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Abstract
Let C∗

c (N2) be the universal C∗-algebra generated by a semigroup of isometries {v(m,n) : m, n ∈N} whose range pro-
jections commute. We analyse the structure of KMS states on C∗

c (N2) for the time evolution determined by a
homomorphism c : Z2 →R. In contrast to the reduced version C∗

red(N2), we show that the set of KMS states on
C∗

c (N2) has a rich structure. In particular, we exhibit uncountably many extremal KMS states of type I, II and III.

1. Introduction

In the recent years, there has been a flurry of activity centred around understanding the inner structure
(like K-theory, KMS states etc.) of C∗-algebras associated to semigroups. The revival of the subject of
semigroup C∗-algebras, especially in the last decade, can be attributed to the works of Cuntz and Li
on C∗-algebras associated with rings ([6], [9], [10]). Ring C∗-algebras are defined exactly like group
C∗-algebras taking into account both the addition and the multiplication rule of the ring, where the ring
involved is usually assumed to be an integral domain. Soon, it was realised that it is only appropriate to
view these algebras as boundary quotients of semigroup C∗-algebras.

Let P be a cancellative semigroup. Let the left regular representation of P on �2(P) be denoted by
V := {Va}a∈P. The reduced C∗-algebra of the semigroup P, denoted C∗

red(P), is the C∗-algebra generated
by {Va : a ∈ P}. Li also defines a universal version, denoted C∗(P), generated by isometries {va : a ∈ P}
and projections corresponding to ‘certain ideals of P’ satisfying relations that reflect the relations in the
regular representation. The study of C∗

red(P) has received much attention in the recent years. Questions
concerning its nuclearity, K-theory and the structure of KMS states on C∗

red(P) were investigated inten-
sively and satisfactory answers were obtained for a large class of semigroups. Some of the notable papers
that explore the above mentioned issues are [8], [17], [16], [7], [15], [14] and [4].

However, isometric representations of semigroups other than the regular representation were also
considered in the literature, and the associated C∗-algebras were analysed. Let G be a discrete, countable,
abelian group, and let P ⊂ G be a subsemigroup containing the identity element 0. Here is a host of
examples of isometric representations of P. Let A ⊂ G be a non-empty set such that P + A ⊂ A. Consider
the Hilbert space �2(A), and let {δx : x ∈ A} be its standard orthonormal basis. For a ∈ P, let Va be the
isometry on �2(A) defined by

Va(δx) := δa+x.

Then, VA := {Va}a∈P is an isometric representation of P, which we call the isometric representation asso-
ciated to A. Denote the C∗-algebra generated by {Va : a ∈ P} by C∗(P, A). The case A = P corresponds
to the reduced C∗-algebra. The C∗-algebras C∗(P, A) were analysed in great detail in [24] when P =Nk.
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A common feature that the isometric representations VA share, when we vary A, is that the range pro-
jections {VaV∗

a : a ∈ P} form a commuting family. Thus, it is natural to consider the following universal
C∗-algebra. Let C∗

c (P) be the universal C∗-algebra generated by isometries {va : a ∈ P} such that

1. for a, b ∈ P, vavb = va+b, and
2. for a, b ∈ P, eaeb = ebea. Here, ea := vav∗

a and eb := vbv∗
b.

The subscript ‘c’ in C∗
c (P) stands to indicate that the range projections commute.

The C∗-algebra C∗
c (Nk) was analysed from a groupoid perspective by Salas in [24]. Murphy, in [19] by

independent methods, studied C∗
c (N2) and also the universal one generated by two commuting isometries.

He proved that the latter C∗-algebra is complicated, in particular not nuclear, while the former is nuclear
and more manageable. The C∗-algebra C∗

c (P) for a numerical semigroup P was considered in [23] and
in [26]. The analog of C∗

c (P) in the topological setting was investigated using groupoid methods by the
last author in [25]. Both [24] and [25] borrow substantial amount of material from [18].

This paper is an attempt to understand the structure of KMS states on C∗
c (P) for a natural time evolu-

tion. Let c : G →R be a non-zero homomorphism. By the universal property of C∗
c (P), for every t ∈R,

there exists a ∗-homomorphism σt : C∗
c (P) → C∗

c (P) such that

σt(va) = eitc(a)va,

for a ∈ P. Then, σ c := {σt}t∈R defines an action of R on C∗
c (P). In this paper, we analyse the structure of

KMS states for σ c for a toy model by discussing the case when P =N2.
Let c : Z2 →R be a non-zero homomorphism. With no loss of generality, we can assume that c(1, 0) =

1 and c(0, 1) = θ . Let � := {0, 1}Z be the Cantor space equipped with the product topology. Let τ : � →
� be the Bernoulli shift defined by τ (x)k = xk−1. Define χ : � →R by

χ (x) :=
{

1 if x−1 = 0,

−θ if x−1 = 1.

Let ρ := {ρt}t∈R be the 1-parameter group of automorphisms on C(�) �Z defined by ρt(f ) = f for f ∈
C(�) and ρt(u) = ueitχ . Here, u is the canonical unitary of the crossed product C(�) �Z. This kind of
flow, given by a continuous potential F : X →R, for a generic dynamical system (X, T), where X is a
compact space and T : X → X is a homeomorphism, was considered in [5], and the structure of KMS
states on C(X) �Z was analysed in depth in [5].

We establish a close link between the structure of KMS states on C∗
c (N2) for σ c and the structure of

KMS states on C(�) �Z for ρ. Strictly speaking, we only establish a bijective correspondence between
the conformal measures that appear in the analysis. This brings us to the setup considered in [5]. We
then apply the results of [5] to deduce the values of θ for which there is a KMS state on C∗

c (N2). Taking
inspiration from [5] and like in [5], we ask whether extremal KMS states on C∗

c (N2) of each type t for
t ∈ {I, II, III} appear or not which we answer in the affirmative by exhibiting uncountably many examples
of extremal KMS states of type I, II and III.

The results obtained in this paper are summarised below.

(1) If either θ < 0 or β < 0, there is no β-KMS state on C∗
c (N2).

(2) Suppose θ = 0 and β > 0. The simplex of β-KMS states is homeomorphic to the set of
probability measures on T. In this case, the extremal β-KMS states are of type I.

(3) Suppose θ is irrational, positive and β > 0. The simplex of β-KMS states is homeomorphic to
the set of probability measures m on the Cantor space � that are e−βχ -conformal, i.e.

m(τ (B)) =
∫

B

e−βχdm

for every Borel subset B of �.
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(4) Suppose θ > 0 and β > 0. For each t ∈ {I, II, III}, there are uncountably many extremal β-KMS
states of type t. Moreover, for t ∈ {II, III}, the extremal β-KMS states of type t are in bijective
correspondence with non-atomic type t ergodic, probability measures m on � that are e−βχ -
conformal.

(5) The simplex of tracial states of C∗
c (N2) is homeomorphic to the simplex of probability measures

on the torus T2.

We end this introduction by mentioning a result obtained in Section 4, which we believe is worth
highlighting. Let X be a compact metric space, and let φ : X → X be a homeomorphism. A probability
measure m on X is said to be a conformal measure with potential F, where F is a measurable function
on X, if

d(m ◦ φ)

dm
= eF.

Up to the authors’ knowledge, the reference in the literature for the proof of the existence of an ergodic
type III conformal measure with continuous potential F is the work of Katznelson ( [13]). (The reader
is referred to Theorem 3.2, Theorem 3.3 of Part II in [13] and is also referred to Theorem 5.2 of [5].
Also, as we will see in Section 5, Nakada’s examples in [21] and in [20] provide such examples). If
we demand only the measurability of the potential, then it is well known that odometers provide a rich
source of such type III examples (see [11]).

Here, by making use of Arnold’s dyadic adding machine, we produce an example of an ergodic
type III conformal measure with continuous potential on the Cantor space {0, 1}Z, where the action is
the usual shift. This construction is probably simpler, modulo accepting the fact that Arnold’s adding
machine is one of the simplest type III examples. But a drawback with our construction is that, unlike the
example due to Katznelson, our dynamical system is not minimal. It is not clear to the authors whether
this construction can be tweaked to produce an example, based on odometers, which is minimal.

2. A groupoid model for C∗
c (P)

In this section, we review the groupoid model for C∗
c (P) described in [24] and in [25]. We follow the

exposition given in [25]. Let G be a countable, discrete abelian group, and let P be a subsemigroup of
G containing the identity element 0. We assume that P generates G, i.e. P − P = G.

Recall that C∗
c (P) is the universal unital C∗-algebra generated by a family of isometries {va : a ∈ P}

such that

(1) for a, b ∈ P, vavb = va+b, and
(2) for a, b ∈ P, eaeb = ebea, where ea := vav∗

a and eb := vbv∗
b.

