide (see Table 1). Similarly when bactericides of different strength
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are employed a progressive variation of the type of curve from that of sigmoid
to that of an exponential type is observed (Smith-Henderson, 1921; Clark,
1933; Withell, 1938; etc.; see Table 1). In this paper another type of varia-
tion has been noted. The different types obtained cannot be explained as
being derived from one type of curve by the errors of the experiment, for
the variation is much greater than can be accounted for, by errors of counting
(see Withell (1938) for errors of dilution and the sampling error).

Various observers (Rahn, 1930; Chick, 1908a, 1910; Phelps, 1911; Falk
& Winslow, 1926; see Table 1) have laid great emphasis on the shape of the
time-survivor curves, paying attention to whether it has a lag or induction
period, or whether it proceeds smoothly in an exponential fashion. Many
theories have been built up on the basis of an inflexible type of time-survivor
curve. For example, Phelps (1911) says: 'The rate of dying, whether under
the influence of heat, cold, or chemical poison, is unfailingly found to follow
the logarithmic curve of the velocity law, if the temperature be constant.'
This statement is hardly substantiated by the data recorded in Table 1.
Some have gone so far as to calculate how many molecules of bactericide
react witH one organism from the shape of the time-survivor curve (Rahn,
1929, 1930). In the series of experiments quoted here a variation of curve
has been noted which, according to Rahn, would mean that at one' time one
type of reaction was proceeding between organism and bactericide and at
another time a fundamentally different reaction was in progress.

It seems then that even in experiments which are carried out in a manner
as nearly identical as possible, variation of type of time-survivor curve does
occur. The diagrams, drawn from the counts in Appendix II, have all been
constructed by plotting logarithm of percentage survivors against time. This
has been done to show irregularities from the exponential curve. If diagrams
are made from the same counts, by plotting percentage survivors against
time, they are not very informative as, in all cases, the bulk of the organisms
die in the first few units of time. In the next part an attempt is made to
calculate the mean response of the organisms to the bactericide.

(d) Summary

A number of types of response to two phenolic bactericides have been
observed when experiments are carried out in as nearly an identical a manner
as possible using a Micrococcus and Bact. coli. They include time-survivor
curves (a) giving a straight line when the logarithm of survivors is plotted
against time, and (6) with a lag phase before the straight line when logarithm
of survivors is plottetl against time.
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III. MEAN TIME-SURVIVOR CURVES

(a) Method of calculation

In Part II of this work it has been shown that some variation occurs in
the response of organisms to phenolic bactericides in comparative experiments.
The variations include at least two types of time-survivor curve which had
previously been distinguished (Table 1, p. 125).

Enough evidence was collected at first to prove that the time-survivor
curve was (1) of exponential type, i.e. that the number of organisms dying
during any period was always a definite proportion of those alive at the start
of that period. As more experiments were made it was obvious that this was
not the invariable response. Other time-survivor curves were obtained as
often as the exponential curves and included those which could be interpreted
(2) as a lag phase followed by an exponential curve.

If the successive points (determined by the counts) on any such curve
-are joined by straight lines, then the reaction rate for any particular stage
can be calculated. When this is done by using the formula

7 l i • N

*=;—r 2
l o g i °« '

where k is the reaction rate, <x—12 is' the time interval- over which k is calcu-
lated, N is the number of viable organisms at the start of that interval, and
n is the number of viable organisms at the end of that interval. The k that is
oalcnlated shows the slope of the time-survivor curve between successive
points of the curve.

It is important that N and n should be the numbers of viable organisms
at the beginning and end of each separate period. In some of the published
work the .same initial value of N is used for calculating k during each suc-
cessive period tj—tj, i j—^, etc.

If this is done the value of k for each separate period is biased by including
the reaction velocity for the previous part of the curve. If the logarithms of
the counts lie directly on a straight line this is immaterial, since the value
of A; is the same throughout. But if the counts do not lie on a straight line,
then any method of calculation adopting the initial number of viable organisms
as N throughout the calculations, will obscure any variation in the value of k
during successive stages of the reaction.

The following is an example (Table 2) of how the calculation has been
made and how the method of calculation can be altered to give more informa-
tion about the way k (i.e. the slope of the curve) varies with time (Table 3).

It will be seen that the first set of figures are more nearly equal than the
second set, and indeed this must be so, for they are all derived from a common
point of origin. Further, the first set of figures give very little information
about the real course of the reaction, they record the slope of the line which

J. Hygiene 42 10
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Table 2. Disinfection of Bact. coli commune with hot water (Chick, 1910)

Time in min.

0-75=0

1-50

2-50

4-00

600

900

14-00

20-00

Temp. 49° C.

Survivors

331

317

275

249-5

175

165

71

39-5

1 HI
25 l 0 ^ l75
1 331

1O

1 N
Table 3. Data exactly as in Table 2 but N in the formula k = l°g10— ^

ty—t2 n
always the number of survivors at the beginning of the interval over which
k is calculated

275 1 71

° 0 2 8 fc1O

joins each count with the initial count. If there is any variation in the slope
this can be seen more easily in the second method of calculation, for within
the limits of the experimental error (which can be better appreciated in this
way!) k is calculated in stages over the reaction.

In this paper the second method of calculation has been used to analyse
the sets of time-survivor curves. This analysis was undertaken because varia-
tiens were observed in individual curves and because the experimental error
was sucK that different interpretations could be applied to the same set of
figures in each curve. All sets of figures were derived from identical experi-
ments using the same organism of the same age and the same strength
bactericide. The general aim was to see if useful information could be gained
from the average response of the organisms. To determine this mean response
each of the time-survivor curves obtained was divided into a number of
sections, each of which corresponded to the death of a given proportion of
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organisms. Fig. 8 is an example of one of the curves obtained and has been
divided to correspond with 5,10, 20,30%, etc., deaths. That is, for each experi-
ment the mean counts were plotted against time, the counts joined by straight
lines and the continuous line divided into portions corresponding to certain
percentage deaths. From these divisions the times corresponding to the
various percentage deaths can be easily deduced. If this time is inserted in
the formula

. 1. N
* l

22x10*

20XI04

lexio4 ' V 3 0 5
,40%

V 6 0 * '
\ 70%

Time (intervals of 5 min.)

Fig. 8. Death-rate of a Micrococcus in para-chlor-meta-cresol solution, 0-05%. Temp. 20° C.
The curve is divided to correspond with successive and regular percentage deaths. From such
curves the mean curves were constructed (see text).

then k can be determined, or in other words the slope of the curve can be
found for each section. Thus, for the period 0^5% deaths the formula is

1, 100

and for 5-10% deaths

, _ 1 , 95
-h S l o90'

and so on. When this has been done for each experiment the mean slope of
the curve as the reaction progresses can be calculated. From these -figures a
hypothetical curve can be constructed which reflects the mean response of
the organisms to the bactericide. Tables 4-7 show the figures obtained. A slide
rule was used for all the calculations in this paper, and all logarithms are to
the base 10.

10-2

https://doi.org/10.1017/S0022172400035361 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400035361


138 Variation in shape of time-survivor curves

Table 4. Variation of k with the course of reaction

Sxp.

224
229
231
230
233
234
236
237
238
241
242
244
245
247
249

0-5
002240
001490
001280
0-01490
000930 .
0-01980.
0-00898
000746
0-00830
0-00101
000179
000106
000320
000496
0-00448

5-10
0-03200
001650
001380
001840
000828

•001840
0-00828
0-00690
000750
0-00133
000184
000188
0-00285
0-00386
0-00487

Phenol 0-5 % on Mtcrococcus.

10-20
0-01850
0-02650
001700
002550
0-00685
0-02050
001022
000302
001022
000905
000425
0-01540
000326
000556
0-00535

20-30'
0-04650
002320
002320
0-00750
001580
003230
0-00968
0-01453
0-00775
001242
0-00725
000767
0-01162
0O0725
000695

Deaths %

30-40
002420
0-02780*
0-01670
0-01560
0-01210
003820
001220
001334
000194
0-01700
0-00888

0-00860
000265
0-00490

Temp. 20° C.

40-50
0-02870
003720
001670
0-03500
001144
004520
0-01218
000990

001810
0-01022

0-00357
0-00718
0-00545

50-60
003230
002570
001170
0-02760

001550
0-00775

0-02498
0-01450

0-00450
0-01211
000373

60-70
004550
0-02940
001250
001170

002170
0-01920

001560
0-01660

_^
000403
0-00962
000366

70-80
005870
004400
001850
001360

000587
000490

Exp.
no.
224
229
231
233
236
237
238
241
242
244
245
247
249

Table 5. Variation of k with the course of reaction

Para-chlor-meta-cresol 0-05 % and Mierococcus. Temp. 20° C.
Deaths %

0-5
003730
002240
0-01790
0-01870
0-01280
0-01280
000746
000347
000899
000670
0-00485
0-00899
000662

5-10
0-03220
0-02750
002070
0-01800
001380
001500
000920
000622
000253
000540
000485
0-00902
000517

10-20
005110
0-03400
0-02920
0-02230
001700
0-01860
001460
0-01180
0-00845
0-00340
000600
001460
000569

20-30
004650
004650
003320
002450
001940
002320
002320
000830
001180
0-01970
0-00612
0-01452
000485

30-40
003340
005320
004450
002550
001208
001334
002223
000910
000398
001810
0-00635
001668
000606

40-50
002640
005220
0-03960
001550
001058
000528
0-01131
000920
001320
001310
000752
001980
0-00528

50-60
0-06420
006430
006400
002150
001290
000969
000807
0-00808
001490

000580
0-02423
O-00202

60-70
0-10000
0-12490
007150
002300
001190

001561
001040
001318

.
000635
002498
000960

70-flO
0O602Q
003920
0-10040

001760

0-02201
001530

004430
001360
0-00705

80-90
0-04020
008020
002400

0-02100

001200
001870
001003

90-95
004620
004280
001280

001481

001072
000550

Exp.

