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Nanowires As Building Blocks for
Bottom - Up Nanotechnology

The field of nanotechnology represents
an exciting and rapidly expanding research
area that crosses the borders between the
physical, life, and engineering sciences.1
Much of the excitement in this area of re-
search has arisen from recognition that
new phenomena, multifunctionality, and
unprecedented integration density are
possible with nanometer - scale structures.
In general, there are two philosophically
distinct approaches for creating small ob-
jects: top - down and bottom - up.

In the top - down approach, small fea-
tures are patterned in bulk ma te rials by a
combination of lithography, etching, and
de position to form functional devices and
their integrated systems. The top - down ap -
proach has been exceedingly success ful in
many venues, with microelectronics being
perhaps the best ex ample today. While de-
velopments continue to push the resolution
limits of the top - down approach, these im -
provements in resolution are associated with
a near - exponential increase in cost associ-
ated with each new level of manufacturing
facility. This economic limitation and other
scientific challenges with the top - down
ap proach, such as making nanostructures
with near - atomic perfec tion and incorporating
ma te rials with distinct chemical and func-
tional properties, have motivated efforts
worldwide to search for new strategies to
meet the demand for nanoscale structures
today and in the future.2–4

The bottom - up approach, in which
functional structures are assembled from
well - defined chemically and/or physi-
cally synthesized nanoscale build ing
blocks, much like the way nature uses
proteins and other macromole cules to
construct complex biological systems, rep-
resents a powerful alternative approach to
conventional top - down methods.3,5 The
bottom - up approach has the potential to
go far beyond the limits and functionality
of top - down technology by defining key
nanometer - scale metrics through syn-
thesis and subsequent assembly—not by
lithography. Moreover, it is highly likely
that the bottom - up approach will enable
entirely new device concepts and func-
tional systems and thereby create tech-
nologies that we have not yet imagined.
For ex ample, it is possible to seamlessly
combine chemically distinct nanoscale
building blocks that could not be inte-
grated together in top - down proc essing
and thus obtain unique function and/or
combinations of function in an integrated
nanosystem.

To enable this bottom - up approach for
nanotechnology requires a focus on three
key areas that are at the heart of devices and
integration. First, the bottom - up approach
necessitates nanoscale building blocks with
precisely controlled and tunable chemical
composition, structure, size, and morphol-
ogy, since these characteristics determine

their corresponding physical properties. To
meet this goal requires developing meth ods
that enable rational design and predictable
synthesis of building blocks. Second, it is
critical to develop and explore the limits of
functional devices based on these building
blocks. Nanoscale structures may behave
in ways similar to current electronic and
optoelectronic devices, although it is also
expected that new and potentially revolu-
tionary concepts will emerge from these
building blocks, for ex ample, due to quan-
tum properties. Third and central to the
bottom - up concept will be the development
of architectures that enable high - density
integration with predictable function, and
the development of hierarchical assembly
methods that can organize building blocks
into these architectures.

Nanowires (NWs)3,6 and nanobelts
(NBs)7,8 represent an important and broad
class of one - dimensional (1D) nanostruc-
tures at the forefront of nanoscience and
nanotechnology. NWs and NBs are typi-
cally single - crystalline, highly anisotropic,
semi conducting, insulating,  and/or metal -
lic nanos tructures that result from rapid
growth along one direction. The cross sec-
tion of NWs and NBs is uniform and much
smaller than the length. NWs are typically
cylindrical, hexagonal, square, or triangu-
lar in cross section; NBs are typically
 rectangular in cross section, with a large
anisotropy in dimensions. NWs and NBs can
be rationally and predictably synthesized
in single - crystal form with all key param-
eters controlled during growth, includ -
ing chemical composition, diameter, length,
dop ing, growth direction, and possibly sur -
faces.9,10 NWs thus represent one of best -
defined and controlled classes of nanoscale
building blocks compared to, for ex ample,
carbon nanotubes. The unique control
over the microstructure of NW building
blocks arises from an excellent understand -
ing of their growth mechanisms and the
broad range of chemical compositions
achievable (versus simply carbon).6–14 Such
control has enabled a wide range of de-
vices and integration strategies to be pur-
sued in a rational manner. For ex ample,
semiconductor NWs have been assembled
into nanometer - scale field - effect transistors
(FETs),11–13 p–n diodes,12,14 light - emitting
diodes (LEDs),12 bipolar junction transis-
tors,14 complementary in verters,14 nano-
scale lasers,15 com plex logic gates, and
even computational circuits that have
been used as basic dig ital calculators,16 gas
sensors,17 nanores  onators,18,19 and nano-
generators.20 Polar - surface - dominated
NBs sponta neously self - assemble into
nano springs,21,22 nanobows,23 nanorings,24