Let s ∈ G be given. Choose a, b ∈ P such that s = a − b. Set ws := v∗
bva. Thanks to Proposition 3.4 of [25],

ws is well defined, and {ws : s ∈ G} is a family of partial isometries whose range projections commute.
For s ∈ G, let es := wsw∗

s .
Next, we describe a groupoid whose C∗-algebra is a quotient of C∗

c (P). Let P(G) be the power set of
G which we identify, in the usual way, with {0, 1}G. Endow P(G) with the product topology inherited
via this identification. Then, P(G) is a compact Hausdorff space and is metrisable. The map

P(G) × G � (A, s) → A + s ∈P(G)

defines an action of G on P(G).
Let

Xu := {A ∈P(G) : 0 ∈ A, −P + A ⊂ A}.
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Note that Xu is a closed subset of P(G) and hence a compact subset of P(G). Also, Xu is P-invariant, i.e.
if A ∈ Xu and a ∈ P, then A + a ∈ Xu. Let G be the reduction of the transformation groupoid P(G) � G
onto Xu, i.e.

G := {(A, s) ∈P(G) × G : A ∈ Xu, A + s ∈ Xu} = {(A, s) : A ∈ Xu, −s ∈ A}.
The multiplication and inversion on G are given by

(A, s)(B, t) := (A, s + t) if A + s = B, and
(A, s)−1 := (A + s, −s).

The groupoid G is étale and is the usual Deaconu-Renault groupoid Xu � P.
For f ∈ C(Xu), define f̃ ∈ Cc(Xu � P) by

f̃ (A, s) :=
{

f (A) if s = 0,

0 if s 	= 0.
(2.1)

Observe that C(Xu) � f → f̃ ∈ Cc(Xu � P) is a unital ∗-algebra homomorphism which is injective. Via
this embedding, we identify C(Xu) as a unital ∗-subalgebra of Cc(G). For f ∈ C(Xu), we abuse notation
and we denote f̃ by f .

For s ∈ G, let ws ∈ Cc(Xu � P) be defined by

ws(A, t) :=
{

1 if t = −s,

0 if t 	= −s.
(2.2)

For a ∈ P, set va := wa. Observe the following facts. The details involving routine computations are left
to the reader.

(1) For a ∈ P, va is an isometry and vavb = va+b.
(2) For a, b ∈ P and s = a − b, ws = v∗

bva.
(3) For s ∈ G, let εs ∈ C(Xu) be defined by the equation εs(A) = 1A(s). Then, wsw

∗
s = εs for every

s ∈ G. Consequently, {wsw
∗
s : s ∈ G} generates C(Xu). Also, the range projections {vav

∗
a : a ∈ P}

form a commuting family.
(4) We claim that the C∗-algebra generated by {va : a ∈ P} is C∗(G). Let f ∈ Cc(G) = Cc(Xu � P). It

suffices to consider the case when f is supported on Xu × {−s} for some s ∈ G. Let h : Xu →C

be defined by

h(A) :=
{

f (A, −s) if (A, −s) ∈ Xu � P,

0 otherwise.

Then, h is continuous and h ∗ ws = f . By (3), h lies in the C∗-algebra generated by {ws : s ∈ G}.
Therefore, {ws : s ∈ G} generates C∗(G). It follows from (2) that {va : a ∈ P} generates the C∗-
algebra C∗(Xu � P).

Hence, there exists a unique surjective ∗-homomorphism  : C∗
c (P) → C∗(Xu � P) such that

(va) = va. (2.3)

Theorem 7.4 of [25] asserts that  is invertible, and  is an isomorphism. Via the map , we identify
C∗

c (P) with C∗(Xu � P). Henceforth, we do not distinguish between ws and ws.
For f ∈ C(Xu) and s ∈ G, let Rs(f ) ∈ C(Xu) be defined by the equation

Rs(f )(A) :=
{

f (A − s) if A − s ∈ Xu,

0 otherwise.

For s ∈ G and f ∈ C(Xu) ⊂ C∗(Xu � P), the covariance relation

wsfw
∗
s = Rs(f ),
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is satisfied. A pleasant consequence of the above covariance relation is the fact that the linear span of
{fws : f ∈ C(Xu), s ∈ G} is a unital dense ∗-subalgebra of C∗(Xu � P).

Let

Yu := {A ∈P(G) : A 	= ∅, −P + A ⊂ A}.
Observe that Yu is a locally compact Hausdorff space and G leaves Yu invariant. Also, Xu is a clopen set
in Yu. It is clear that the groupoid Xu � P is the reduction of the transformation groupoid Yu � G onto Xu.
This has the consequence that C∗(Xu � P) is isomorphic to the cut-down p(C0(Yu) � G)p where p = 1Xu .
Moreover, the union

⋃
a∈P

(Xu − a) = Yu. Consequently, it follows that p is a full projection in C0(Yu) � G.

Often, we embed C∗
c (P) inside the crossed product C0(Yu) � G and view C∗

c (P) as a full corner of
C0(Yu) � G. The embedding C∗

c (P) → C0(Yu) � G is given by the rules

C(Xu) � f → f 1Xu ∈ C0(Yu) and ws → us1Xu .

Here, {us : s ∈ G} are the canonical unitaries of the crossed product C0(Yu) � G.

Tracial states on C∗
c (P): We first determine the tracial states on C∗

c (P). Let C∗(G) be the group
C∗-algebra of G, and let {us : s ∈ G} be the canonical unitaries of C∗(G). By the universal property,
there exists a surjective ∗-homomorphism π : C∗

c (P) → C∗(G) such that π (va) = ua. In the groupoid pic-
ture, π coincides with the restriction map Res : C∗(Xu � P) → C∗(Xu � P|{G}) ∼= C∗(G). Note that {G} is
an invariant closed subset of the unit space Xu of the groupoid G = Xu � P.

Proposition 2.1. Every tracial state on C∗
c (P) factors through C∗(G). Thus, tracial states on C∗

c (P) are
in bijective correspondence with probability measures on Ĝ.

Proof. Let F := {G} and Xu := Xu\F. Let ω be a tracial state on C∗
c (P). Let m be the measure on Xu

that corresponds to the state ω|C(Xu). Let a ∈ P be given. Note that vav∗
a = 1Xu+a. Since ω is tracial, we

have

m(Xu + a) = ω(vav∗
a) = ω(v∗

ava) = ω(1) = 1 = m(Xu).

But, Xu + a ⊂ Xu. Hence, Xu\(Xu + a) has measure zero. Hence, the set Xu = ⋃
a∈P Xu\(Xu + a) has

measure zero. Therefore, m is concentrated on F = {G}. Now the proof follows from Corollary 1.4
of [22].

We end this section with a few definitions that we need later.

Definition 2.1. Let (Y , B) be a standard Borel space on which G acts measurably. Let X be a Borel
subset of Y . We say that (Y , X) is a (G, P)-space if

(1) the set X is P-invariant, i.e. X + P ⊂ X, and
(2) the union

⋃
a∈P

(X − a) = Y .

Let (Y , X) be a (G, P)-space. We say that (Y , X) is pure if
⋂
a∈P

(X + a) = ∅.

Example 2.1. The pair (Yu, Xu) is a (G, P)-space. Define

Yu := Yu\{G}; Xu := Xu\{G}.
Then, (Yu, Xu) is pure.
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Definition 2.2. Let (Y , X) be a (G, P)-space. Let c : G →R be a non-zero homomorphism, and let β be
a fixed real number. Suppose m is a measure on Y . We say that m is an e−βc-conformal measure on the
(G, P)-space (Y , X) if

(i) m(X) = 1, and
(ii) for every Borel set E ⊂ Y and s ∈ G,

m(E + s) = e−βc(s)m(E).

We often abuse terminology and call an e−βc-conformal measure on a (G, P)-space (Y , X) an e−βc-
conformal measure on Y .

Definition 2.3. For i = 1, 2, let (Yi, Xi) be a (G, P)-space, and suppose that mi is an e−βc-conformal mea-
sure on (Yi, Xi). We say that (Y1, X1, m1) and (Y2, X2, m2) are metrically isomorphic, or simply isomorphic,
if there exist G-invariant null sets N1 ⊂ Y1, N2 ⊂ Y2 and an invertible measurable map S : Y1\N1 → Y2\N2

such that

(i) the map S is G-equivariant, S(X1\N1) = X2\N2, and
(ii) for every Borel subset E ⊂ Y2\N2, m2(E) = m1(S−1(E)).

3. KMS states and conformal measures

Let us recall the definition of a β-KMS state. Let A be a C∗-algebra, and suppose τ := {τt}t∈R is a
1-parameter group of automorphisms of A. Suppose β ∈R. A state ω on A is a β-KMS state for
τ if

ω(ab) = ω(bτiβ(a)),

for all a, b in a norm dense τ -invariant ∗-algebra of analytic elements in A.
Let ω be a β-KMS state on A. Then, ω is said to be extremal if it is an extreme point in the simplex

of β-KMS states. It is well known that a β-KMS state ω is extremal if and only if the associated GNS
representation πω is factorial, i.e. πω(A)′′ is a factor. We say an extremal β-KMS state ω is of type t if
πω(A)′′ is a factor of type t.

Fix a non-zero homomorphism c : G →R. Recall that the 1-parameter group of automorphisms σ c :=
{σt}t∈R on C∗

c (P) is defined by

σt(va) = eitc(a)va,

for a ∈ P. For t ∈ G, let D(t), R(t) ⊂ Xu be defined by

D(t) := {A ∈ Xu : A + t ∈ Xu}
R(t) := {A ∈ Xu : A − t ∈ Xu}.