267

Table 6. Variation of k with the course of the reaction

Phenol 0-5 % and Bad. coli. Temp. 20° C.
Deaths %

0-5
0-0159
0-0590
0-0496
0-0160

5-10
0-0400
0-0640
0-0435
00172

10-20
0-0568
0-0682
0-0511
00183

20-30
0O225
0-0775
0-0581
0-0182

30-40
00511
0O760
00667
0O218

40-50
0O620
0-1270
0-0792
00254

50-60
0O680
0-1102
0-0775
0O184

60-70
0-0960
0-0835
01000
00152

70-80
0O800
0O945
0-1580
0O587

80-80
0-0910
0-1720
0-2670

90-95
00652
0-1200
0-1090

Table 7. Variation of k with the course of the reaction

Para-chlor-meta-cresol 0-05% and Bad. coli. Temp. 20° C.
Deaths %

no.
262
267
268
269

0-5
0-0224
0O715
0-0448
00186

5-10
00218
0-0385
0O640
0-0320

10-20
0-0426
0O485
0-0585
00126

20-30
00726
0-0425
00775
00342

3O40
00277
0-0585
0-0885
0-0202

40-50
00342
0-0580
00792
0-0360

50-60

0-0705
0-1282
0-0283

60-70

01000
0-1000
0O248

70-80

01180
0-1175
00322

80-90

0-0800
0-2400

90-95

0O960
0-0858
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(6) Results

The figures from Tables 4-7 have been analysed, and the mean figures
are given in Tables 8-11.

(i) Reaction between phenol 0-5 % and Micrococcus spp.

The figures in Table 8 have been calculated from the reaction rates of
Table 4. From these figures time-survivor curves can be constructed by
substituting for k in the following formula, where every variable is known
except t:

7 l , N

Table 8. Reaction between phenol 0-5% and Micrococcus spp.
Mean value of k

ezps.
Bed for
mAftn
values

IS
14
13
11
6

0-5
0-00842
000895
000898
000910
0-01241

5-10
0-00978
001034
001057
0-01111
001491

10-20
001194
001149
001158
001279
001556

20-30
001613
0-01603
001666
001693
001883

Deaths %

30-40
.

001448
001555
001607
001868

40-50
.

001853
001996
002171

50-60
__

001639
001884

60-70

001715
001859

70-80

—
—
—

002426

For example, the first figure quoted in Table 8 above is the rate while 5-0%
of the population are killed. Hence

0-00842= \ l o g 1 0 ^ ,

t 0-0224 o

When t has been calculated in each case then time-survivor curves can be
constructed by plotting the percentage deaths or their logarithms against
time. In Fig. 9 this has been done for the most complete set of figures (from
0 to 80% deaths) in Table 8, and the resulting time-survivor curve is shown
in Fig. 9, and shows that the mean survivor curve is a straight line when
the logarithm of the survivors is plotted against time. From Table 8 the rate
varies from 0-01241 to 0-02426, yet this variation can hardly be appreciated
from the shape of the curve in Fig. 9, for a straight line is the obvious way to
fit the counts and times.

For all practical purposes then the logarithm of survivors plotted against
time gives very little deviation from a straight line and confirms the obser-
vations of many workers that this is a common mode of response of organisms
to bactericides. That this is the mean response calculated from six experiments
may perhaps lend more weight to this view.
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(ii) Reaction between para-chlor-meta-cresol 0-05 % and Micrococcus spp.

The figures in Table 9 below have been calculated from the individual
reaction rates in Table 5. From the last set of figures (mean of six experi-
ments) in Table 9 a time-survivor curve has been constructed by calculating
t for each rate in the same way as for phenol. The time-survivor curve is

2-0

1-8

1-6

1-4

0 i-o

1 °"8

0-6

0-4

100

90

80

70

60

50

40

30

20

Time (intervals of 2 min.)

Fig. 9. Mean time-survivor curves for the Micrococcus in phenol 0-5% solution. Temp. 20° C.
I, logarithm of percentage survivors against time; II, percentage survivors against time. The
graph was constructed from the figures in Table 8 (0-80% deaths).

shown in Fig. 10. For para-chlor-meta-cresol and the Micrococcus the loga-
rithm of the survivors plotted against time does not give a straight line.
There is an initial period where the rate is slow, then a period where the rate
gradually increases, and then a final slowing off.

Table 9. Reaction between para-chlor-meta-cresol 0-05 %
and Micrococcus spp.

No. of
exps.

used for
mean
values
13
12
11
9
7

Deaths %

0-5 5-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-95
0-01315 0-01306 001816 002106 002039 001838 — — — " — —
001369 0-01369 0-01939 002117 0-02058 0-01882 002447 — — — —
001377 001358 001947 002099 002123 002005 0-02636 003740 — — —
0-01067 0-01358 001976 002016 0-02058 0-02042 002905 0-04142 003552 — —
001061 001513 002177 002143 0-02417 002286 0-03317 0-04967 004096 002501 —
001611 001683 002442 002565 0-02616 002541 003781 005689 004041 0-03236 0-02214

(iii) Reaction between phenol 0*5 % and Bact. coli

The mean figures in Table 10 below have been calculated from the indi-
vidual reaction rates in Table 6. From the last set of figures (mean of three
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experiments) in this table a time-survivor curve has been constructed by
calculating t for each rate. The mean curve has not been illustrated as it is
very similar to the curve in Fig. 6, and shows an initial lag period.

1-8

1-6

0-6

1100%

0%

Time (intervals of 2 min.)

Fig. 10. Mean time-survivor curve for the Micrococcus in para-chlor-meta-cresol 0-05% solution.
Temp. 20° C. I, logarithm of percentage survivors against time; II, percentage survivors
against time. The graph was constructed from the figures in Table 9.

Table 10. Reaction between phenol 0-5 % and Bact. coli.
Mean values of k

No. of
exps.

used for Deaths %
m e a n , * • —
values 0-5 5-10 10-20 20-30 30^0 40-50 50-60 60-70

4 00351 00412' 00489 00441 00539 00734 00685 00737
3 00415 0-0492 0-0587 0-0527 0-0646 0-0894 0-0852 0-0932

70-80 80-90 90-95
0-0987 — —
0-1108 01766 00981

(iv) Reaction between para-chlor-meta-cresol 0-05% and Bact. coli

The mean figures in Table 11 below have been calculated from the indi-
vidual reaction rates in Table 7. From the last set of figures (mean of two
experiments) in Table 11, a time-survivor curve has been constructed by
calculating t for each mean rate. The mean curve has not been drawn, as it
is very similar to the curve in Fig. 7, and shows a lag period.

Table 11. Reaction between para-chlor-meta-cresol 0*05% and Bact. coli.
Mean value of k

Deaths %

No. of
exps.

used for
mean ,
values 0-5 5-10

4 0-0393 00441
3 00446 00512 00399 00514 0-055T 0-0577

50-60 60-70 70-80 80-90 90-95

00757 00747 00892 — —
00633 00563 00535 00600 00735 00686 00994 01000 01178 01600 0-0909

10-20 20-30 30-40 40-50
00406 00567 00488 0-0519
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(c) Summary

The mean time-survivor curves of bacteria immersed in two phenolic dis-
infectants show the same variation of type as the individual curves, that is,
(a) an exponential rate, (6) a lag phase followed by an exponential rate. The
significance of all these curves and of others is discussed in the next part of
the paper.

IV. THE SIGNIFICANCE OF TIME-SURVIVOR CURVES

(a) Theories of time-survivor curve variation

The shape of time-survivor curves has been attributed by different ob-
servers to the essential' similarity in resistances of the individuals in a sus-
pension and also to the fundamental differences in resistances of the organisms.
The first assumption is the keystone of the theory that the shape of curve is
determined by the fundamental reaction between organism and reagent
('mechanistic hypothesis'). When the logarithm of the survivors is plotted
against time, a straight line is often obtained, and the death-rate is then said
to be similar to monomolecular chemical reactions, and death due to one
event. The theory demands two assumptions: (i) that the organisms which
show this type of curve are essentially uniform in resistance^ and (ii) that the
death of the organisms is due to one event. Both these assumptions are at
variance, with the observed facts regarding relationship of cells and reagents.
Indeed, as Clark (1933) points out, 'the monomolecular theory, or quantum
theory of cell destruction, has therefore very little solid evidence in its support
and its application leads to conclusions that are so absurd that they are
difficult to discuss'.

The obvious difficulties in the way of an acceptance of such a theory are
that variation is a fundamental law of living matter, and to postulate a
uniform cell population is to assume a condition that has never been demon-
strated. All the evidence points to the diffusion of reagents through a cell
wall, or to the adsorption of the reagent over the surface of the cell wall.
The figures that have been given show that the number of molecules required
for some response by the cell are so enormous as to make the idea of one
molecule being sufficient patently absurd. For example, many observers
(Arrhenius, Henri, Liebermann and Fennyvessey) have shown that haemolysis
of erythrocytes follows a ' monomolecular' course, yet some of the figures calcu-
lated as the minimum number of molecules to cause haemolysis are enormous.
Ponder (1930) *and Clark (1933) give the following minimum figures per
erythrocyte:

Saponin 108 molecules per cell
Sodium oleate 2 ̂ < 108 molecules per cell
Acids or alkalis, LO9 molecules per cell
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In this work about 3 x 1020 molecules of phenol were added to 107 or less
organisms, allowing 1013 molecules per cell. The volume of the phenol molecule
is about 1/109 that of a coccus. In tne face of facts like these it is difficult to
discuss further the monomolecular theory, for all evidence points to the fixing
of millions of molecules of drug by each cell. This has been commented on
by Reichenbach (1911) as follows: 'The molecules are so small compared to
the bacteria and their number is so much greater, that doubtless even in very
dilute solutions every bacterium is surrounded by a similar number of mole-
cules and therefore is exposed equally to the action of the disinfectant. And
still less can one say that the bacteria arrive one after another to the condition
necessary for destruction by temperature. Therefore if the bacteria are of
equal resistance one cannot understand why one should die quicker than
another.' This objection to the theory that assumes equal resistance of the
organisms has been answered by Bahn (1930) using arguments based on
Yule's calculations (1910). Rahn still holds the view that the organisms are
of equal resistances.