and nanohelixes,25 which are candidates
for nanoscale transducers, actuators, and
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achievable with these ma te rials, and developing applications in electronics and at the
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nano - optoelectronics, nanosensors, nanobiotechnology, and energy harvesting.
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sensors.26,27 These advances and the grow-
ing interest in NWs and NBs can be quan-
tified in terms of the rapidly increasing
number of publications per year since the
early 1990s (Figure 1).

Nanowires and Carbon Nanotubes
Another class of 1D nanostructures that

have received considerable attention is
car bon nanotubes (NTs).28 In contrast to
NTs whose electronic properties are
largely determined by the chirality of the
graphene layers, NWs offer several
unique merits. First, NW devices can be
assembled in a rational and predictable
manner because the size, interfacial prop-
erties, and electronic properties of the
NWs can be precisely controlled during
synthesis. Moreover, reliable methods exist
for their parallel  assembly.29 The growth
direction and side sur faces of nanowires
can be precisely con trolled during synthe-
sis to produce desired properties. Second,
it is possible to combine distinct NW
building blocks in ways not possible in
conventional electronics and to leverage
the knowledge base that exists for the
chemical modification of inorganic sur-
faces30,31 to produce semiconductor NW
devices that achieve new function and
correspondingly could lead to unexpected
device concepts. Finally, the structure of
NWs can be rationally designed both axi-
ally and radially for integrating ma te rials
of different chemical composition and
possibly crystal structure into an entity
that exhibits multifunctionality and inte-
grated properties at the nanoscale. There-
fore, NWs open up a new paradigm in

nanotechnology well beyond that possible
with a  single - composition building block.

Designed Synthesis of Nanowires
and Nanowire Heterostructures

The rational design and synthesis of
nanoscale ma te rials is critical to work di-
rected toward understanding fundamental
properties, creating nanostructured ma te -
rials, and developing nanotechnology.
Strate gies have been developed to design
and rationally synthesize NWs and NBs
with predictable control over the key
struc tural, chemical, and physical proper-
ties. Among the numerous methods that
have been explored, a strategy that has re-
ceived increasing focus in the past several
years involves exploiting a “catalyst” to
confine growth in 1D. Depending on the
phases involved in the reaction, this ap-
proach is typically defined as vapor–liq-
uid–solid (VLS),32 solution–liquid–solid
(SLS),33,34 or vapor–solid (VS)35 growth. In
VLS growth, the catalyst is envisioned as a
nanodroplet that defines the diameter of
and serves as the site that preferentially
directs the addition of reactant to the end
of a growing NW, as indicated in Figure 2a
by the yellow region at the left - hand end
of the NW.