For t ∈ G, denote the map D(t) � A → A + t ∈ R(t) by Tt.
Let β be a real number. As we have already described the tracial states on C∗

c (P) in Proposition 2.1,
we assume for the rest of this section that β is an arbitrary, but a fixed non-zero real number. Let ω

be a β-KMS state on the C∗-algebra C∗
c (P) = C∗(Xu � P) for σ c. Restriction of ω to C(Xu) defines a

probability measure m on Xu. It can be checked from the covariance relation and the KMS condition
that

ω(f ) = e−βc(t)ω(f ◦ Tt),

for every f ∈ C(R(t)), or equivalently m(E + t) = e−βc(t)m(E) for every Borel subset E of D(t).
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For s, t ∈ G, we say s ≤ t if t − s ∈ P. Then, G with the preorder ≤ is a directed set. Note that P is a
cofinal subset of G. Moreover, if s ≤ t, then Xu − s ⊆ Xu − t. Let s ∈ G. Define a measure ms on Xu − s
by

ms(E) = eβc(s)m(E + s).

Thanks to the fact that m is conformal, it is clear that mt|Xu−s = ms for s ≤ t. Define a σ -finite measure
mω on Yu by setting

mω(E) := lim
s∈G

ms(E ∩ (Xu − s)) = lim
s∈P

ms(E ∩ (Xu − s)). (3.4)

Proposition 3.1. The measure mω on Yu defined as in Equation 3.4 is an e−βc-conformal measure on
the (G, P)-space (Yu, Xu).

Proof. It is clear that mω|Xu = m and so mω(Xu) = 1. For t ∈ G and a Borel subset E ⊂ Yu,

mω(E + t) = lim
s

ms((E + t) ∩ (Xu − s))

= lim
s

eβc(s)m(((E + t) ∩ (Xu − s)) + s)

= lim
s

eβc(s)m((E ∩ (Xu − (s + t))) + s + t)

= e−βc(t) lim
r

eβc(r)m((E ∩ (Xu − r)) + r) (by a change of variabler = s + t)

= e−βc(t) lim
r

mr(E ∩ (Xu − r))

= e−βc(t)mω(E).

Hence the proof.

Recall that for an étale groupoid G, the map f �→ f |G(0) from Cc(G) to C0(G (0)) defines a conditional
expectation E : C∗(G) → C0(G (0)). For G := Xu � P, the conditional expectation E has the following form

E(fws) :=
{

f if s = 0,

0 otherwise.

The next proposition is a direct consequence of Theorem 1.3 of [22]. Hence, we omit the proof.

Proposition 3.2. The map ω �→ mω from the set of β-KMS states for σ = σ c to the set of e−βc-conformal
measures on Yu is surjective. More specifically, for an e−βc-conformal m on Yu, the state ωm on
C∗(Xu � P) defined by

ωm(a) =
∫

Xu

E(a) dm

is a β-KMS state such that mωm = m.

Remark 3.1. In general, the map ω → mω of Proposition 3.1 need not be injective. The structure of a
generic KMS state is determined by Neshveyev’s result (Theorem 1.3 of [22]). Let G be an étale groupoid,
and let c : G →R be a continuous homomorphism. For t ∈R, let σt be the automorphism of C∗(G) defined
by

σt(f )(γ ) := eitc(γ )f (γ )

for f ∈ Cc(G). Then, σ c := {σt}t∈R defines a 1-parameter group of automorphisms on C∗(G). Theorem 1.3
of [22] describes the set of β-KMS states for σ c.
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In our situation, the groupoid G is the Deaconu-Renault groupoid Xu � P, and the homomorphism
c : G →R is given by

c(A, g) = −c(g).

One immediate corollary of Theorem 1.3 of [22] is that, if the homomorphism c : G →R is injective,
then the map ω → mω of Proposition 3.1 is a bijection.

Proposition 3.3. Let β 	= 0, and let ω be an extremal β-KMS state for σ = σ c on the C∗-algebra C∗(Xu �

P). Then, the e−βc-conformal measure mω on Yu defined as in Proposition 3.1 is ergodic for the G-action
on Yu.

Proof. The proof is an adaptation of the proof of Lemma 3.6 in [5] with appropriate modifications.
Assume that mω is not ergodic. Then, there exists a G-invariant Borel subset A ⊂ Yu such that neither A
nor Ac has measure zero. We claim that 0 < mω(A ∩ Xu) < 1 and 0 < mω(Ac ∩ Xu) < 1.

Suppose that mω(A ∩ Xu) = 0. By conformality, mω((A ∩ Xu) − t) = 0 for every t ∈ G. Hence,⋃
t∈G (A ∩ Xu) − t is a null set. The fact that A is G-invariant implies that⋃

t∈G

(A ∩ Xu) − t = A ∩ ( ⋃
t∈G

(Xu − t)
) = A.

Therefore, mω(A) = 0 which is a contradiction. This proves that mω(A ∩ Xu) 	= 0. Similarly, we can
prove that mω(Ac ∩ Xu) 	= 0. Consequently, 0 < mω(A ∩ Xu) < 1 and 0 < mω(Ac ∩ Xu) < 1. This proves
the claim.

Let (Hω, πω, �ω) be the GNS representation of ω. Extend the homomorphism πω|C(Xu) to a
∗- homomorphism πω : L∞(Xu, mω) → πω(C∗(Xu � P))′′ by defining

πω(h) := lim
n→∞

πω(fn)

Here, the limit is taken in the SOT sense and {fn} is any sequence in C(Xu) such that for every n, |fn| ≤
||h||∞ a.e and the sequence (fn(x)) → h(x) for almost all x.

For s ∈ G, set Ws = πω(ws). Then, the following covariance relation is satisfied

Wsπω(f )W∗
s = πω(Rs(f ))

for s ∈ G and f ∈ L∞(Xu, mω).
Next, we claim that πω(1A∩Xu ) and πω(1Ac∩Xu ) are central in πω(C∗(Xu � P))′′. We will give details for

πω(1A∩Xu ) and the centrality of πω(1Ac∩Xu ) follows similarly. Let s ∈ P be given. Note that R−s(1A∩Xu ) =
1(A−s)∩(Xu−s)∩Xu = 1A∩Xu and πω(f ) commutes with WsW∗

s for every f ∈ L∞(Xu, mω).
Calculate as follows to observe that

πω(1A∩Xu )Ws = πω(1A∩Xu )WsW
∗
s Ws

= WsW
∗
s πω(1A∩Xu )Ws

= Wsπω(R−s(1A∩Xu ))

= Wsπω(1A∩Xu ).

Since {Ws : s ∈ P} generates (πω(C∗(Xu � P))′′, we can conclude that πω(1A ∩ Xu) is central. This proves
the claim.

Define states ω1 and ω2 on C∗(Xu � P) by

ω1(a) = 1

mω(A ∩ Xu)
〈πω(1A∩Xu )πω(a)�ω, �ω〉,

ω2(a) = 1

mω(Ac ∩ Xu)
〈πω(1Ac∩Xu )πω(a)�ω, �ω〉.
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The centrality of the projections πω(1A∩Xu ) and πω(1Ac∩Xu ) imply that ω1 and ω2 are β-KMS states
on C∗(Xu � P). Moreover, ω = mω(A ∩ Xu)ω1 + mω(Ac ∩ Xu)ω2 which contradicts the extremality of ω.
Hence the proof.

Next, we work out the GNS representation of the KMS state ωm given by Proposition 3.2. Suppose m is
an e−βc conformal measure on Yu, and let ωm be the β-KMS state on the C∗-algebra C∗

c (P) = C∗(Xu � P)
obtained via the conditional expectation as in Proposition 3.2. Our goal is to show that if (Hω, πω, �ω)
is the GNS representation of ωm, then the von Neumann algebra (πω(C∗(Xu � P)))′′ is isomorphic to the
full corner 1Xu (L∞(Yu) � G)1Xu of L∞(Yu) � G.

Let λ := {λs}s∈G be the Koopman representation of G on L2(Yu, m). Recall that

λsξ (A) = e
βc(s)

2 ξ (A − s),

for s ∈ G and ξ ∈ L2(Yu, m).
Let K = l2(G, L2(Yu)) and π0 be the representation of C0(Yu) � G on K defined by

π0(fut)(ξ )(s) = f λt(ξ (s − t)).

Then, (π0(C0(Yu) � G))′′ = L∞(Yu) � G. Let H be the Hilbert subspace of K given by

H := {ξ ∈ l2(G, L2(Yu)) : ξ (t) ∈ L2(Xu + t)}.
It is clear that L∞(Yu) � G leaves H invariant, thus giving a normal representation π of the crossed
product L∞(Yu) � G on H. Let π = π ◦ π0.

Notation: For s ∈ G and ξ ∈ L2(Xu + s), let ξ ⊗ δs ∈H be defined by

ξ ⊗ δs(t) =
{

ξ if t = s,

0 otherwise.

Lemma 3.1. The von Neumann algebra (π (C0(Yu) � G))′′ is isomorphic to L∞(Yu) � G.

Proof. Note that since π = π ◦ π0 and the von Neumann algebra generated by π0(C0(Yu) � G) is
L∞(Yu) � G, to complete the proof, it is enough to prove that π is injective.

First, we claim that π restricted to L∞(Yu) is injective. Let f ∈ L∞(Yu) be such that π(f ) = 0. Suppose
s ∈ G. Then, for every ξ ∈ L2(Xu + s),

0 = π (f )(ξ ⊗ δs)(s) = f ξ .