The monomolecular theory attempts to describe in very simple physico-
chemical methods, a complicated process involving the death of the organism.
It has been devised to explain the facts that exponential rates are frequently
observed when bacteria are killed. When other types of time-survivor curves
are obtained then some of those who rely on the monomolecular theory for
exponential time-survivor curves fall back on differences of resistance (Chick,
1930, p. 187). Others (Rahn, 1930) assume that the reaction becomes bi-
and termolecular or multimolecular. The latter assumptions are subject to
the same disadvantages as the monomolecular theory incurs. Any other
theory which takes its place must account for exponential time-survivor
curves, together with those of sigmoid type.

The obvious alternative to the monomolecular theory is to say that the
length of time an organism can survive in a bactericide is proportional to its
resistance. This is an assumption, but an assumption so simple that it makes
no reference to any of the complicated reactions both physical and chemical

. which may occur between the organism and reagent. Indeed, we may reason-
ably define resistance as the time an organism can remain viable in a solution.
If we do use this assumption or definition, how are the resistances distributed?
When the sigmoid time-survivor curves found in bacteriological data are

•transformed to frequency diagrams, then slightly skew curves are obtained
(Chick, 1930, p. 183). When exponential curves are treated in the same way
then extremely skew curves of resistance distribution are found (Chick, 1930;
Rahn, 1930). The fact that skew distributions are obtained is one of the major
arguments of those wKo hold the monomolecular theory. For example, Chick
(1930, p. 186) says: 'an explanation on the grounds of differing inherent re-
sistances must assume that these resistances are distributed among the indi-
vidual bacteria in a manner which is an exception to other studied instances
of biological variation'. Rahn (1930) says: ' I t is not very easy however to ,
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fit the laws of chance to the actual facts of the order of death, as shall be
demonstrated by one of the experiments of Madsen & Nyman (1907) and of
Hewlett (1909).' -He then shows that when curves showing the distribution
of resistances are constructed from Madsen & Nyman's data, which give an
exponential time-survivor curve, these curves are sharply skewed to the left
(i.e. with the majority of the organisms dying in the first time units). Hewlett's
figures for the death of mustard/ seeds in mercuric chloride solution give an
approximately normal distribution of survivor times. Rahn's comment is
that this difference is difficult to explain. Later in the paper, referring to
what are described as 'vitalist and mechanistic theories' on the subject of
time-survivor curves, he says: 'When two groups of research workers hold
such opposed views it is fairly safe to assume that some essentially new
principle is involved, which none of the two parties realised.' I believe that
this is so, but I do not think that Rahn's new principle is the one at issue
here. He emphasizes the relative sizes of molecules and organisms, and finds
by mathematical methods that if the reaction be of some higher order (say
involving six molecules of .bactericide) that time-survivor curves of sigmoid
type occur. For those cases where the bacteria die more rapidly than a
monomolecular rate indicates, he suggests, clumping of the organisms. His
main assumption is that the organisms are all alike in resistance, and this I
believe is fundamentally wrong even though he derives sigmoid curves from
such a population by assuming multimolecular reactions.

I believe that the main "principle which has been neglected by both
' vitalists and mechanists' alike is the general law of distribution of resistances.
Both groups have assumed that when resistances are measured by survivor
times then the distribution of these resistances should be approximately
normal, i.e. that the general rule for any measured biological attribute is for
it to be distributed in an approximately normal manner. This is not always
the case. Galton in 1879 pointed out that 'the assumption which lies at the
basis of the well-known law of Frequency of Error (commonly expressed by
the formula y = erh2x2) is incorrect in many groups of vital and social pheno-
mena, although that law has been applied to them by statisticians with partial
success and corresponding convenience. Next I will point out the correct
hypothesis upon which a law of Error suitable to these cases ought to be
calculated.... The assumption to which I refer, is that errors in excess or in
deficiency of the truth are equally probable, or conversely that if two fallible
measurements hayie been made of the same object their arithmetic mean is
more likely to be the true measurement than any other quantity that can be
named. This assumption cannot be justified in vital phenomena'. He proceeds
to give examples where this rule does not apply, and concludes, 'in other
words the true mean is geometric'. This statement he applies to 'vital and
social statistics'. He gives examples where the geometric mean is obviously
a more correct estimate of the true mean of a set of observations. The logical
outcome of Galton's remarks is that we should think in terms of powers of
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integers and not the integers themselves when concerned with vital and social
statistics. Gaddum's work (1933) makes it clear that the logarithms of the
individual sensitivities of a number of experimental animals to a great variety
of drugs and hormones are normally distributed. The individual sensitivities
themselves are not all normally distributed. Hemmingsen (1934) shows in a
striking manner that the logarithm of the length of many animals is always
approximately normally distributed, while the distribution of the lengths
themselves was often very sharply skewed to the left, and never normally
distributed. His lengths were obtained by direct measurements of adult
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- 2 - I 0 + 1 + 2

Standard deviations of logarithms of dorsal length
of mantle. Dotted lines show the area of a
normal frequency curve, with the same area
and same standard deviation.

Fig. 11. The left-hand figure shows that the distributions of species with different length-mantle
gives a curve sharply skewed to the left. When these lengths are expressed as logarithms,
then the distribution of species with different logarithmic lengths is approximately normal.
(From Hemmingsen (1933), part of Fig. 15.) Distribution of dorsal lengths of mantle of
species of Cephalopods {Decapoda Oigopsida).

animals of different species but within the same genus from all the main
systematic groups of the animal kingdom (i.e. interspecific distribution). The
figures he obtained show, when plotted in a frequency diagram, a skewness
always to the left. One of his figures is reproduced in Fig. 11.

Hemmingsen says: ' It will be seen that in general the logarithms show a
closer approximation to the normal distribution, than the actual measures
whose distribution in most cases, probably in all, is incompatible with the
normal distribution. The approximation of the distribution of the logarithms
to the normal distribution is particularly striking in those cases in which the
distribution of actual measures is exceedingly skew.' The twenty-six figures
in the appendix to his work are very clear evidence that this is the case.
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146 Variation in shape of time-survivor curves
With the background of Galton, Gaddum and Hemmingsen we can pro-

ceed to investigate the way in which the survival times of bacteria are distri-
buted. It is the intention to see if the logarithms of the resistances of the
organisms used in this work, and by other observers, are normally distributed.
To do this we must take the resistance of the organism as proportional to its
survivor time. Any reactions that take place between bactericide and organism
are considered to be a manifestation of the resistance of that organism, and
no assumptions are made regarding the nature of these reactions. It has been
shown that if the distribution of the resistances is estimated on this assumption
then skew distributions are often obtained, just as Hemmingsen obtained
skew distributions with his linear interspecific measurements of animals. We
can now show that the observed time-survivor curves of different observers
all give approximately normal distributions of survivor times when the fre-
quency diagrams are constructed from the logarithms of the survivor times.
I have applied this method to many types of disinfection and, in nearly every
case, the distribution of the logarithm of survival times is more nearly normal
than the distribution of the survival times themselves. If the distribution of
survival times is normal; this will bring the interpretation of bacteriological
time-survivor curves in line with other pharmacological data where the
logarithm of a biological attribute is often found more nearly normally distri-
buted than the attribute itself. It must be emphasized that we are not
assuming that the logarithm of the resistances are approximately normally
distributed—we shall demonstrate that within the experimental error this
is so.

In this connexion it is well to anticipate those who will say that the use
of a logarithm instead of a natural number is a mathematical trick, used to
explain the results. The reverse is the case. It has been found experimentally
that the logarithms of many biological measurements are more normally dis-
tributed than the measurements themselves, and these practical observations
accord with the general theory. There are also good theoretical reasons why
this should be so. To calculate these resistances in bacteriology we have to
define the resistance of the organism as the time it can remain viable in &
solution. That is the difference between the direct observations of Hemmingsen
and the observations included in this paper. The remarks of Gaddum on this
subject are quoted below; they need no comment, except, that to apply them
to the problem under review here we must substitute the logarithm of time
for the logarithm of the dose, i.e. the different times after which an organism
ceases to be viable are equivalent to different doses that are required to Mil
a series of animals.

' If the percentage mortality is plotted against the logarithm of the dose,
the curves are always approximately symmetrical whether the variation is
large or small. The shape of the curves indicates that if the resistance of an
animal is measured by the dose which is just necessary to kill it, the logarithm
of the resistance is normally distributed. The S-shaped curves are in fact
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integrals of approximately normal frequency distributions.... The standard
deviation of the distribution is easily calculated from the curve and the slope
of the curve is usually expressed in terms of A, the standard deviation of
normal distribution which most nearly fits the results when the mortality is
plotted against logarithms of the dose to the base 10. It has been thought
that the use of the logarithm of the dose instead of the dose itself, represents
a subtle mathematical device for obscuring the nature of the curve. This is
not so. Both in practice and in theory the logarithm of any biological measure-
ment is more likely to be normally distributed.' 1 would refer the reader in
particular to Gaddum's report on ' Methods of Biological Assay depending on
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51g. 12. Mean corves calculated in Fart II drawn to a logarithmic time scale. I, reaction between
» Mieroeoecus and phenol 0-5%. (This curve gives an exponential curve when plotted against
time; see Fig. 0.) II, reaction between a Mieroeoecus and para-chlor-meta-cresol 0-05%.
(This curve'gives a lag phase and then an exponential rate when plotted against time; see
Kg. 10.)

a Quantal Response' (1933), for a list of experiments where the evidence of
normal distribution of the logarithm of the dose is clearly set out. Those who,
like myself, do not profess to be mathematicians, might benefit from the story
of the maggot and the elephant! (Gaddum, 1940, p. 360).