Modulated nanostructures in which the
composition and/or doping are var ied on
the nanometer scale represent important
targets of synthesis since they could enable
new and unique func tion and potential for
integration in functional nanosystems.
The approach to axial NW heterostructure
growth (Figure 2b)36 exploits metal -
 catalyzed nanowire synthesis. To create a

single junction within the NW, the addi-
tion of the first reactant is stopped during
growth, and a second reactant is intro-
duced for the remainder of the syn the sis;
repeated modulation of the reactants dur-
ing growth produces NW superlattices. In
principle, this approach can be success-
fully implemented if a nanocluster cata-
lyst suitable for growth of the different
superlattice components under similar
conditions is found. Gold nanoclusters
meet this requirement for a wide range of
Group III–V and Group IV ma te rials. This
methodology for the growth of superlat-
tice structures can be generalized in many
ma te rials sys tems. Structures have been
fabricated for p–n junctions within in-
dividual Si NWs by Au - nanocluster -
 catalyzed chem ical vapor deposition
(CVD) and dopant mod ulation.36 Similar
structures have also been demonstrated
for Si - Ge37 and InAs - InP.38 These superlat-
tice struc tures greatly increase the versatil-
ity and power of NW building blocks for
nano scale electronic and photonic appli-
cations such as nanobarcodes, injec tion
lasers, and engineered 1D waveguides.

Designed Synthesis of Radial
Nanowire Homo -  and
Heterostructures

The growth of crystalline overlayers on
nanostructure surfaces is important for con -
trolling surface properties and enabling
new function. This concept has been proved by
the synthesis of silicon and germanium core -
shell and multishell NW homo- and
heterostructures using the CVD method
applicable to a variety of nanoscale ma te -
rials.39 Axial growth is achieved when
 reactant activation and addition occurs at
the catalyst site and not on the NW surface
through epitaxial growth (Figure 2b). Cor-
respondingly, it is possible to drive con -
formal shell growth by altering conditions
to favor homogeneous vapor - phase depo-
sition on the NW surface. Subsequent in-
troduction of different reactants and/or
dopants produces multishell structures of
designed composition, although epitaxial
growth of these shells requires considera-
tion of lattice structures.

Designed Synthesis of Hierarchical
Structured Nanowire Networks

In VLS growth, the location at which the
NW grows is defined by the site of the cat-
alyst par ticle, and the orientation of the
NW is determined by the surface lattice of
the substrate on which an epitaxial relation -
ship can be built. Based on such a principle,
by decorating a grown radial/axial NW
heterostructure with catalyst par ticles,
side branches can be grown along the
orientations defined by the least lattice
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Figure 1. Plot illustrating the number of published papers relating to nanowires each year
since the early 1990s. In the background is a scanning electron micros copy image of fine
silicon nanowires (average diameter, 20 nm).
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mismatch between the NW “substrate”
and the newly grown branches, forming
3D networks40 (see the ar ticles by Bakkers
et al. and Dick et al. in this issue). The ma -
te rials for the main branches and the side
branches can be of different chemical com-
positions, resulting in the formation of 3D
junction arrays (Figure 2c). Growth of III–V
NWs on Group IV substrates enables the
integration of high - per form ance III–V semi-
conductors monolithically with silicon tech-
nology, since fundamental issues of III–V
integration on Si, such as lattice and ther-
mal expansion mismatch, can be overcome.

Nanowires of Functional and
Smart Materials

Complex oxides with structures such as
pe rovskite, spinel, and garnet have many
important properties and applications in
science and engineering including ferro-
electricity, ferromagnetism, colossal magne -
tore sis tance, luminance, optoelectronics, and
semiconductors. These properties are cru-
cial for applications such as data storage,
data retrieval, and sensing. Besides the
syn thesis of conventional binary oxides
(discussed by J. Wang et al. in this issue),
methods have been developed to synthe-
size NWs of functional and smart ma te -
rials. Liu et al.41 have demonstrated a generic
approach for the synthesis of  single - crystal
complex oxide nanostructures of pe -
rovskites, spinels, and various hydroxides,
including monoclinic, corundum, CaF2 -
 struc tured, tetragonal, and metal hydrox-
ides.42,43 The method is based on a reaction
between a metallic salt and a metallic oxide
in a solution of composite hydroxide eu-
tectic at �200�C and 1 atm without using
an organic dispersant or capping agent. This
one - step synthesis technique is cost - effective,
easy to control, and can be conducted at low
temperature and normal atmospheric pres -
sure. The technique can be expanded to many
ma te rials systems, and it provides a general,
simple, convenient, and innovative strategy

for synthesizing nanostructures of complex
oxides with important scientific and tech-
nological applications in ferroelectricity, fer -
romagnetism, colossal magnetore sis tance,
fuel cells, optics, and more.