Thus, f = 0 a.e on Xu + s for every s ∈ G. Since Yu = ⋃
s∈G Xu + s, it follows that f = 0 a.e on Yu proving

that π is faithful on L∞(Yu).
Let E be the usual conditional expectation from L∞(Yu) � G → L∞(Yu) given by E(fus) = δs,0f .

Here, δs,0 is the Kronecker delta. Then, the conditional expectation E is faithful. Decompose H as
H=

⊕
t∈G

L2(Xu + t), and for t ∈ G, let Pt be the projection onto the subspace L2(Xu + t). Define a map

Ẽ : B(H) → B(H) by

Ẽ(T) =
∑
t∈G

PtTPt,

where the convergent sum is w.r.t. the strong operator topology. Clearly, Ẽ ◦ π = π ◦ E.
Let x ∈ L∞(Yu) � G be such that π (x) = 0. Then, π (x∗x) = 0. Therefore,

π (E(x∗x)) = Ẽ(π (x∗x)) = 0.

Since π is faithful on L∞(Yu), we have E(x∗x) = 0. Since E is faithful, x = 0. This completes the
proof.
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Recall that C∗(Xu � P) is the full corner p(C0(Yu) � G)p where p = 1Xu . Consider the Hilbert space

PH= {ξ ∈ l2(G, L2(Yu)) : ξ (t) ∈ L2(Xu ∩ (Xu + t))}

where P = π (p). Define π̃ : C∗(Xu � P) → B(PH) by π̃ (fwt) = Pπ (f̃ ut)P where f̃ = f 1Xu . Define ξ ∈ PH
by,

ξ (t) =
{

1Xu if t = 0,

0 otherwise.

Lemma 3.2. With the foregoing notation, the triple (π̃ , PH, ξ ) is the GNS representation of the β-
KMS state ωm. Moreover, the von Neumann algebra π̃ (C∗(Xu � P))′′ is isomorphic to the full corner
1Xu (L∞(Yu) � G)1Xu .

Proof. Observe that, for f ∈ C(Xu), and s, t ∈ G,

π̃ (fwt)ξ (s) = Pπ (f̃ ut)Pξ (s)

= π (1Xu f̃ ut)ξ (s)

= 1Xu f̃λt(ξ (s − t))

= δs,t1Xu f λt(ξ (0))

= e
βc(s)

2 δs,t1Xu f 1Xu+s

From the above formula, it is clear that 〈π̃ (a)ξ , ξ 〉 = ωm(a) for every a ∈ C∗(Xu � P). Also,
span{π̃ (fwt)ξ : f ∈ C(Xu), t ∈ G} = span{η ⊗ δs : η ∈ C(Xu ∩ (Xu + s)), s ∈ G}, and the latter set is dense
in PH proving that ξ is cyclic for π̃ . Thus, (π̃ , PH, ξ ) is the GNS representation of the β-KMS state ωm.

From the definition of π̃ , we have

(π̃(C∗(Xu � P)))′′ = (Pπ (C0(Yu) � G)P)′′ = P(π (C0(Yu) � G))′′P.

The conclusion is now clear from Lemma 3.1.

We have the following main theorem of this section establishing the factor types of extremal β-KMS
states ωm.

Theorem 3.1. Suppose m is an e−βc-conformal measure on Yu. Let ω := ωm be the β-KMS state as in
Proposition 3.2. Denote the GNS representation of ω by πω. Suppose t ∈ {I∞, II∞, III}. Then,

(1) (πω(C∗(Xu � P)))′′ is isomorphic to the full corner 1Xu (L∞(Yu) � G)1Xu .
(2) ωm is extremal ⇐⇒ L∞(Yu) � G is a factor ⇐⇒ m is ergodic and the G-action is essentially

free. Moreover, ωm is of type t if and only if m is of type t.

Proof. The first equivalence in (2) follows from Lemma 3.2 and the following facts. It is well known
that

(i) a β-KMS state ω is extremal if and only if its GNS representation πω is factorial, and
(ii) a full corner pMp is a factor of type t if and only if M is a factor of type t.

Other conclusions are standard.

A few remarks are in order.
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Remark 3.2. Let β be a non-zero real number.

(1) Let ω be a β-KMS state. Let m := mω be the e−βc-conformal measure on Yu associated with ω

as in Proposition 3.1. Then, m is concentrated on Yu := Yu\{G}. Note that, for every s ∈ G,

m({G}) = m({G} + s) = e−βc(s)m({G}).
Since {G} is of finite measure (as {G} ⊂ Xu) and βc is a non-zero homomorphism, we have
m({G}) = 0.

(2) Suppose ω is a β-KMS state on A := C∗
c (P). Assume that ω is extremal, and denote the GNS

representation of A associated with ω by πω. Denote the associated cyclic vector by �ω. Then,
the factor M := πω(A)′′ is neither of type In for n finite nor of type II1. To see this, let m be
the e−βc-conformal measure on Yu associated with ω. Pick a ∈ P such that c(a) 	= 0. Note that
πω(ea) = πω(1Xu+a). Here ea = vav∗

a. Then,

〈πω(1 − ea)�ω|�ω〉 = 1 − m(Xu + a) = 1 − e−βc(a) 	= 0.

This implies that πω(1 − ea) 	= 0. Thus, πω(ea) is a proper subprojection of 1 which is Murray
von Neumann equivalent to 1 in M. Hence the conclusion.

In the next proposition, we work out the extremal β-KMS states whose associated measure is
supported on an orbit.

Proposition 3.4.

(1) Let m be an e−βc-conformal measure on Yu supported on an orbit Orb(A) for some A. Denote
the of A by H, i.e.

H := {s ∈ G : A + s = A}.
Let χ be a character of H. Define a state ωχ ,m on C∗

c (P) by

ωχ ,m(fws) :=
⎧⎨⎩0 if s /∈ H

χ (s)
∫

Xu

f (A)dm(A) if s ∈ H.

Then, ωχ ,m is an extremal β-KMS state on C∗
c (P). Moreover, ωχ ,m is of type I.

(2) Let ω be an extremal β-KMS state on C∗
c (P), and let m be the e−βc-conformal measure on Yu

associated with ω. Suppose that m is atomic and concentrated on Orb(A) for some A ∈ Yu. Let
H be the stabiliser of A. Then, ω is of the form ωχ ,m for some character χ of H.

Proof. The only thing that requires proof is that ωχ ,m is of type I. Other assertions follow from
Corollary 1.4 of [22]. Let m be an e−βc-conformal measure on Yu supported on an orbit Orb(A) for
some A and denote the of A by H. Let χ be a character of H, and let ω := ωχ ,m. Let πω be the GNS
representation of ωχ ,m. To prove that ωχ ,m is extremal of type I, it suffices to show that the von Neumann
algebra πω(C∗(Xu � P))′′ is a factor of type I. The proof is similar to the proof of Theorem 3.1.

By the conformality of m, for a Borel set E ⊂ Orb(A) with m(E) > 0 and t ∈ H, we have

m(E) = m(E + t) = e−βc(t)m(E),

implying that c(t) = 0. Thus, H ⊂ c−1(0). Let λ = {λt}t∈G be the Koopman representation of G on L2(Yu).
Note that since Yu = Orb(A) upto a null set, L2(Yu) = L2(Orb(A)) and we can conclude that λt = λs,
whenever t − s ∈ H. Extend the character χ of H to a character of G which we denote again by χ .

Let K be the Hilbert space defined by K = l2(G/H, L2(Yu)), and let π0 be the representation of
C0(Yu) � G on K given by

π0(fut)(ξ )(s) = χ (t)f λt(ξ (s − t)).

https://doi.org/10.1017/S0017089523000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000071


512 Anbu Arjunan et al.

Clearly, π0(C0(Yu) � G)′′ = L∞(Yu) � G/H. Let H be the Hilbert subspace of K given by

H := {ξ ∈ l2(G/H, L2(Yu)) : ξ (t) ∈ L2(Xu + t)}.
We have s = t implies Xu + s = Xu + t upto a null set, and hence, the definition of H makes sense.
Since L∞(Yu) � G/H leaves H invariant, we get a representation π : L∞(Yu) � G/H → B(H). Define
π = π ◦ π0. Consider the Hilbert space PH where P = π (1Xu ). Let ξ ∈ PH be given by,

ξ (t) =
{

1Xu if t = 0,

0 otherwise .

Let π̃ : C∗(Xu � P) → B(PH) be defined by π̃ (fwt) = Pπ (f̃ ut)P where f̃ = f 1Xu .
Arguing as before, we can conclude the following.

1. The map π is injective, and hence, the von Neumann algebra π (C0(Yu) � G)′′ is isomorphic to
L∞(Yu) � G/H.

2. The triple (π̃ , PH, ξ ) is the GNS representation of ωχ ,m.
3. The von Neumann algebra generated by π̃(C∗(Xu � P)) is isomorphic to the full corner

1Xu (L∞(Yu) � G/H)1Xu .

Thus, πω(C∗(Xu � P))′′ is isomorphic to the full corner 1Xu (L∞(Yu) � G/H)1Xu which is clearly a factor
of type I (as the measure m is atomic). This completes the proof.