(6) The evidence for the normal distribution of the logarithm of
survivor times in bacteriology

There are a number of ways in which the approximately normal distri-
bution of the logarithms of survival times can be demonstrated.

(i) If percentage survivors are plotted against logarithm of time then
sigmoid curves should result if the above statement is true. These sigmoid
curves are the integrals of a normal curve of frequency distribution of loga-
rithmic survival times. The mean curves calculated in Part III are drawn
to a logarithmic time scale in Figs. 12 and 13. There is no doubt that each of
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148 Variation in shape of time-survivor curves
these curves is of sigmoid type, and it must be remembered that the first of
these curves (Fig. 12, I) gives a straight line when the logarithm of the sur-
vivors is plotted against time (see Fig. 9). The second of these curves (Fig.
12, II) shows a lag phase followed by an exponential curve when plotted in

100
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I
I

I
20

II

Logarithm of time
Logarithmic intervals of 0-2

Fig. 13. Mean curves calculated in Part II drawn to a logarithmic time scale. I, reaction between
Bact. coli and phenol 0-5 %. II, reaction between Bact. coli and para-chlor-meta-cresol 0-05 %.
Both these curves when plotted against time give an approximately exponential curve, and
when plotted as logarithm of survivors against time, show evidence of a lag period.

Logarithm of time
Logarithmic intervals of 0-2

Fig. 14. Disinfection of anthrax spores by 5% phenol. Data from Chick (1908): I, from Table I,
p. 97; II, from Table II, p. 99. Both these curves would give exponential ('monomolecular
rate') curves when plotted against time.

similar manner (see Fig. 10). I and II in Fig. 13 also show a lag phase when
logarithms of survivors are.plotted against time. All these show a general
resemblance when a logarithmic time scale is used which suggests a common
origin of the shape of these curves.
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Other observers' figures also give very good agreement with this general

type. In Figs. 14 and 15 are figured data from:
(a) Anthrax spores and phenol (Chick, 1908a) (Fig. 14, I and II).
Both these sets of figures give good agreement with the monomolecular

reaction rate, i.e. are exponential curves, and yet when plotted against the
logarithm of time show general agreement with other curves in their sigmoid
type.

(b) Staphylococcus aureus and phenol (Chick, 1910) (Fig. 15). This curve
shows a lag phase and well-defined exponential rate thereafter, if the loga-
rithms of survivors are plotted against time; but here again shows a sigmoid
type when drawn to the logarithm of time.

Logarithm of time
Logarithmic intervals of 0-2

Fig. 15. Disinfection of Staph. aureus with phenol 0-6%. Data from Chick (1910), Table VII,
p. 246. The same data shows a well-marked lag period and then gives good agreement with
exponential rate, when logarithm of survivors is plotted against time.

Diagrams showing the percentage of organisms dying in equal logarithmic
time units can be constructed from time-survival curves. Four of these dia-
grams, which show the distribution of logarithmic survival times are shown
in Figs. 16-19, which are derived from:

(a) Anthrax spores and phenol (Chick, 1908a) (Fig. 16).
(b) Disinfection of a Micrococcus by phenol 0-5% (Exp. 247) (Fig. 17).
(c) Staphylococcus and phenol (Chick, 1910) (Fig. 18).
(d) Mustard seeds and mercuric chloride (Hewlett, 1909) (Fig. 19).
These four sets of data all give approximately normal distributions of

resistances when the logarithms of survival times are used. They include data
which was formerly thought to be fundamentally different. The data from
mustard seeds is included to show that those experiments which give approxi-
mately normal distributions when plotted against time give a better agree-
ment when the logarithm of the time is used. Further, all the other itypes
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150 Variation in shape of time-survivor curves
quoted agree more or less closely with this general rule, although they give
extremely skew distributions if plotted against time. The skew distributions
are shown to the left of each of the diagrams (Figs. 16-19). In all cases a
more normal distribution of resistances is obtained by plotting the percentage
of organisms against the logarithms of survival times.
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Fig. 16. - Disinfection of anthrax spores by phenol 5% (data from Chick, 1908a, Table I, p. 99).
Distribution of resistances: (a) left-hand figure, from survivor times, skew distribution;
•(b) right-hand figure, from logarithm of survivor times, approximately normal distribution.
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Fig. 17. Disinfection of the Micrococcus by phenol 0-5% (Exp. 247). Distribution of resistances:
(a) left-hand figure, from arithmetical survivor times, skew distribution; (6) right-hand
figure, from logarithmic survivor times, approximately normal distribution.
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Kg. 18. Disinfection oiStaph. aureus by phenol 0-6% (data from Chick, 1910, Table VII, p. 246).
Distribution of resistances: (a) left-hand figure, calculated from arithmetical survivor times,
skew distribution; (b) right-hand figure, calculated from logarithmic survivor times, approxi-
mately normal distribution.
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Fig. 19. Destruction of mustard seeds with mercuric chloride (Hewlett, 1909). The figure shows
that if survivor times are approximately normally distributed, then the logarithm of survivor
times is similarly distributed.

J. Hygiene 42 11
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152 Variation in shape of time-survivor curves
(ii) Another way to show the truth of the argument is to plot percentage

deaths against the logarithm of the times, calculated as percentages of the
logarithmic time for 50% deaths. Fig. 20 shows two curves drawn through
the points obtained.

(I) From data which gives a sigmoid time-survivor curve when percentage
survivors are plotted against time (Smith^Henderson (1921)—Botrytis spores
and phenol 0*5%).

(II) From data which gives an exponential curve when time survivor curves
are similarly constructed (anthrax spores and phenol 5% (Chick, 1908a)).
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Logarithmic survivor times calculated as percentages of the logarithm
of the survivor time for 50% deaths. Intervals of 20%

Fig. 20. Distribution of logarithmic survivor times. I, data which gives a sigmoid curve when
plotted against time (Smith-Henderson (1921), Botrytis spores and phenol 0-6%). II, data
which gives an exponential curve when plotted against time (Chick, 1908a, anthrax spores
and phenol 5-0%). The curves appear fundamentally different when plotted against time,
but show agreement in type when plotted on logarithmic scale.

Fig. 21 shows:
(I) A curve obtained from data which gives a lag phase followed by a

straight line when logarithm of survivors is plotted against time (Bad. coli
and phenol 0-5% quoted in Part I of thie work).

(II) From similar data for Staph. aureus and phenol 0-6% (Chick, 1910,
p. 246).

These curves, which have been considered fundamentally different, give
similar results when plotted in this way and are capable of similar explana-
tion as will be pointed out later.

(iii) There is a more accurate method of demonstrating the distribution
of survival times (resistances), and that is to make use of the normal equi-
valent deviation (N.E.D.) of Gaddum (1933) or the 'probit' of Bliss (1938).
If a response to any stimulus depends" on a distribution of resistance which
is normal, then, if the percentage response is plotted against the logarithm
of the stimulus, sigmoid curves result. By the use of the N.E.D. and pTobit
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these sigmoid curves can be turned into straight, lines. When this is done the
results are more easily interpreted, more information can be conveniently
derived from them and the observations of different observers can- be com-
pared more easily. The N.E.D. is percentage response (e.g. percentage death)
translated into terms of standard deviation and with a standard deviation as

JOOr-

Logarithmic survivor times, calculated as a percentage of the logarithm
of the survivor time for 50% deaths. Intervals of 20%

Fig. 21. Distribution of logarithmic survivor times. I, data which gives a lag phase followed by
approximately exponential series (Bact. colt and phenol 0-5%, mean curve, see Part II and
Fig. 6). II, similar data for 8taph. aureus and phenol 0-6% (Chick, 1910, p. 246).

unit. Suppose two points are marked on the logarithm of time abscissa to a
normal curve, each corresponding to plus or minus one standard deviation
from the mean. If perpendiculars are drawn from these points to cut the
normal curve they will enclose between them two-thirds of the total area of
the curve. This is shown in Fig. 22. The area ACE would then be approxi-
mately 16% of the total area of the curve. If this curve represents distri-

E
-1-0

standard
deviation

Mean
F

+ 1-0
standard
deviation

Fig. 22. Calculation of normal equivalent deviation from percentage response (see text).
11-2
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154 Variation in shape of time-survivor curves
bution of resistances then the number of organisms with resistances equal to
or less than any point on the curve (say C) is proportional to the area to the
left of a perpendicular to the abscissa at E. In this case the area ACE re-
presents 16% of the total resistances. If mortality is directly proportional
to resistances, we can translate percentage mortality to areas of the curve
proportional to resistances. A percentage de,ath of 16 would therefore be
equal to 16 % of the total area of the curve and be represented on the abscissa
by —1-0 standard deviations. Similarly, 84% deaths are represented by +1-0
standard deviations. 50% deaths would be translated to 0-0 in the N.E.D.

terminology. The translation of the percentiles into terms of N.E.D. is easily
effected by tables (Bliss, 1938) and by a figure in Qaddum's work (1933). If
N.E.D. is plotted against logarithm of time straight lines will result if the
distribution is normal. If the distribution is not normal, there will be a
variation from the straight line and the abnormality can be estimated by the
shape of the line. It must be mentioned that to show normal distribution it
is most important for the line to be approximately straight round the centre
part of the line, about N.E.D. of 0-0. Deviations in the extremes of the lines
are not so important as they refer to very small percentages. There is another
point—the translation of percentiles into N.E.D., by means of Gaddum's figure
and Bliss's, tables, depends on the assumption that the logarithm of the
survivor times are normally distributed. Gaddum (1933) has shown that the
logarithms of the individual effective doses for many animals are approxi-
mately normally distributed, and that sljght deviations from normality will
not effect the calculations significantly. The device is used for its convenience,
and as a further demonstration of the fact that the logarithm of survivor
times is approximately normally distributed.