Organization and Assembly of
Nanowires

The organization and/or directed as-
sembly of NWs into designed hierarchical
structures is a key goal necessary for cre-
ating arrays of devices. Using a patterned
catalyst, NWs can be directly grown on a
solid substrate in a designed configuration.
This strategy enables nanoscale structures
to be produced directly on a 2D substrate
without extensive lithography, but it still
faces many of the traditional constraints of
planar growth and device fabrication.

Alternatively, NW ma te rials produced
under synthetic conditions optimized for
their growth can be organized into arrays by
several techniques including (1) electric -
field - directed, (2) fluidic - flow - directed,
(3) Langmuir–Blodgett, and (4) patterned
chemical assembly.

Applied electric fields (E - fields) can be
used effectively to attract and align NWs
due to their highly anisotropic structures
and large polarization.11 E - field–directed
assembly not only can organize NWs
along the electric field, but also can be used
to position individual NWs at specific po-
sitions with controlled directionality.44

Another powerful approach called
flu idic - flow - directed assembly16 allows
alignment of NWs (or NTs) by pass  ing a
suspension of NWs through microfluidic
channel structures. Fluidic - flow - directed
assembly can also be used to or ganize
NWs into more complex crossed struc -
tures, which are critical for building dense
nanodevice arrays, using a layer - by - layer
deposition proc ess. The microfluidic
method enables the align ment of NWs up
to about the millimeter scale.

Assembly on larger scales with precise
spacing down to the nanometer level re-

quires alternative strategies. The Langmuir–
Blodgett (LB) technique, in which an or-
dered monolayer is formed on water and
transferred to a substrate, represents an al-
ternative method that is beginning to
achieve this goal. For ex ample, parallel
and crossed NW struc tures have been as-
sembled by  single and sequential transfers
over centime ter length scales; moreover,
these large - area arrays have been effi-
ciently patterned into repeating arrays of
controlled dimensions and pitch to yield
hierarchical structures with order defined
from the nanometer through the centime-
ter length scales.45 In addition, patterned
chemical modification of a substrate can
be an effective approach for directed -
or self - assembly of NWs and NTs.16,45

Nanoelectronic Devices
Homogeneous doped NWs represent key

building blocks for a variety of electronic
devices.16,46–51 A prototypical ex am ple of
such a device with broad potential for ap-
plications is the NW field - effect tran sistor
(NWFET). For ex ample, studies of
NWFETs fabricated from boron - 46 and
phosphorus - doped47 Si NWs have shown
that the devices can exhibit per form ance
comparable to the best reported for planar
devices made from the same ma te rials.
Studies have also demonstrated the high
electron mobil ity of epitaxial InAs
NWFETs with a wrap - around cylindrical
gate structure surrounding a nanowire.48

More generally, controlled bottom - up
assembly and synthetic elaboration of
NWs offers unique opportunities. The
crossed NW architecture enables device
properties to be defined by the assembly of
the NW components and not by lithogra-
phy, and has been utilized to demonstrate
logic gate structures, basic computation,
and selective addressing.16,49 Synthesis of
axial modulation - doped NW heterostruc-
tures has enabled the creation of address
decoders and coupled quantum structures
without a critical use of lithography,50

while the design of radial Ge/Si core–shell
NW heterostruc tures demonstrated a true
per form ance benefit of NWFETs com-
pared with state - of - the - art planar devices.51

Nanowire Nanosensors
Field - effect transistors fabricated using

individual NWs are ultrasensitive nanosen -
sors for detecting a wide range of gases,
chemicals, and biomedical species in both
commercial and research applications.52,53