We end this section with a proposition that allows us to construct conformal measures on the (G, P)-
space (Yu, Xu), and consequently, KMS states on C∗

c (P) of the desired type. Let (Y , X) be a pure (G, P)-
space. For y ∈ Y , let

Qy := {s ∈ G : y − s ∈ X}.
First, let us check that for y ∈ Y , Qy ∈ Yu. Fix y ∈ Y .

(1) Since, Y =
⋃
a∈P

(X − a), it follows that there exists a ∈ P such that y ∈ X − a. Then, −a ∈ Qy.

Thus, Qy is non-empty.
(2) As the intersection

⋂
a∈P

(X + a) = ∅, it follows that there exists a ∈ P such that y /∈ X + a. Then,

a /∈ Qy for such an element a. Hence, Qy is a proper subset of G.
(3) The fact that X + P ⊂ X implies that −P + Qy ⊂ Qy.

Proposition 3.5. Let (Y , X) be a pure (G, P)-space, and let m be an e−βc-conformal measure on Y .
Denote the map

Y � y → Qy ∈ Yu,

by T . Assume that T is 1-1. Then, we have the following.

(1) The map T is G-equivariant, measurable, and T−1(Xu) = X.
(2) The push-forward measure T∗m := m ◦ T−1 is an e−βc-conformal measure on the pure (G, P)-

space (Yu, Xu). Moreover, (Y , X, m) and (Yu, Xu, T∗m) are metrically isomorphic.

Consequently, for t ∈ {I, II, III}, (Y , m, G) is essentially free, ergodic and is of type t if and only if
(Yu, T∗m, G) is essentially free, ergodic and is of type t.

Proof. Let y ∈ Y and s ∈ G be given. Note that for t ∈ G, t ∈ Qy+s iff y + s − t ∈ X iff y − (t − s) ∈ X
iff t − s ∈ Qy iff t ∈ Qy + s. Thus, Qy+s = Qy + s. This shows that T is G-equivariant. To show that T is
measurable, it suffices to show that for every s ∈ G, the map

Y � y → 1Qy (s) ∈ {0, 1}
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is measurable. Fix s ∈ G. Clearly, for every y ∈ Y ,

1Qy (s) = 1X+s(y).

Since X + s is a measurable subset of Y , it follows that the map

Y � y → 1Qy (s) ∈ {0, 1},
is measurable. Hence, T is a measurable map. Note that for y ∈ Y , y ∈ T−1(Xu) if and only if 0 ∈ Qy if
and only if y ∈ X. Thus, T−1(Xu) = X. This completes the proof of (1).

Since T−1(Xu) = X, and m(X) = 1, it follows that T∗m(Xu) = 1. Let E be a Borel subset of Yu, and
let s ∈ G be given. Thanks to the equivariance of T , we have T−1(E + s) = T−1(E) + s. Since m is e−βc-
conformal,

T∗m(E + s) = m(T−1(E + s)) = m(T−1(E) + s) = e−βc(s)m(T−1(E)) = e−βc(s)T∗m(E).

Therefore, T∗m is an e−βc-conformal measure on (Yu, Xu).
Set Y ′

u := T(Y), and X′
u := Y ′

u ∩ Xu. Since T is one-one, and Y and Yu are standard Borel spaces, Y ′
u is

a Borel subset of Yu, and the map T : Y → Y ′
u is a Borel isomorphism. Also, T(X) = X′

u. Observe that T∗m
is supported on Y ′

u. Thus, T is an isomorphism between (Y , X, m) and (Y ′
u, X′

u, T∗m). Since Y ′
u is a co-null

G-invariant subset of Yu, (Y ′
u, X′

u, T∗m) and (Yu, Xu, T∗m) are metrically isomorphic. Hence, (Y , X, m) and
(Yu, Xu, T∗m) are metrically isomorphic. This completes the proof of (2).

The final assertion is clear as metric isomorphism preserves essential freeness, ergodicity
and type.

4. The case P =N2

In this section, we discuss the structure of KMS states on C∗
c (P) for σ c when P =N2. Let us fix nota-

tion. Set e1 := (1, 0) and e2 := (0, 1). Define v1 := e1 and v2 := e1 + e2. Let c : Z2 →R be a non-zero
homomorphism. We normalise and assume that c(e1) = 1 and c(e2) = θ . This does not lead to any loss
of generality. In what follows, the homomorphism c will be fixed.

First, we obtain a reasonable parametrisation of Yu. Let � := {0, 1}Z be the Cantor space. Consider
the Bernoulli shift τ : � → � defined by

τ (x)k := xk−1.

Define a Z2-action on � ×Z by the following formulae.(
x, t

) + v1 = (
τ (x), t + x−1

)
, and(

x, t
) + v2 = (

x, t + 1
)
.

For (x, t) ∈ � ×Z, define a(x, t) := a = (am)m∈Z as follows.

a(x, t)m := am =

⎧⎪⎨⎪⎩
t − (x0 + x1 + · · · + xm−1) if m > 0,

t if m = 0 ,

t + (x−1 + x−2 + · · · + xm) if m < 0.

(4.5)

Note that am − am+1 = xm. Let A(x, t) be defined by

A(x, t) := {mv1 + nv2 : n ≤ am}.
It is not difficult to verify that −e1 + A(x, t) ⊂ A(x, t) and −e2 + A(x, t) ⊂ A(x, t). In other words, A(x, t) ∈
Yu for every (x, t) ∈ � ×Z.

Lemma 4.1. Let (x(k), t(k)) be a sequence in � ×Z, and let (x, t) ∈ � ×Z. For m ∈Z and for k ∈N,
set a(k)

m := a(x(k), t(k))m and am := a(x, t)m. Let Ak := A(x(k), t(k)), and A := A(x, t). Then, the following are
equivalent.

https://doi.org/10.1017/S0017089523000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000071


514 Anbu Arjunan et al.

(1) As k → ∞, (x(k), t(k)) → (x, t).
(2) For every m, a(k)

m → am as k → ∞.
(3) The sequence (Ak)k → A.

Proof. It is clear from equation (4.5) that (1) and (2) are equivalent. Suppose that (2) holds. Let m, n ∈
Z. Suppose 1A(mv1 + nv2) = 1. Then, n ≤ am. Since a(k)

m → am, it follows that eventually a(k)
m = am. Thus,

for large k, n ≤ a(k)
m , i.e. for large k, 1Ak (mv1 + nv2) = 1. If 1A(mv1 + nv2) = 0. By the same argument,

we can conclude that for large k, 1Ak (mv1 + nv2) = 0. Thus, 1Ak (mv1 + nv2) → 1A(mv1 + nv2) for every
m, n ∈Z. Hence, (Ak)k → A. This completes the proof of the implication (2) =⇒ (3).

Assume that (3) holds. Let m ∈Z be given. Note that 1A(mv1 + amv2) = 1. Since (Ak)k → A, it follows
that for large k, 1Ak (mv1 + amv2) = 1. In other words, for large k, am ≤ a(k)

m . Also, note that 1A(mv1 +
(am + 1)v2) = 0. Since (Ak)k → A, it follows that for large k, 1Ak (mv1 + (am + 1)v2) = 0, i.e. for large
k, am + 1 > a(k)

m . Thus, eventually am ≤ a(k)
m < am + 1, i.e. eventually a(k)

m = am. Hence, for every m ∈Z,
a(k)

m → am as k → ∞. This completes the proof of the implication (3) =⇒ (2).

Proposition 4.1. With the foregoing notation, the map

� ×Z � (x, t) �→ A(x, t) ∈ Yu

is a Z2-equivariant homeomorphism.

Proof. First, we check that the prescribed map is Z2-equivariant. Let (x, t) ∈ � ×Z be given. By
definition, for m, n ∈Z, mv1 + nv2 ∈ A(x, t) + v1 if and only if n ≤ a(x, t)m−1. Thus,

A(x, t) + v1 = {mv1 + nv2 : n ≤ a(x, t)m−1}.
From equation (4.5), it is clear that a(τ (x), t + x−1)m = a(x, t)m−1. Thus, A(x, t) + v1 = A(τ (x), t + x−1).

For m, n ∈Z, mv1 + nv2 ∈ A(x, t) + v2 if and only if n ≤ a(x, t)m + 1. Thus,

A(x, t) + v2 = {mv1 + nv2 : n ≤ a(x, t)m + 1}.
From equation (4.5), it is clear that a(x, t)m + 1 = a(x, t + 1)m. Therefore, A(x, t) + v2 = A(x, t + 1). As a
consequence, A(x, t) + v1 = A(τ (x), t + x−1) and A(x, t) + v2 = A(x, t + 1). Since {v1, v2} is a Z-basis for
Z2, it follows that the map

� ×Z � (x, t) �→ A(x, t) ∈ Yu

is Z2-equivariant.
Let (x, t), (y, s) ∈ � ×Z be given. Suppose A(x, t) = A(y, s). Then,

{mv1 + nv2 : n ≤ a(x, t)m} = {mv1 + nv2 : n ≤ a(y, s)m}.
The above equality clearly implies that a(x, t)m = a(y, s)m for every m. It follows from equation (4.5) that
x = y and t = s. Thus, the map � ×Z � (x, t) �→ A(x, t) ∈ Yu is 1-1.