The probit of Bliss (1938) is derived from the N.E.D. by adding 5-0 to the
figures obtained when percentiles are changed to N.E.D., and serves to render
all the figures positive.

Figs. 23-26 show for individual experiments in this series the way in which
probit is related to the logarithm of the time. It wijl be seen that the line is
very nearly straight around probit 5-0. At small values of probit the line
bends in some cases, and the significance of this will be discussed later. The
mean curves calculated in this work (p. 135) are drawn on a probit-logarithm
of time graph in Fig. 27.

I have prepared a number of diagrams, based on the observations of other
workers, to illustrate and emphasize the skew distributions that are obtained
when frequency diagrams are constructed from survivor times and the more
normal distribution of the logarithm of the survivor times. These will be found
in Appendix I and comprise Figs. 28-46.

Each diagram has been similarly constructed and is divided into three
parts. The right-hand diagram shows probit plotted against time (upper curve)
and probit plotted against logarithm of time (lower curve). When such dia-
grams yield curves, a deviation from normality is indicated, and this is reflected
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Logarithm of time
Logarithmic units of 0-2

3-0

Fig. 23. Probit plotted against logarithm of time. Disinfection of a Micrococcus by phenol 0-5%.
A, Exp. 247; B, Exp. 224; C, Exp. 229; D, Exp. 249; E, Exp. 231; F, Exp. 230; G, Bxp. 233;
H, Exp. 234; I, Exp. 236; J, Exp. 245. All counts given in Appendix. Each curve has a
different zero on abscissa.
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Fig. 24. Probit plotted against logarithm of time. Disinfection of the Micrococcus by para-chlor-
meta-cresolt)05%. A, Exp. 247; B, Exp. 224; G, Exp. 233; D, Exp. 236; E, Exp. 236;
F, Exp. 241; O, Myer'a data for Bacillus 25 (see p. 126). All counts given in Appendix.
Each curve has a different zero in abscissa.
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Fig. 25. Probit plotted against logarithm of time. Disinfection of Bad. coli by phenol 0-5%.
I", Exp. 262; II, Exp. 267; III, Exp. 268; IV, Exp. 269. All counts given in Appendix.
Each curve has a different zero on abscissa.
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Fig. 26. Probit plotted against logarithm of time. Disinfection of Bad,, coli by para-chlor-meta-
cresol 005%. I, Exp. 262; II, Exp. 267; III, Exp. 268; IV, Exp. 269. All counts given in
Appendix. Each curve has a different zero on abscissa.
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in the frequency diagrams which have been constructed from these lines. The
distribution of logarithmic survivor times is illustrated in the central diagram
and the distribution of survivor times in the left-hand diagram.

It was my endeavour to select a representative fraction of the bacterio-
logical literature, but the work of selection has been difficult for two reasons.
First, some observers have given no counts, which means that although they
have drawn graphs, I could not accurately derive from their observations the
information I required. Secondly, the course of the reaction is sometimes
followed over a small range. I have not regularly used counts of this nature
because it is not easy to obtain a clear judgement of the shape of the probit-
time curve when the information extends over a small range. If Appendix I
is consulted it will be seen that all the examples quoted give a better agree-
ment of survivor-time distribution with the normal curve when logarithms
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Kg. 27. Probit plotted against logarithm of time. Mean corves calculated in Fart II. I, disin-
fection of a Mieroeoceua with para-chlor-meta-cresol 0-05 %. II, disinfection of a Micrococcm
with phenol 0-5%. HI, disinfection of Bod., coli with phenol 0-5%. IV, disinfection of
Bad. coli with para-chlor-meta-cresol 0-05 %. Each curve has a different zero on the abscissa.

are used. In some cases this is very evident. If Table 1 (pp. 125 f.) is referred
to at the same time, the shape of the curves which these observers reported
when percentage survivors are plotted against time is given in the last column.
All the various types of survivor curve that have been reported in bacteriology
are illustrated in Appendix I, and every case gives a better approximation to
normality when logarithms are used. In the appendix Fig. 45 shows the data
of Hewlett (1909) for the death of mustard seeds in mercuric chloride solution,
while Fig. 46 shows the distribution of survival times for the confused flour
beetle (Oothuisen, 1935). These two diagrams show that when the survivor
times are distributed normally, the logarithmic survivor times are also nor-
mally distributed. The probit-time curve and probit-logarithm of time curve
in Figs. 45 and 46 both show deviations from a straight line, but the deviation
concerns a small proportion of the organisms, which is reflected in the approxi-
mately normal distribution diagrams. These diagrams have, in each case, been
constructed from the smoothed curve of the probit diagrams.
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158 Variation in shape of time-survivor curves
For each of the curves where the data is sufficient, the standard deviation

of the logarithms of the survivor times (A) has been calculated. This has been
done by halving the difference between the logarithm of the time when 84%
of the organisms are viable and that when 16% are viable. The reciprocal

Table 12. Values ofX and b for experiments in this work

Exp.
224
229
231
230
233
234
248
247
241
242
244
224

229
231
233
241
245
247
242
269
262
267
268
267

Bactericide
Phenol 0-5%

Organism
Micrococcus

Para-chlor-meta-
cresolO-05%

Phenol 0-5% Boot, coli

Para-chlor-meta-
cresolO-05%

Shape of time-survivor curve
A 6 = I/A on arithmetical time scale

0-46 2-17 Exponential
0-52 1-92
0-54 1-84
0-56 1-78
0-48 2-08
0-64 1-56
0-40 2-50
0-44 2-26
0-26 3-85 Lag phase then exponential
0-30 3-33
0-22 4-55
0-51 1-98 Exponential

0-45 2-22
0-46 217
0-43 2-32
0-52 1-96
0-46 217
0-50 200
0-36 2-78
0-50 200
0-32 311
0-30 3-33
0-34 2-93
0-32 311

Lag phase then exponential
Exponential
Lag phase then exponential

Table 13. Values ofX and b from other observers' counts

Reference
Chick (1908a, p. 108)
Lee & Gilbert (1918, Table IV)
Lee & GUbert (1918)
Chick (1910, p. 258)
Chick (1910, p. 260)
Chick (1908a, p. 97)
Withell (this paper, Part II)
Lea, Haines & Coulson (1937)
Brooks(1918)
Smith-Henderson (1921)
Falk & Winslow (1926) •
Wyckofi (1932)
Wyckofl & Rivers (1930)
Wyckoff (1930)
Wyckoff (1930)
Sates (1929 a)
mthell (this paper, Part II)
Hewlett (1909)
Dothuisen (1935)

Poison
Mercuric chloride
Phenol
Mercuric chloride
Hot water
Hot water
Phenol
Phenol
Alpha particles
Specific haemolytic serum
Phenol
0-145 M calcium chloride
Ultra-violet light
Cathode rays
X-rays
X-rays
Ultra-violet light
Para-cblor-meta-cresol
Mercuric chloride
Moist heat

Organism
Bad. paratyphosum
Bad. typhoswm
Anthrax spores
Bad. coli
Bad. paratyphosum
Anthrax spores
Micrococcus
B. mesentericus
Red cells
Botrytis spores
Bad. coli
Colon bacilli
Staph. aureus
Bad. coli
Bad. aertrycke
Staph. aureus
Micrococcus
Mustard seeds
Confused flour beetle

A
0-55
0-38
0-46
0-48
0-38
0-55
0-50
0-60
0-48
0-30
0-46
0-40
0-36
0-52
0-44
0-45
0-43
0-20
015

J=l/A
1-82
2-63
2-17
208
2-63
1-82
2-00
1-67
208
3-33
217
2-50
2-77
1-97
2-27
2-23
2-32
5-00
6-67

No. of
figure in

Appendix I
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

of A ( = 6) is the most convenient estimation of the slope of the characteristic
curve. The figures are given in Tables 12 and 13 above. Table 12 shows A and 6
for my own experiments and Table 13 A and b for all the experiments illus-
trated by diagrams in Appendix I. These figures will be referred to in the
discussion which follows. Sufficient has been said now to show that the
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logarithms of the survivor times are often more normally distributed than
the survivor times themselves. The significance of this fact is discussed in
the next section.

(c) Discussion

Theories advocated by different bacteriologists to explain the shape of
time-survivor curves have recently been reviewed by Chick (1930), Rahn
(1930) and Clark (1933). All the reviewers divide the theories into two groups.
First, those which assume that the organisms are of equal resistance. This
theory has lately been elaborated (Chick, 1930) to include a rhythmical
internal change in the organization of the bacterial contents so that at one
time only a portion of the organisms are liable to attack by the disinfectant
molecules: the organisms are still supposed to be equal in resistance. It has
been shown that this latter assumption has never been demonstrated in
practice and is not in accord with available evidence. Though the. second
group of workers base their theories on a distribution of resistances, they have
been unable to explain the distribution of resistances from an exponential
type curve without assuming other facts. In Part IV (6) it is shown that if
the resistances are considered logarithmically then many types of bacterio-
logical time-survivor curves show a nearly normal distribution of resistances.
In other words those cases which give an approximate normal distribution of
survival times, and those which give a skew distribution of survival times,
both give a nearly normal distribution of the logarithms of survival times.
It has been shown that this is not confined to bacteriology, and besides the
examples quoted in Part IV we can add that Gaddum (1940, p. 361) has
pointed out that Alvarez's figures for distribution of blood pressure do not
give a normal distribution of these blood pressures, but do so if the distri-
bution of the logarithm of the blood pressure is considered.