The high - per form ance characteristics of
NWFETs, such as high surface - to - volume
ratio and specially designed surface struc-
tures, are key factors that lead to very high
sensitivity. More important to overcoming
the sensitivity limitations of previous pla-
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Figure 2. Schematic illustration of the evolution of nanowire structural and compositional
complexity enabled today by controlled synthesis, from (a) homogeneous ma te rials to
(b) axial and radial heterostructures and (c) branched heterostructures. The colors indicate
regions with distinct chemical composition and/or doping.
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nar FET sensors is the 1D morphology of
these nanoscale structures. Specifically, bind -
ing to the surface of a nanowire leads to
depletion or accumulation of carriers in the
“bulk” of the nanometer - diameter structure
versus only the surface region of a planar
device.52 NWFETs can be configured as highly
selective and highly sensitive detec tors by
linking recognition or receptor groups to
the surface. This was first demonstrated with
Si NWFETs, which were used for detection
of pH, metal ions, and proteins.54 More
gen erally, these unique features of semicon-
ductor nanowires (see ar ticle by Patolsky
et al. in this issue) have led to sufficient
sensitivity and selectivity to enable the de-
tection of viruses at the  single - virus level52

and sequence - specific DNA detection at
the femtomolar level.53

High - Performance
Macroelectronics and
Flexible Electronics

A new concept of macroelectronics
using assembled semiconductor NW thin
films promises significant per form ance im -
provement for macroscale electronics. In this
approach, a “thin film” of oriented semi-
conductor NWs aligned by self - assembly
techniques is used to produce thin - film
transistors (TFTs) with conducting chan-
nels formed by mul tiple parallel  single -
 crystal NWs (see the ar ticle by Duan in
this issue). Charges are transported from
source to drain within  single crystals, en-
suring high carrier mobility. Such devices
can be made using semiconductor NWs on
a wide range of substrates, including poly -
mer and glass, providing a new approach
for flexible electronics. The device per form  -
ance of these NW TFTs not only greatly
surpasses that of solution - proc essed organic
TFTs, but is also significantly better than
that of conventional amorphous Si TFTs,
and is approaching the per form ance of
 single - crystal silicon - based devices. Fur-
thermore, Group III–V or II–VI nanowire
or nanobelt ma te rials of high intrinsic
carrier mobility or optical functionality
can be assembled into thin films on
flexible substrates to enable new multi-
functional electronics and optoelectronics
that are not possible with traditional
macroelectronics, in which ele ctronic com-
ponents are distributed over substrates
with surface areas on the order of square
meters. This can have an impact on a
broad range of existing ap plications, from
flat - panel displays to image sensor arrays,
and enable a whole new generation of
flexible, wearable, or disposable electron-
ics for computing, storage, and wireless
communication.

Nanophotonics
Nanowires represent attractive building

blocks for active nanophotonic devices, in-
cluding light - emitting diodes (LEDs),
lasers, and detectors.11,55– 59 Significantly,
the ability to assemble and electrically
drive nanoscale sources and detector
blocks could allow for fully integrated
nanophotonic systems for use in applica -
tions ranging from biodetection through
information proc essing. The crossed NW
approach was the first to demonstrate true
nanoscale LEDs, or nanoLEDs (Fig ure 3a).
In this work, nanoscale p–n diodes were
created by crossing well - defined p- type
and n - type InP NWs, and subsequent
device meas ure ments showed that band-
edge emission is ob  served at the nano-
scale cross - points in forward bias.11 This