We now show that it is onto. Let A ∈ Yu be given. By translating, if necessary, we can assume that
0 ∈ A which implies that −N2 ⊂ A.

Let m ∈Z be given. We claim that the set {k ∈Z : mv1 + kv2 ∈ A} is non-empty and bounded above.
Choose k0 < 0 such that m + k0 < 0. Then, we have

mv1 + k0v2 = (m + k0)e1 + k0e2 ∈ −N2 ⊆ A.

Hence, the set {k ∈Z : mv1 + kv2 ∈ A} is non-empty. Suppose {k ∈Z : mv1 + kv2 ∈ A} is not bounded
above. Then, for every k ∈N, there exists a natural number nk ≥ k such that mv1 + nkv2 ∈ A. Since A −
N2 ⊂ A, we have mv1 + (nk − �)v2 ∈ A for every � ∈N and for every k ∈N. This means that, for every
n ∈Z, mv1 + nv2 ∈ A. Again for any k, � ∈N and n ∈Z, we have

(m + n − k)e1 + (n − �)e2 = mv1 + nv2 − ke1 − �e2 ∈ A −N2 ⊂ A.
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This implies that A =Z2 which contradicts the fact that A ∈ Yu. Hence, {k ∈Z : mv1 + kv2 ∈ A} is
bounded above. The proof of the claim is now complete.

For m ∈Z, define

am := max{k ∈Z : mv1 + kv2 ∈ A}.
Then, am is an integer. Let Aa = {mv1 + nv2 : n ≤ am}. We claim that A = Aa and for every m ∈Z, 0 ≤
am − am+1 ≤ 1.

Clearly, A ⊂ Aa. Suppose mv1 + nv2 ∈ Aa. By the definition of am, mv1 + amv2 ∈ A. Note that

mv1 + nv2 = mv1 + amv2 + (n − am)(e1 + e2) ∈ A −N2 ⊆ A.

Hence, Aa ⊆ A. Therefore, A = Aa.
Let mv1 + nv2 ∈ Aa be given. Since Aa −N2 ⊂ Aa, we have mv1 + nv2 − ke1 − �e2 ∈ Aa, for every k, l ≥

0. Therefore, whenever mv1 + nv2 ∈ Aa, we have am−k+� ≥ n − �. In particular, when n = am, k = 1 and
� = 0, we have am−1 ≥ am, and when n = am, k = 0 and � = 1, we have am+1 ≥ am − 1. Thus, 0 ≤ am −
am+1 ≤ 1 for every m ∈Z. The proof of the claim is now over.

Define x ∈ � by setting xm := am − am+1 and let t := a0. Clearly, for every m, am = a(x, t)m. Therefore,
Aa = A(x, t). Consequently, A = A(x, t). This proves the surjectivity of the map

� ×Z � (x, t) → A(x, t) ∈ Yu.

The fact that the map � ×Z � (x, t) → A(x, t) ∈ Yu is a homeomorphism follows from Lemma 4.1. This
completes the proof.

Remark 4.1. For A ∈ Yu, let GA be the stabiliser of A, i.e.

GA := {(m, n) ∈Z2 : A + (m, n) = A}.
Let (x, t) ∈ � ×Z, and let A := A(x, t) ∈ Yu be the set defined as in Proposition 4.1. Then, GA 	= 0 if and
only if x is a periodic point, i.e. there exists p > 0 such that xm+p = xm for all m ∈Z. Moreover, there are
only countably many periodic points in �. This has the consequence that the groupoid G := Xu �N2

(and also the transformation groupoid Yu �Z2) has only countably many points in its unit space whose
stabiliser is non-trivial.

We identify Yu with � ×Z via the map prescribed in Proposition 4.1. After an abuse of notation,
we write Yu = � ×Z. Then, Xu = � ×N. Let m be a probability measure on �. Define a measure m on
� ×Z by setting

m(E × {n}) = (1 − e−β(1+θ))e−β(1+θ)nm(E)

for a measurable subset E ⊂ �.
Define χ :� →R by

χ (x) :=
{

1 if x−1 = 0,

−θ if x−1 = 1.

Let β be a real number, and let m be a probability measure on �. The probability measure m is said to
be e−βχ -conformal for the Bernoulli shift τ if for every Borel subset E ⊂ �,

m(τ (E)) =
∫

E

e−βχdm.

Proposition 4.2. Suppose β(θ + 1) > 0. Then, the map m → m defines a bijection between the set of
e−βχ -conformal measures on � and the set of e−βc-conformal measures on the (Z2, N2)-space (Yu, Xu) =
(� ×Z, � ×N).
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Proof. The proof is not difficult. We have included some details for completeness. Suppose that m
is an e−βχ -conformal measure on �. Clearly, m(Xu) = 1. Let F ⊂ � be a Borel subset and let n ∈Z be
given. It suffices to show that

m((F × {n}) + v1) = e−βm(F × {n}), and
m((F × {n}) + v2) = e−β(1+θ)m(F × {n}).

Define F0 := {x ∈ F : x−1 = 0} and F1 := {x ∈ F : x−1 = 1}. Calculate as follows to observe that
1

1 − e−β(1+θ)
m((F × {n}) + v1) = 1

1 − e−β(1+θ)

(
m(τ (F0) × {n}) + m(τ (F1) × {n + 1})

)
= e−βn(1+θ)m(τ (F0)) + e−β(n+1)(1+θ)m(τ (F1))

= e−βn(1+θ)e−βm(F0) + e−β(n+1)(1+θ)eβθm(F1)

= e−βn(1+θ)e−β
(
m(F0) + m(F1)

)
= e−β

1

1 − e−β(1+θ)
m(F × {n}).

Similarly, we can prove that m((F × {n}) + v2) = e−β(1+θ)m(F × {n}). Hence, m is an e−βc-conformal
measure on (� ×Z, � ×N).

Conversely, suppose μ is an e−βc-conformal measure on (Yu, Xu). Define a measure m on � by

m(E) = 1

1 − e−β(1+θ)
μ(E × {0}),

for a Borel subset E ⊂ �. Note that for a Borel set E ⊂ �, E × {n} = (E × {0}) + nv2. Using the
conformality condition on μ and the fact that E × {n} = (E × {0}) + nv2, it is routine to see that m = μ.

Let F ⊂ � be measurable. Set F0 := {x ∈ F : x−1 = 0} and F1 := {x ∈ F : x−1 = 1}. Thanks, to the
conformality condition on μ and the calculation done earlier, it follows that the equality

μ((F × {0}) + v1) = e−βμ(F × {0}),
is equivalent to the equality

m(τ (F0)) + e−β(1+θ)m(τ (F1)) = e−β
(
m(F0) + m(F1)

) = e−βm(F).

In other words, for every Borel subset F ⊂ �,

m(F) =
∫

τ (F)

eβ(χ◦τ−1)dm.

Hence, d(m◦τ )
dm

= e−βχ , i.e. m is e−βχ -conformal. The fact that the map m → m is a bijection is clear.

Remark 4.2. Note that for the existence of an e−βc-conformal measure on (Yu, Xu), it is necessary that
β(1 + θ ) > 0. This is because, if m is an e−βc-conformal measure on Yu, then

1 = m(Xu) =
∞∑

n=0

m(� × {n}) =
∞∑

n=0

m((� × {0}) + nv2) =
∞∑

n=0

e−β(1+θ)nm(� × {0}).

Hence, the condition β(1 + θ ) > 0 is necessary.
The bijection m → m of Proposition 4.2 preserves essential freeness, ergodicity and type. Thus,

(�, τ , m) is essentially free if and only if (Yu, Z2, m) is essentially free. Similarly, (�, τ , m) is ergodic
and is of type t if and only if (Yu, Z2, m) is ergodic and is of type t. Here, t ∈ {I, II, III}.

We are now in a position to determine the values of β and θ for which there is a β-KMS state on
C∗

c (N2) for σ c := {σt}t∈R. Recall that the flow σ c := {σt}t∈R on C∗
c (N2) is defined by

σt(v(m,n)) = ei(m+nθ)tv(m,n).
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Proposition 4.3. Suppose β is a non-zero real number. The following are equivalent.

(1) There is a β-KMS state on C∗
c (N2) for σ c.

(2) There is an e−βc-conformal measure on (Yu, Xu).
(3) There is an e−βχ -conformal measure on � and β(1 + θ ) > 0.
(4) β > 0 and θ ≥ 0.

Proof. The equivalence between (1), (2) and (3) follow from Propositions 3.2, 4.2 and Remark 4.2.
We prove the equivalence between (3) and (4). Assume that (3) holds. Let m be an e−βχ -conformal
measure on �. Suppose θ < 0. Then, the potential βχ is strictly negative or strictly positive. Suppose
βχ is strictly positive. Then, there exists a real number a > 0 such that βχ > a. Note that

1 = m(τ (�)) =
∫

�

e−βχdm ≤ e−a < 1.

This is a contradiction. A similar contradiction will be met if βχ is strictly negative. Therefore, θ ≥ 0.
(A direct application of Theorem 6.2 of [5] could also have been made instead). The condition
β(1 + θ ) > 0 implies that β > 0. This completes the proof of (3) =⇒ (4).