If the resistances are distributed as we have indicated then all the types
give very similar curves when plotted on a logarithmic time scale, whereas
on a time scale they appear fundamentally different. When the slope of the
normal curve is steep, i.e. when A is small, then there will be few organisms
of little resistance and few of great resistance—the bulk of the resistances will
be more closely centred round the logarithmic mean. If this type of curve is
integrated to give a time-survivor curve plotted against arithmetical units,
then, after a lag phase the bulk of the organisms will die in a few units of
time. When the percentage survivors are plotted against time, in arithmetical
units, the lag phase may not be observed if the strength of the bactericide
kills the organisms of little resistance in a very short time. Smith-Henderson
(1921) has shown with Botrytis spores and Withell (1938) with Bad. coli that
as the strength of bactericide is increased (in both cases from 0-5 to 0*75 %
phenol), a progression from a sigmoid curve to an exponential curve is ob-
tained. That is why lag phase disappears. It probably only disappears because
measurements of bacterial population cannot be performed at intervals of
fractions of a minute or second. When a logarithmic time scale is used we
are made aware of this fact.
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160 Variation in shape of time-survivor curves
When the slope of the characteristic curve of resistances is less steep (i.e.

when A is large), the resistances are more widely distributed and a bigger
percentage of the organisms will have resistances farther from the logarithmic
mean. When such a curve is integrated to give a time-survivor curve then
the rate will increase more gradually. A sigmoid curve may he shown when
percentage survivors are plotted against time, if the strength of the bactericide
permits a count to be made early enough. When an arithmetic time scale is
used, the apparent differences in the type of time-survivor curve depend on A
(or b) and the strength of the bactericide.

The different types of time-survivor curve which were found in Part II
can alT be explained by this type of argument involving resistance distribution
on a logarithmic time basis. We do know that the slope of the curve (6) does
vary for the sensitivities of animals. For example, Gaddum says: 'the re-
sults. . .amply confirm Trevan's conclusion that different drugs may produce
curves of very different slope. The slope of the curve is to a certain extent
characteristic of the drug used, but variations in the details of the technique
of the experiment have been found to produce definite variations in the order
of the slope. Among the variables which may be controlled in order to increase
the homogeneity of the animals are their genetic composition, weight, age,
sex, diet and environmental temperature. The influence of some of these
factors has been studied, but our knowledge of their relative importance is
far from complete'. A glance at the figures in Tables 12 and 13 for the values
of A of different organisms suspended in different bactericides will show that
they also vary, and it is this variation which is the root of the apparent
differences when a time scale of natural numbers is used. For example, if the
figures of A for a single organism are' considered (Mierococcus—phenol 0-5 %,
Table 12), the curve when plotted against an arithmetical time scale appears
to be exponential when A varies from 0-40 to 0*64, for this particular strength
bactericide.

A lag phase appears to be shown when A falls to values from 0*22 to 0*30.
It is obvious that the differences observed when an arithmetical time scale is
used are only apparent differences, and that all these curv.es show a funda-.
mental resemblance when plotted on a logarithmic time scale.

The reciprocal of A is directly proportional to the slope of the curve.
Gaddum calls this function 6 (= I/A). A is then a measure of the variability
of the animals or organisms. In the case of bacteria when A is large the
resistance of organisms differs from the mean by a greater amount than
when A is small (see Tables 12 and 13).

The resistance distribution is always nearer normal when logarithms are
used. Such deviations as have been observed from normal relate to relatively
small proportions of organisms, which do not materially affect the normal
distribution. This can be seen in the diagrams illustrating distributions of
survivor times in Appendix I. It is unlikely that all suspensions of bacteria
will have their logarithmic survivor times normally distributed because each
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suspension will contain organisms of different ages, and since the resistance
of an organism has been found to vary with its age, the normal distribution
may be obscured. Somewhat similar 'abnormalities' have been found when
animals of mixed genetic composition and weight are used. I have some
evidence that in a few cases both probit-logarithm of time lines and probit-.
time lines are curved. In the cases I have examined, such deviations from
the straight line do not affect greatly the normal distribution, and I hope to
make a more thorough search of the literature to discover more examples of
such deviations.

Smith-Henderson (1921,1923) has mentioned logarithms in connexion with
survival times but did not show their approximately normal distribution.
His theory was advanced to account for the skew type of distribution which
has now been shown to be common in biological measurements. He maintains
that the extremely skew curves found from exponential rates are due to the
plotting of resistances in terms of survivor times, a practice which he regards
as unjustifiable. If R is the resistance and T is the time taken to kill, then if

these skew curves are not obtained. This expression, he suggested, is not
necessarily the correct expression, but does show that if the alteration in the
rate of reaction between cells and poison is of the above nature then it is
possible to obtain a 'logarithmic' (i.e. exponential) survivor curve from a
frequency distribution which is approximately normal. Although he used this
relationship he did not show that the logarithm of survivor times was normally
distributed, and his formula related to the time taken for the poison to pene-
trate the cell wall or perform some other function leading to the death of the
cell. It is well, however, to remember that Smith-Henderson pointed out that
resistance distribution was the main factor in determining the shape of time
survivor curves. His use of the formula

implies that the resistance of an organism is proportional to the logarithm
of the survival time. As far as I am aware there is no theoretical or practical
evidence that this is true.

The shape of observed time-survivor curves in bacteriology, whether spores
or vegetative organisms are concerned, are of three general types:

(1) The exponential type, i.e. death-rate constant when an arithmetical
time scale is used.

(2) The type with a lag phase, then a quicker, exponential rate. Here,
death-rate increases.

(3) The type where the death-rate falls off throughout the reaction. This
type is rarely seen, and one set of figures is shown in Fig. 28 drawn on a
probit-log time graph (Chick, 1908).
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All these types of curve have been shown to yield approximately normal
distribution of the logarithm of survivor times and are all capable of similar
explanation, viz. that the survivor time is proportional to resistance and that
the logarithm of the survival time is normally distributed. Variations ob-
served in the shape of time-survivor curve on an arithmetical time scale can
be explained by variations in the logarithmic standard deviations and by the
use of bactericides of different strengths.

(d) Summary and conclusions

This work has been concerned with the response of bacteria to various
disinfectants. Variations in the response of organisms are most clearly seen
by constructing time-survivor curves from the counts showing the death-rate.
The literature has been reviewed, and in Table 1 the work of other observers
is tabulated. The types of response obtained by these workers can be classified
according to the shape of the time-survivor curve recorded.

There are three general types of response:
(a) those which give sigmoid time-survivor curves,
(6) those which give exponential time-survivor curves, and
(c) those which give a lag phase followed by an exponential curve.
The problem was to find a rational explanation for the occurrence of all

these types of curve and also to explain why the same system of organism
and reagent will give varying time-survivor curves when the experiment is
repeated a number of times.

In Part II a number of experiments are recorded using a Micrococcus and
Bad. coli. Two bactericides, phenol 0-5% and para-chlor-meta-cresol 0-05%,
were used in each case. A constant response to these bactericides was not
observed, although the experiments were performed in as nearly an identical
manner as possible. The Micrococcus, when immersed in each bactericide,
gave, at first, counts which agreed very well with an exponential rate. Later
experiments showed a more or less well-marked lag phase. Bact. coli showed
with each bactericide a lag phase, but the extent of the lag varied.
' In Part III each set of time-survivor curves has been analysed and the
mean curve constructed, by calculating the mean slope of the time-survivor
curve, in stages over the course of the reaction. These mean curves showed
the same variations as the individual time-survivor curves, and still left un-
solved the problem of the explanation of this variation in response.

Present theories which attempt to explain this variation in response are
reviewed in Part IV. The 'mechanistic' theory assumes that the organisms
are all of equal resistance. When time-survivor curves are exponential it is
assumed that death is due to one event, and when other time-survivor curves
approaching sigmoid types are obtained, it is assumed that death is due to
more than one event. These assumptions have been shown to be not in accord
with the available evidence.

Vitalist theories assert the variation of time-survivor curves as due to a
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variation in the way the resistances are distributed. Workers who hold this
view have assumed that when resistances are measured by survival times,
the survival times should be normally distributed. The apparent difficulty in
this theory is that the survival times are nearly always distributed in an ex-
tremely skew manner—most of the organisms dying in the first few units of time.

I have shown that all types of time-survivor curve yield an approximately
normal distribution if the survival times are plotted as logarithms instead of
absolute numbers. This is true whether the distribution of survivor times is
normal or skew. In Part IV all the experiments recorded in Parts II and III,
and in Appendix I, the work of other observers are shown to yield a much
better approximation to the normal curve when a logarithmic time scale is used.

The use of a logarithmic time scale agrees with pharmacological data, and
more especially with the work of Gaddum, who has shown that the variation
in animal response to a stimulus is usually more normally distributed when
logarithms are used.

The shape of the characteristic curve for any suspension of organisms in
a particular experiment can be calculated from the logarithmic standard
deviation (A) of the survivor times. I have tabulated values of A for my own
series of experiments and for those of other workers, when the counts per-'
mitted the calculation of such values. From these values for a series of experi-
ments with the same organism and bactericide, it has been shown that the
'fundamental' difference in shape of time-survivor curves obtained when
arithmetic units are used is only apparent. All the shapes of curve found in the
literature are due to variations in the way the resistances of the organisms
are distributed. This distribution is measured by the standard deviation of
the logarithm of the survivor times. When A varies then:

(a) When an arithmetical time scale is used, fundamentally different equa-
tions can be fitted to the time mortality data, in different cases.

(b) When a logarithmic time scale is used, a variation of A is shown by
a variation in the steepness of the time-survivor curve.

Apart from the way A varies, the only other factor which is of importance
in determining the shape of the curve is the strength of the bactericide.
Occasionally the bactericide acts so quickly that no counts can be made early
in the reaction. Such an experiment yields little information about the course
of the reaction.

The main conclusion of this work is that the different rates of destruction
of bacteria under the influence of a bactericide is determined essentially by
differences in the manner in which the resistances of the organisms are dis-
tributed.