concept has enabled the assembly of a
wide - range of nanoLEDs on a  single chip,
with emission ranging from ultraviolet
through near - infrared in a manner not
possible with conventional planar tech-
nology.55 The crossed NW architecture can
be further generalized to hybrid devices
consisting of n - type direct - bandgap NWs
assembled onto p -Si electrodes defined in
heavily p - doped planar substrates. Signif-
icantly, using n - type CdS NWs in this type
of nanostructure has led to the demon-
stra tion of the first nanoscale electronic
injection laser (Figure 3b).56 In addition to
nanoscale light sources, crossed NW p–n
junctions can also be configured as photo-
detectors critical for integrated photonics.
For ex ample, avalanche multipli cation of
the photocurrent in nanoscale p–n diodes
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Figure 3. Nanowire photonics. (a) Nano-LED based on the crossed nanowire approach.
The upper image corresponds to an electroluminescence image recorded from the device
shown in the lower AFM image. The peak emission occurs at the cross-point of the two
nanowires. (b) Nanoscale electronic injection laser using n-type CdS nanowires. The upper
optical image shows the position of the nanowire end on right side and upper rectangular
electrode, while the lower electroluminescence image shows light emission only from the
nanowire end of the laser. (c) Current/voltage plot of a crossed Si-CdS nanowire p–n diode
as a nanoscale photon detector. The black curve shows the background signal, while the
red curve shows the signal in the presence of light. The inset shows an optical image of a
two-element crossed nanowire detector array consisting of an n-CdS nanowire (horizontal)
crossing two p-Si nanowires (vertical); the larger rectangular features correspond to metal
contacts. (d) The nanoscale photon detector arrays can be addressed independently
without electrical crosstalk ( Iph is photocurrent).
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has recently been shown in crossed Si - CdS
NWs (Figure 3c).57 These NW avalanche
photodiodes, or nanoAPDs, exhibit ultra-
high sensitivity with detection limits of
less than 100 photons and subwavelength
spatial resolution of 250 nm. Moreover, the
elements in nanoAPD arrays can be ad -
dressed independently without electrical
crosstalk. These characteristics exceed the
capabilities of any known detector and
could open up unique opportunities, for
ex ample, for integrated lab - on - a - chip de-
vices and imaging of biological systems.

The controlled synthesis of radial NW
structures also offers substantial oppor -
tunities for nanophotonics, since the re -
quired n -  and p - type active ma te rials can
be incorporated directly as the core and
shells in the NW. This general approach
was first demonstrated with the growth of
well - defined doped III - nitride–based
core–multishell NW heterostructures (Fig-
ure 4a).58,59 In these nanostructures, an n -
 type GaN core and p - type GaN outer shell
serve as electron and hole injection layers,
and an InxGa1–xN shell provides a tunable -
 bandgap quan tum well for efficient radia-
tive recombination of injected carriers.

Nanophotonic devices with separate
contacts to the n - type core and p - type
outer shell show expected p–n diode cur-
rent rectification (Figure 4b). In for ward
bias, the devices yield strong light emis-
sion with the LED color dependent on the
indium composition. Significantly, nano-
LED spectra collected from such ra-
dial NW heterostructure devices have
shown a systematic redshift from 367 nm
to 577 nm (Figure 4c), covering the short -
 wavelength region of the visible spectrum,
and more over, they indicate that very high
quan tum efficiencies will be possible in
such defect - free structures. The efficient
injection and radiative recombination of
carriers, as well as the synthetically tun-
able emission wavelength of radial NW
devices, represent a clear advance in
nanoLED sources and thus a promising
pathway to multicolor NW injection lasers
in the future.

Nano - Biotechnology
Integration of nanosystems and biosys-

tems is a multidisciplinary field that has
the potential for tremendous impact on bi-
ology, chemistry, physics, biotechnology, and
medicine. The combination of these diverse
areas of research promises to yield revolu-
tionary advances in healthcare, medicine,
and the life sciences through, for ex ample,
the creation of new and powerful tools that
enable direct, sensitive, and rapid analysis
of biological and chemical species. Patolsky
et al.52 have demonstrated the first appli-
cation of NW nanosensors for ultrasensitive

detection of proteins down to individual
virus par ticles as well as mul tiplexed
record ing of these species using distinct
NW elements within a sensor device. In
addition, Patolsky et al.60 have demon-
strated an unprecedented approach for in-
vestigating the electrical properties of
hybrid structures consisting of arrays of
NWFETs integrated with the individual
axons and dendrites of live mammalian
neurons, where each nanoscale junction