Assume now that β > 0 and θ ≥ 0. Let us fix some notation. For n ∈Z, define Sn(χ ) by setting

Sn(χ )(x) :=

⎧⎪⎨⎪⎩
∑n−1

j=0 χ ◦ τ j(x) if n ≥ 1,

0 if n = 0

− ∑|n|
j=1 χ ◦ τ−j(x) if n ≤ −1.

Note that if n ≤ −1, then Sn(χ )(x) = −|n| + (1 + θ )(x0 + x1 + · · · + x|n|−1), and if n ≥ 1, we have
Sn(χ )(x) = n − (1 + θ )(x−1 + x−2 + · · · + x−n).

We apply Lemma 4.3 of [5] which states the following. Let x ∈ � be given. If x is periodic of period
p > 0, then there is an e−βχ -conformal measure on � concentrated on the orbit of x iff Sp(χ )(x) = 0. If
x is not periodic, then there is an e−βχ -conformal measure concentrated on the orbit of x if and only if∑
n∈Z

e−βSn(χ )(x) < ∞.

Case 1: Suppose θ = 0. Let x ∈ � be such that xm = 1 for every m ∈Z. Clearly, x is periodic of period
1, and S1(χ )(x) = 0. Therefore, there is an e−βχ -conformal measure supported on the orbit of x.

Case 2: Suppose θ > 0. We exhibit uncountably many non-periodic points x for which the series∑
n∈Z

e−βSn(χ )(x) converges. Let � be a positive integer such that � > 1 + θ . Suppose S ⊂ �N. Denote the

indicator function of S by 1S. Define x ∈ � by setting

xm :=
{

1 if m ≥ 0

1S(−m) if m < 0

Note that Sn(χ )(x) = |n|θ if n ≤ −1. Therefore, the series
∑∞

n≤−1 e−βSn(χ )(x) is convergent.
For n ≥ 1, observe that since x−1 + x−2 + · · · + x−n = |S ∩ {1, 2, · · · , n}| ≤ n

�
,

Sn(χ )(x) = n − (1 + θ )(x−1 + x−2 + · · · + x−n) ≥ n(1 − 1 + θ

�
).

Thus, e−βSn(χ )(x) ≤ e−βn(1− 1+θ
�

). Consequently, the series
∑∞

n≥1 e−βSn(χ )(x) converges. Thanks to Lemma 4.9
of [5], there is an e−βχ -conformal measure supported on the orbit of x. The proof is complete.
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We discuss the structure of KMS states in more detail now. Assume hereafter that β is an arbitrary
positive real number.

The case θ = 0: Assume that θ = 0. Denote the element in {0, 1}Z whose every entry is 1 by 1. Suppose
that m is an e−βχ -conformal measure on �. We claim that m is concentrated on 1. We claim that
m({x : x−1 = 0}) = 0. Suppose m({x : x−1 = 0}) > 0. Then, by conformality, we have

1 = m(τ (�))

=
∫

e−βχdm

= e−βm({x : x−1 = 0}) + m({x : x−1 = 1})
< m({x : x−1 = 0}) + m({x : x−1 = 1}) = 1

which is a contradiction.
Therefore, for almost all x, x−1 = 1. Since m is quasi-invariant for the Bernoulli shift τ , we have, for

every k, xk = 1 for almost all x. Hence, x = 1 for almost all x. This proves the claim.
Let ω be a β-KMS state on C∗

c (N2). Thanks to Propositions 4.1 and 4.2 and by what we have proved
now, its associated e−βc-conformal measure mω is supported on Orb(A(1, 0)). Note that

A := A(1, 0) = {(m, n) : m ≤ 0}
whose stabiliser GA = {0} ×Z= c−1({0}). Appealing to Corollary 1.4 of [22], we see that there exists a
state φ on C∗(GA), or equivalently a probability measure μ on T such that

ω(fw(m,n)) = δm,0

( ∫
zndμ(z)

)
(1 − e−β)

∞∑
k=0

e−βkf (A(1, k)). (4.6)

Conversely, given a probability measure μ on T, if we define ω as in equation (4.6), then ω will be a
β-KMS state. Thus, when θ = 0, the simplex of β-KMS states for σ c is homeomorphic to the simplex
of probability measures on the circle.

Hereafter, we assume that β > 0 and θ > 0. We summarise the structure of extremal β-KMS states
on C∗

c (N2), that result from our discussions so far, as follows.

(1) Suppose ω is an extremal β-KMS state on C∗
c (N2). Denote the associated conformal measure

on Yu by m, and let m be the corresponding e−βχ -conformal measure on � obtained via the map
in Proposition 4.2. Then, thanks to Proposition 3.3, m is ergodic. Suppose that m is atomic and
m is concentrated on Orbit(x) for some x ∈ {0, 1}Z. Set A := A(x, 0). Thanks to Proposition 3.4,
if the stabiliser GA = {0}, then ω = ωm. If GA 	= {0}, then ω is as in Proposition 3.4. In both
cases, ω is of type I. If m is non-atomic, then ω = ωm where ωm is the state corresponding to
m obtained via the conditional expectation. This follows by applying Corollary 1.2 of [22] and
by Remark 4.1. In this case, ω is of type II or III depending upon whether m (or equivalently
m) is of type II or of type III.

(2) Conversely, suppose m is an ergodic e−βχ -conformal measure on �. Let m be the corresponding
e−βc-conformal measure on Yu given by Proposition 4.2. If m is non-atomic, then ωm is an
extremal β-KMS state and its type is the same as that of m. To see that ωm is extremal, it
suffices to show that the GNS representation is factorial. Thanks to Theorem 3.1, it suffices to
prove that the Z2-action on Yu is essentially free.
Let (m, n) 	= (0, 0) be given. Then, by Remark 4.1, the set

{A ∈ Yu : A + (m, n) = A},
is countable. As m is non-atomic, it follows that {A ∈ Yu : A + (m, n) = A}, which is countable,
is a set of measure zero. Thus, the Z2-action on Yu is essentially free.
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Suppose m is atomic and m is concentrated on Orbit(A) for some A ∈ Yu. From Proposition 3.4,
if the stabiliser GA = {0}, then ωm is an extremal β-KMS state of type I. If GA 	= {0}, then ωχ ,m,
as defined in Proposition 3.4, is an extremal β-KMS state of type I.

(3) We have exhibited, in the proof of Proposition 4.3, uncountably many atomic probability mea-
sures on � that are e−βχ -conformal. Thus, there are uncountably many type I β-KMS states on
C∗

c (N2) for σ c.

We end this section by exhibiting a type II KMS state when θ is irrational and a type III KMS state
when θ = 1. We prove this by appealing to Proposition 3.5. Uncountably, many such examples for every
θ > 0 and for every β > 0 will be constructed in Section 5.

A type II example: Assume that θ ∈ (0, ∞) is irrational. Suppose β > 0. Let Y := R and X :=
[0, ∞). Define a Z2-action on Y by

t + e1 := t + 1; and t + e2 := t + θ .

Clearly, X +N2 ⊂ X. Also, (Y , X) is a pure (Z2, N2)-space. Since θ is irrational, the Z2-action on Y is
free. Let m be the measure on R such that dm = βe−βtdt. Then, m(X) = 1 and m is e−βc-conformal. As
Z+Zθ is a dense subgroup of R, the Z2-action on Y is ergodic. Clearly, it is of type II as m is absolutely
continuous w.r.t. the Lebesgue measure.

Observe that, for t ∈R,

Qt := {(m, n) ∈Z2 : t − (me1 + ne2) ∈ X} = {(m, n) ∈Z2 : t ≥ m + nθ}.
If t1 < t2, the density of Z+Zθ in R implies that there exists (m, n) ∈Z2 such that t1 < m + nθ < t2.
Then, (m, n) ∈ Qt2 but (m, n) /∈ Qt1 . Therefore, the map

Y � t → Qt ∈ Yu

is injective.
Applying Proposition 3.5, we get an extremal β-KMS state of type II when θ is irrational.

A type III example: Assume that θ = 1. We make use of Arnold’s dyadic adding machine to produce
a type III example in this situation. Let us recall the basics on adding machine from [1]. Let β > 0 be
fixed. Let p ∈ (0, 1

2
) be such that 1−p

p
= eβ .

Let

D :=
∞∏

n=1

{0, 1} := {(x1, x2, · · · , ) : xn ∈ {0, 1}}

be the group of dyadic integers. Let μ := ⊗∞
k=1μk be the product measure where the measure μk on {0, 1}

is given by

μk({0}) = 1 − p; μk({1}) = p.

We remove from D the null set of eventually constant sequences, and we denote the resulting set again
by D.

Denote the map on D that corresponds to addition by 1 by τ . Recall that

τ (1, 1, 1, · · · , 1, 0, ∗, ∗, · · · ) = (0, 0, 0, · · · , 0, 1, ∗, ∗, · · · ).

Define φ : D →Z by φ(x) := min{n ≥ 1 : xn = 0} − 2. Then,
d(μ ◦ τ )

dμ
= eβφ .

Let Y := D ×Z and X := D × {0, 1, 2, · · · }. Let μ be the measure on Y given by

dμ := (1 − e−β)e−βndμdn

where dn is the counting measure on Z.
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Define a Z2-action on Y by

(x, t) + e1 := (τ (x), φ(x) + t + 1); and (x, t) + e2 := (x, t + 1).