It is with great pleasure that I record my thanks to Prof. G. S. Wilson
and Prof. J. H. Gaddum. I have received invaluable assistance from them
both. I wish also to mention H. Hadley, Esq., P. Dormer, Esq., and Miss
E. Grigg for technical and preparation work cheerfully undertaken.
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174 Variation in shape of time-survivor curves

VI. APPENDIX II

(a) Reactions between phenol 0-5% and Micrococcus.
(6) Reactions between para-chlor-meta-cresol 0-05% and Micrococcus.
(c) Reactions between phenol 0-5% and Bact. coli..
(d) Reactions between para-chlor-meta-cresol 0-05% and Bact. coli.
(e) Experiments showing the bactericidal effect of diluents autoclaved

wiM rubber washers.

(a) Reactions between phenol 0-5 % and Micrococcus spp.

Temp. 20° C.

Exp.
224

229

231

230

233

234

236

Time
0.0
1.0
2.0
3.0
4.0
5.0
10.0
15.0
25.0
41.0
0.0
12.0
24.5
30.0
41.0
45.0
0.0
10.0
20.0
40.0
50.0
0.0
5.0
10.0
15.0
21.0
40.0
54.0
0.0
5.0
10.0
15.0
20.0
30.0
0.0
5.0
10.0
19.0
24.0
30.0
0.0
10.0
20.0
30.0
40.0
50.0

88
85
56
64
59
54
40
32
19
4

138
48
23
26
11
29
183
81
197
251
294
141
101
94
95
67
133
158
295
310
297
267
449
588
52
49
37
35
29
61
213
169
125
126
88
79

85
70
72
63
65
54
41
31
14
10
149
89
16
25
15
38
147
105
243
259
360
136
106
100
116

- 67
133
149
356
234
325
282
447
719
70
44
37
51
30
60
209
140
137
95
81
109

Counts
A

64
70
69
80
68
48
41
23
18
3

152
97
33
23
16
26
142
156
294
309
398
153
86
106
92
71
130
167
345
328
290
151
442
619
75
62
16
51
26
60
203
219
137
95
83
114

83
79
56
87
104
67
51
41
23
1

134
91
30
22
14
36
162
88
209
317
—
125
109
110
69
28
138
174
298
312
345
258
419
750
56
52
33
39
35
69
220
163
123
103
100
106

90
85
73
66
74
60
44
24
28
17

58

13
24
43
129
61
368
—
—
117
110
93
69
42

161
384
332
309
262
440
669
76
50
44
55
48
35
222
165
145
79
87
146

Mean
count
82
78
65
72
64
57
43
30
20
7

143
77
25
21-8
16
34-4
153
98
262
284
350
134
102
101
86
55
134-5
162
336
303
293
244
439
669
65-8
51-4
33-4
46-2
33-6
57-0

213-4
171-2
133-4
99-6
87-8
110-8

Log
factor
30973
30973
30973
30973
30973
30973
30973
30973
2-7965
2-7965
30973
30973
30973
2-7890
2-5051
2-2043
51079
5-1079
4-5136
4-2204
3-9275
51291
51291
51291
51291
51291
4-5248
4-2398
30973
30973
30973
30973
2-7789
2-4857
30973
30973
30973
2-7900
2-7900
2-5051
30973
30973
30973
30973
30973
2-7900

No. of
organisms

102,600
97,590
81,320
90,070
80,070
71,320
53,800
37,540
12,510
4,381

178,800
85,860
31,270
13,360
5,119
5,507

19,620,000
12,560,000
8,549,000
4,718,000
2,962,000
18,040,000
13,730,000
13,560,000
11,580,000
7,404,000
4,492,000
2,814,000
420,000
378,000
366,600
305,300
263,800'
204,200
82,310
64,310
41,780
28,480
20,710
18,240

267,000
214,200
166,900
124,700
109,800
68,140
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(a) Reactions between phenol 0*5% and Micrococcus syp.(continued)

Exp.
237

238

241

242

244

245

247

249

" Time
0.0
10.0
20.0
30.0
40.0
50.0

0.0
15.0
30.0
45.0
60.0

0.0
50.0
600
75.0

0.0
30.0
60.0
7ff.O

0.0
10.0
20.0
30.0
40.0

0.0
15.0.
30.0
45.0
60.0
75.0
90.0
1050
120.0

0.0
15.0
30.0
45.0
60.0
75.0
90.0
105.0
135.0
150.0
165.0
190.0
250.0

0.0
30.0
60.0
90.0
120.0
153.0
180.0
210.0

171
83
163
183
194
319

128
62
90
149
255

181
170
116
76

229
230
148
131

145
129
129
114
104

314
220
226
176
141
122
147
98
219

233
224
193
181
151
104
64
54
31
19
13
10
3

295
201
140
117
103
52
29
18

162
91
163
214
198
370

116
93
53
163
259

208
206
154
88

256
217
91
137

147
142
145
114
95

262
258
208
181
138
100
154
76
225

264
222
204
167
140
84
70
67
38
23
27
13
7

269
186
141
116
102
57
33
11

Temp. 20c

Counts

163
173
143
171
169
307

112
96
84
170
192

212
224
112
72

255
216
104
144

154
145
130
94
101

260
246
209
133
135
100
96
80
150

230
212
184
138
127
107
67
60
34
17
19
4
11

236
159
102
119
110
49
30
19

173
174
156
241
154
300

114'
91
66
155
—

192
162
138
71

255
197
122
116

123
131
146
110
—

275
220,
224
115
135
152
103
116
163

"264
211
147
165 >
132
73
61
53
28
17
22
8
8

297
186

122
108
51
31
15

C.

177
174
107
234
121
297

93
77
77
128
—

195
164

65

—

—
L

252
249
212

159
144
17
110
30

248
—
98
163

97
63
62
24
20
16
10
2

107
88

28

Mean
count
169
139
146-2
208-6
171-2
316

112-6
80-4
74
153
235

197-6
185-2
130
740

249
215
116-3
132

142
138
138
108
100

271
238-6
216
151
141-6
123-6
103-4
98
157-4

248
217
165
163
137-5
93
65
59
31
19
19-4
90
6-2

274
183
128
116 .
102
52
30
15

Log
factor
30973
30973
30973
2-7900
2-7900
2-5051

51291
51291
51291
4-8218
4-5369

30973
30973
2-7900
2-7900

30973
30973
30973
2-7900

30761
30761
30761
2-9881
30761

30973
30973
3:0973
30973
30973
30973
30973
30973
2-7900

30973
30973
30973
30973
3-0973
30973
30973
30973
30973
30973
2-7900
2-7900
2-5051

51291
51291
51291
51291
51291
51291
51291
51291

No. of
organisms

211,500
173,900
186,900
128,600
105,500
101,000

15,180,000
10,810,000
9,961,000
10,150,000
8,091,000

247,400
231,700
80,150
45,620

311,600
268,900
145,500
81,390

166,800
164,000
164,000
105,100
119,100

337,800
299,000
270,300
188,900
176,400
154,600
129,300
122,600
97,050

312,400
271,500
206,500
204,400
172,000
116,300
81,320
73,810
38,790
23,780
11,960
5,526
1,981

36,890,000
' 24,630,000

17,230,000
15,630,000
13,730,000
7,000,000
4,038,000
2,154,000
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176 Variation in shape of time-survivor curves

(b) Reactions between para-chlor-meta-cresol 0-05 % and Micrococcus spp.

Exp.
224

229

231

233

236

237

238

241

242

244

Time
0.0
4.0
8.0
12.0
17.0
22.0
27.0
32.0
37.0
0.0
10.0
20.0
28.0
40.0

0.0
15.0
30.0
40.0
50.0
60.0
70.0

0.0
5.25
11.0
17.0
22.0
30.0

0.0
10.0
20.0
30.33
40.0
50.0
0.0
10.0
20.0
30.0
40.0
50.0
0.0
15.0
30.0
45.0
60.0
0.0
15.0
30.0
45.0
61.0
75.0
98.0
0.0
15.0
30.0
45.0
60.0
75.0
0.0
10.0
20.0
30.0
40.0

204
187
139
65
36
13
32
86
34
145
21
13
6
2

100
18
4
27
16
17
35

305
196
153
128
203
349

212
156
119
76
167
195
151
72
89
172
46
278
139
65
79
85
132
231
190
141
120
118
70
58
254
175
212
143
85
140
222
190
185
125
106

255
171
101
46
39
23
23
46
32
161
27
9
8
2

125
27
7
11
37
59
52

318
237
187
158
253
353
221
156
120
111
122
149
174
134
93
123
113
239
128
86

- 57
79
201
238
175
133
99
92
66
53
255
187
234
138
95
108
207
185
187
137
97

Counts

178
126
119
42
38
22
14
21
32
86
45
12
7
11

114
22
9
37
7
35
23

324
221
177
147
198
292

193
144
128
88
137
188
153
58
89
169
159
246
133
59
54
80
153
269
183
113
88
98
76
43
241
187
239
131
83
109
268
201
219
157
84

214
88
114
72
23
22
19
34
58
90
43
7
3
1

130
31
8
13
45
42
27

323
223
156
175
200
287

230 «
128
113
105
163
211
138
118
113
142
136
212
141
88
66
78
142
222
175
129
106
96

. 68
40
250

245
160
95
99
216
199
213
118
—

>
227
107
111
46
22
24
19
29
12
110
26

6
8

114
5
23
26
31
63
37

305
245
186
135
146
227

244
146
96
92
80
270
181
.
78
166
138
—
141
52
80
61
—
246

• .