can be used for spatially resolved, highly
sensitive detection, stimulation, and/or
inhibition of neuronal signal propagation.
Details are described by Patolsky et al. in
this issue. Arrays of nanowire–neuron
junctions enable simul taneous meas ure -
ment of the rate, ampli tude, and shape of
signals propagat ing along individual
axons and dendrites. The configuration of
nanowire–axon jun ctions in arrays, as
both inputs and out puts, makes possible
controlled studies of partial to complete
inhibition of sig nal propagation by both
local electrical and chemical stimuli. This
revolutionary development opens a new
field in integrated nano - biotechnology.

Nanoelectromechanical Systems
The development of novel technologies

for wireless nanodevices and nanosystems
is critically important for in situ, real - time,
and implantable biosensing and biomed-
ical monitoring. Nanosensors are currently
under intense development for ultrasensi-
tive and real - time detection of biomole cules.

An implanted wireless biosensor, for
ex ample, requires a power source, which
may be provided directly or indirectly. It is
highly desirable for wireless devices (and
required for implanted biomedical de-
vices) to be self - powered without the need
for finite - lifetime batteries. Using aligned
ZnO NWs grown either on a crystal sub-
strate or a polymer substrate,61 an innova-
tive approach has been demonstrated for
converting nanoscale mechanical energy
into electric energy.20 By deflecting the
aligned NWs using a conductive atomic
force micro scope (AFM) tip in contact
mode, the energy that was first created by
the deflection force and later converted
into electricity by the piezoelectric effect
has been meas ured to demonstrate a
nanoscale power generator. The operation
mechanism of the electric generator relies
on the unique coupling of piezoelectric
and semiconducting dual properties of
ZnO as well as the elegant rectifying func-
tion of the Schottky barrier formed be-
tween the metal tip and the NW.62

This research demon  strates the feasibil-
ity of harvest ing en ergy from the environ-
ment, such as converting mechanical
energy (e.g., body motion or muscle
stretching), vibrational energy (e.g.,
acoustic or ultrasonic waves), and hy-
draulic energy (e.g., body fluid and blood
flow) into electric energy for self - powered
nanosensors and nanosystems. It also has
a huge impact on miniaturizing the size of
integrated nanosystems by reducing the
size of the power source and improving its
efficiency and power density. Piezoelectric
FETs and diodes as well as force sensors
have also been demonstrated using NWs.
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Figure 4. Radial nanowire core–shell
heterostructures as nanophotonic
building blocks. (a) Schematic of
core–multishell nanowire with n-GaN/
InGaN/GaN/p-AlGaN/p-GaN structure.
GaN is blue, InGaN is green, and
p-AlGaN is yellow. (b) Current–voltage
data recorded from a device with
contacts on the n-core and p-shell.
Inset is a scanning electron micrograph
of the fabricated device using the
synthesized structure. (c) Normalized
electrolumines cence spectra recorded
from five multicolor core–shell nanowire
LEDs with (left to right) 1%, 10%, 20%,
25%, and 35% indium, respectively.
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Conclusions
The development of nanowire - and

nanobelt - based ma te rials represents break-
through achievements with rapid expand-
ing impact in all areas of nanotechnology.
The remarkable level of synthetic control
of the per form ance properties of NWs and
NBs is leading to revolutionary technolo-
gies in electronics, optoelectronics, sensors,
the life sciences, and defense and will con-
tinue to broadly impact the fields of physics,
chemistry, biology, medicine, environmental
science, and engineering. The ar ticles in
this issue of MRS Bulletin make it clear that
NWs are truly powerful building blocks for
achieving the bottom - up paradigm of
nanotechnology with demonstrated impacts
on both fundamental science at the nanoscale
and on applications. Looking forward, we
believe that the future is remarkably bright,
with likely revolutionary technologies from
NW - based nanosystems that will impact
in many ways such areas as the life sci-
ences, healthcare, information technology,
and energy science, to name just a few.
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