90
97
64
42

72
134

188
113

Mean
count
216
136
117
54
32
21
20-4
43-2
33-6
118
32
10-25
6-0
4-8

127
20-6
10-2
23
27
43
35

315
244
172
149
200
301-6

220
146
115-2
94-2
133-8
202-6
159-4
98-0
92-4
154-4
118-4
244
136-5
700
67-2
76-6
157
241-2
180-8
1290
101-8
100-2
68-8
47-2
250
183 '
232-5
143
86
108
223
194
198
130
96

Log
factor
30761 .
30761
30761
30761
30761
30761
2-7789
21849
2-1849
30761
30761
30761
2-4857
2-1849

51291
5-1291
51291
4-5248
4-2398
3-9496
3-9496

30761
3-0761
30761
30761
2-7789
2-4857

30761
30761
30761
30761 .
2-7789
2-4857
30761
30761
30761
2-7789
2-7789
2-4857
51079
51079
5-1079
4-8107
4-5175
30761
30761
30761
3-0761
2-7789
2-6323
2-4857
30761
30761
30761
30761
30761
2-7789
30973
30973
30973
30973
30973

No. of
organisms

257,400
162,000
139,400
64,190
38,130
25,020
12,860
6,613
5,131

140,600
38,130
12,210
1,836
734-7

17,020,000
2,775,000
1,373,000
770,000
469,000
380,600
309,700

375,300
290,700
204,900
177,500
180,100
92,300

262,100
174,000
137,200
112,300
87,380
62,000
189,800
116,800
110,100
92,790
71,170

- 74,660
17,500,000
8,974,000
8,616,000
4,953,000
5,169,000
287,000
215,400
153,700
121,300
60,230
29,500
14,440

297,900
218,100
277,600
170,400
102,400
64,910

279,000
242,800
247,700
162,700
120,100
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(6) Reactions between para-chlor-meta-cresol 0'05 % and
Micrococcus spp. (continued)

177

Exp.
245

247

249

Time
0.0
15.0
30.0
45.0
60.0
75.0
90.0
120.0
0.0
15.0
30.0
60.0
75.0
90.0
105.0
120.0
135.0
0.0
30.0
60.0
90.0
120.0
157.0
180.0
210.0

291
215
216
142
104
115
86
165
259
164
94
27
20
7
3
2
0

267
183
143
143
81
^ 8

%9
16

258
198
146
124
108
104
101
120
244
161
88
15
21
10
1
1
0

303
189
123
104
61

' 45
73
27

Counts
A

.251
201
185
130 .
82
103
53
98
293
156
83
22
18
9
5
1
2

306
173
109
116
82
28
82
9

279
235
155
142
—
114'
76
52
259
—
90
47
22
5 '
6
0
1

254
180
124
86
—
26
70
24

219
—
—
142
—
—
42
47
223
—

—
—
5
3
3
0

283*

133
86
•—.
—

15

Mean
count
255-4
2120
175-5
1360
980
1090
71-6
96-4
255
160
88-8
28
20-25
9-0
3-6
1-2
0-4

286
181
126
107.
74
39
71
16

Log
factor
30761
30761
30761

• 30761
30761
30761
3-0761
2-7789

30761
30761
30761
30761
30761
30761
30761
3-0761
3-0761

51079
51079
5-1079
5-1079
5-1079
5-1079
4-5136
51079

No. of
organisms

304,300
252,500
209,000
162,000
116,800
129,900
85,330
57,940

303,800
191,100
83,990
26,510
24,070
10,730
4,289
1,430
488

36,670,000
23,200,000
16,150,000
17,270,000
9,486,000
5,000,000
2,317,000
2,651,000

(c) Reactions between phenol 0-5 % and Bact. coli

Exp.
262

267

268

269

„

Time
0.0
1.0
2.0
3.0
4.0
5.0
11.0
16.0
20.0
0.0
5.0
10.0
15.0
20.0
25.0
30.0
40.0
0.0
5.0
10.0
15.0
20.0
0.0
5.5
16.0
22.0
27.0
32.0

125
133
117
97
90
103
147
169
120
273
100
13
3
1
1
0
0

221
62
11
4
2

273
231
293
190
339
267

140
127
129
98
102
94
143
100
113
299
127
22
4
0
1
1
1

269
124
13
2
0

272
225
271
232
395
322

Counts
A

155
118
96
107
108
91
167
150
108
280
125
23
3
1
0
0
0

250
112
17
6
1

317
240
229
247
453

136
123
121
96
108
82
145
116
—
301
91
25
4
0
0
0
0

266
124
18
2
1

320
217
316
222
.

128
127
108
100
99
95
108
165
—
285
80
33
2

0

0

74
17
1
1

270

—

Mean
count
136-6 •
125-6
114-2
99-6
101-2
930
1420
1400
1140
287-6
104-6
23-2
3-2
0-5
0-4
0-25
0-20

201-2
99-2
15-6
30
10

295-5
236-6
277-0
222-8
3960
294-5

Log
factor

51291
51291
51291
51291
51291
51291
4-5369
3-9469
3-6458

30973
30973
30973
30973
30973
2-7900
2-7900
2-5051

30973
30973
30973
30973
3-0973

30973
30973
2-7900
2-7900
2-5051
2-3373

No. of
organisms

17,160,000
16,900,000
15,380,000
13,410,000
13,610,000
12,520,000
4,889,000
1,239,000
504,300

359,800
130,900
29,160
4,001
625-8
246-7
1541
63-98

251,700
124,100
19,510
3,753
1,251

369,700
296,000
170,800
137,400
126,700
64,010
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(d)

Exp.
262

267

268

269

Reactions 6<

Time
0.0
1.0
2.0
3.0
4.0
5.0

10.0
0.0
5.0

10.0
15.0
20.0
25.0
30.0
40.0

0.0
5.0

10.0
15.0
20.0
25.0
30.0

0.0
5.0

10.0
15.0
26.0
31.0

159
106
148
145
100
107
247
252
154
43
16
6
2
0
0

134
66
4
1
2
1
1

227
201
178
229
230
224

"Jtween

173
116
153
126
120
104
289
288
169
39
24

4
5
7
0

147
51

4
3
1
1
1

197
242
182
228
229
234

para-chlor-meta-cresol 0-05%

Counts

156
99

164
102
116
102

' 301
287
162
66
26

6
5
0
2

.156
39
5

'2
0
2
1

254
' 179

183
208
209
232

156
109
131
117
83

112
276
315
166

59
14
4
2
0

—
236

39
7
2
0
2
0

267
208
155

226

178
140

118

110
—
290
148
68
19
7

0
—

51
7
1
2

0
276
183
150

.

Mean

164-4
114
149 •
141-8
104-8
107
278-3
286-4
159-8
550
19-8
5-2
3-5
1-4
0-66

168-3
49-2

5-2
1-8
10
1-2
0-6

244-2
202-6
169-6
221-6
223-5
2300

and Bact. coli

Log
fflctor
51079
51079
51079
51079
51079
5-1079
4-5175
30761
30761
30761
30761
30761
2-7789
2-7789
2-4857
3-0761
30761
30761
30761
30761
2-7789
2-7789
30761
3-9761
30761
2-7789
2-4857
2-3170

No. of
nrgftniama\*i J^ nfiiinr*"*

21,080,000
. 14,602,000

19,100,000
18,160,000
13,440,000
13,690,000
9,158,000

341,300
190,400
65,540
23,590
6,197
2,104

841-4
201-8

200,400
58,620
6,195
2,145
1,191

721-3
286-5

291,000
241,400
202,100
133,200
68,390
47,720

(e) Experiments showing bactericidal effect of Ringer solution,
after sterilization, on Micrococcus spp.

(i) Ringer sterilized by filtering bulk (5 1.) through Doulton filter candle
and filled into sterile bottles

Exp.
213A

213B

215

217

Time
0.0

20.0
40.0
65.0
86.0

106.0
0.0

30.0
0.0

60.0
120.0
180.0
240.0

0.0
240.0
300.0
360.0

222
266
304
221
256
248
905
967
207
249
212
289
250
221
203
154
108

248
315
279
279
244
248

1011
908
271
235
266
235
261
179
215
222

93

Counts

290
290
281
255
236
195
867
847
244
247
267
258
250
186
184
188
122

218
365
264
279
242
200
938

1062
233
251
280
250
256
217
186
178
250

^
221
227
284
281
252
232
955
893
203
196
228
236
238
189
194 v
237
157

Mean
count
240
273
282
263
246
224
935
935
232
236
251
254
251
198
196
195
146

Log
factor
0-733
0-733
0-733
0-733
0-733
0-733
0-733
0-733
0-733
0-733
0-733
0-733
0-733.

- 0-733
' 0-733

0-733
0-733

No. of
organisms

1349
1476
1524
1422
1330
1211
5058
5058
1256
1276
1358
1374
1358
1081
1059
1054
789
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(ii) Ringer sterilized by steaming (i) 30 min., (ii) 60 min.,
in screw-cap bottles sealed by a rubber washer

Exp.
215

217

Time

0.0
60.0

120.0
180.0

0.0
60.0

120.0
180.0
240.0
300.0
360.0

206
84

9
24

216
26
10

1
12
3
4

208
98
24
17

214
33

3
5

14
0

11

Counts

. 200
54

4
30

191
31

3
4

57
, 7

14

174
93

2
39

212

8
4
6
8
9

165
66

4
33

241

6
4
5
2
4

Mean
count
191

79
9-4

29
215

300
6 0
3-6

190
4 0

10-5

Log
factor

0-733
0-733
0-733
0-733

0-733
0-733
0-733
0-733
0-733
0-733.
0-733

No. of
organisms

1033
427
508
157

nai
162
324
195
102

22
57

(iii) Ringer sterilized by autoclaving (i) at 10 lb. excess pressure for 20 min., (ii) at 101b.
excess pressure for 30 min., in screw-cap bottles fitted with rubber washers

Exp.
(i) 215

[ii) 217

Time
0.0

60.0
120.0
180.0

0.0
120.0
180.0
240.0
300.0
360.0

t

235
1«5
102

82
218

50
25
23
27
29

216
162
118

86
262

47
9

22
20
16

Counts
K

198
141

86
97

233
37
24
18
19
13

165
161
151
90

218
86
20
20
42
19

184
180

93
94

242
50
18
33
43
24

Mean
count
200
162
110

90
233

54
19
23
28
20

Log
factor

0-733
0-733
0-733
0-733
0-733
0-733
0-733
0-733
0-733
0-733

No. of
organisms

1081
877
594
486

1259
292
103
125
151
108
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