Since φ ≥ −1, it follows that X +N2 ⊂ X. Also, it is routine to verify that (Y , X) is a pure (Z2, N2)-
space and μ is an e−βc-conformal measure.

Lemma 4.2. Let x, y ∈D be such that x 	= y. Then, there exists an integer m such that φ(τm(x)) 	=
φ(τm(y)).

Proof. Let k be the least integer for which xk 	= yk. We can, without loss of generality, assume that xk =
0 and yk = 1. Let m := 2k−1 − 1 − (x1 + 2x2 + · · · + 2k−2xk−1). A calculation with ‘binary arithmetic’
shows that

τm(x) = ( 1, 1, · · · , 1︸ ︷︷ ︸
k−1

, 0, ∗, ∗, ∗, · · · )

τm(y) = ( 1, 1, 1, · · · 1︸ ︷︷ ︸
k−1

, 1, ∗, ∗, ∗, · · · ).

Thus, φ(τm(x)) = k − 2 < φ(τm(y)). The proof is complete.

Proposition 4.4. With the foregoing notation, we have the following.

(1) The Z2-action on Y is essentially free and ergodic.
(2) The measure μ is of type III.
(3) The map

Y � (x, t) → Q(x,t) ∈ Yu,

is injective.

Proof. The first two statements are straightforward consequences of Proposition 1.2.8 and Theorem
1.2.9 of [1]. We include a brief explanation.

Note that the e2-action on Y is by translation by 1 on the second coordinate. This forces that any Z2-
invariant subset of Y must be of the form E ×Z for some subset E of D. The fact that E ×Z is invariant
under the action of e1 implies that τ (E) = E. By Proposition 1.2.8 of [1], it follows that E is either null
or co-null. Hence, the Z2-action is ergodic. Using the fact that the action of τ on D is essentially free, it
is routine to check that the Z2-action is essentially free.

Suppose μ is not of type III. Let ν be a σ -finite measure that is absolutely continuous w.r.t. μ such
that ν is Z2-invariant. The invariance of ν under e2 implies that dν := dνdn for some σ -finite measure
ν on D which is absolutely w.r.t. μ. The invariance of ν under e1 implies that ν is τ -invariant which is
a contradiction to Theorem 1.2.9 of [1]. The proof of (1) and (2) is complete.

For m ∈Z and x ∈D, let c(m, x) ∈Z be defined by

c(m, x) :=

⎧⎪⎪⎨⎪⎪⎩
∑m−1

k=0 φ(τ k(x)) if m ≥ 1,

0 if m = 0,

− ∑|m|
k=1 φ(τ−kx) if m ≤ −1.

(4.7)

Let (x, s), (y, t) ∈ Y be such that Q(x,s) = Q(y,t). Notice that

Q(x,s) = {(m, n) ∈Z2 : (x, s) − (me1 + ne2) ∈ X} = {(m, n) ∈Z2 : n ≤ −m + c(−m, x) + s}.
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The equality Q(x,s) = Q(y,t) implies in particular that for every m ∈Z,

−m + c(−m, x) + s = −m + c(−m, y) + t.

Substituting, m = 0 in the above equality, we deduce that s = t. The fact that c(−m, x) = c(−m, y) for
every m ∈Z implies that φ(τmx) = φ(τmy) for each m ∈Z. By Lemma 4.2, we have x = y. This proves
(3) and the proof is complete.

Applying Proposition 3.5, we see that when θ = 1, there is an extremal β-KMS state of type III.

5. Examples of type II and type III

In this section, we construct uncountably many extremal β-KMS states of type II and of type III for every
β > 0 and for every θ > 0. It suffices to exhibit uncountably many non-atomic ergodic e−βc-conformal
measures on the (Z2, N2)-space (Yu, Xu) of the desired type. We do this by appealing to Proposition 3.5.
For the rest of this section, we assume that β is an arbitrary positive real number. Recall that e1 = (1, 0),
e2 = (0, 1), v1 = e1 and v2 = e1 + e2.

Type II examples for an irrational θ : Assume that θ > 0 is irrational. Choose α ∈ (0, 1) such that 1, α
and θ are rationally independent. For δ ∈ (0, θ ], let Cδ be the cone in R2 generated by (0, 1) and (α, δ),
i.e.

Cδ := {x(0, 1) + y(α, δ) : x, y ≥ 0}.
Let π : R2 → R

2

Z×{0} =T×R be the quotient map. We denote π (x, y) by (x, y). Denote the subgroup
generated by (α, θ ) and (0, 1) by �. Let φ : Z2 → � be the homomorphism defined by

φ(e1) = (0, 1); φ(e2) = (α, θ ).

Note that φ is an isomorphism as α and θ are irrational.
Set Yδ := R

2

Z×{0} =T×R and Xδ := π (Cδ). It is not difficult to see that Xδ is closed. Define aZ2-action
on Yδ by

(x, y) + e1 := (x, y) + φ(e1) = (x, y + 1)

(x, y) + e2 := (x, y) + φ(e2) = (x + α, y + θ ).

Since, δ ∈ (0, θ ], it follows that (α, θ ) ∈ Cδ . The fact that Cδ is a cone implies that Xδ is invariant
under N2, i.e. Xδ +N2 ⊂ Xδ. Thus, (Yδ, Xδ) is a (Z2, N2)-space. We leave it to the reader to verify that it
is pure.

Define a measure μ on Yδ by dμ := e−βydxdy. Here, dx is the Haar measure on T and dy is the
Lebesgue measure on R. Note that Xδ ⊂T× [0, ∞) and the latter set has finite μ-measure. Thus,
μ(Xδ) < ∞. Define a measure m on Yδ by dm := 1

μ(Xδ )
dμ. It is clear that m is an e−βc-conformal measure.

Remark 5.1. We need the following ‘pictorially’ obvious facts. We omit the rigorous proofs as they are
elementary.

(1) The interior Int(Xδ) is dense in Xδ.
(2) If Xδ + (x, y) = Xδ for some (x, y) ∈T×R, then (x, y) = (0, 0).
(3) Let δ1, δ2 ∈ (0, θ ]. Suppose there exists (x, y) ∈T×R for which Xδ1 + (x, y) = Xδ2 . Then, δ1 = δ2.

Proposition 5.1. Keep the foregoing notation.

(1) The Z2-action on Yδ is essentially free and ergodic.
(2) The measure m is of type II.
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(3) The map, denoted Tδ,

Yδ � (x, y) → Q(x,y) ∈ Yu

is injective.

For δ ∈ (0, θ ], let μδ := Tδ
∗m be the push-forward measure on Yu. If δ1 	= δ2, then μδ1 	= μδ2 . In particular,

there are uncountably many extremal β-KMS states of type II for every irrational θ .

Proof. Note that the measure m is absolutely continuous with respect to dxdy, which is the Haar
measure on the cylinderT×R, and dxdy is clearlyZ2-invariant. As 1, α and θ are rationally independent,
the subgroup � is dense in T×R. Hence, the action of Z2 on Yδ, which is by translations by � via the
isomorphism φ : Z2 → �, is ergodic. As the map φ is an isomorphism, it is also clear that the Z2-action
on Yδ is essentially free. The proof of (1) and (2) are now complete.

Let (x1, y1), (x2, y2) ∈R2 be such that Q(x1,y1) = Q(x2,y2). Note that for i = 1, 2,

Q(xi ,yi) := {(m, n) : (xi, yi) − m(α, θ ) − n(0, 1) ∈ Xδ}
= {(m, n) : m(α, θ ) + n(0, 1) ∈ −Xδ + (xi, yi)}.

The above equation, together with the equality Q(x1,y1) = Q(x2,y2) implies that

(−Xδ + (x1, y1)) ∩ � = (−Xδ + (x2, y2)) ∩ �.

Taking closure in the above equality, and using the fact that Int(Xδ) = Xδ and � is dense in Yδ , we deduce
that −Xδ + (x1, y1) = −Xδ + (x2, y2). By (2) of Remark 5.1, we have (x1, y1) = (x2, y2). This proves (3).

Let δ1, δ2 ∈ (0, θ ]. Suppose μδ1 = μδ2 = μ. Note that, for i = 1, 2, μδi is concentrated on the image
of Tδi . Thus, up to a set of μ-measure zero, Tδ1 (Yδ1 ) = Tδ2 (Yδ1 ). Choose (x1, y1), (x2, y2) ∈R2 such that
Tδ1 ((x1, y1)) = Tδ2 ((x2, y2)). This implies that

(−Xδ1 + (x1, y1)) ∩ � = (−Xδ2 + (x2, y2)) ∩ �.

Taking closure, we deduce

−Xδ1 + (x1, y1) = −Xδ2 + (x2, y2).

By (3) of Remark 5.1, we have δ1 = δ2. This completes the proof.

Type II examples for θ = 1: Assume that θ = 1. Recall that the homomorphism c : Z2 →R is defined
by c(e1) = 1 and c(e2) = 1. For an irrational α ∈ (0, 1), let Rα be the rotation by angle α on T := [0, 1).
In additive notation, Rα(x) = x + α mod 1. For η ∈ (0, 1), let hη := 1[0,η) and let φη,α := hη ◦ Rα − hη.

Lemma 5.1. Let α ∈ (0, 1) be irrational and let η ∈ (0, 1) be given.

(1) Suppose x, y ∈T are distinct points. Then, there exists m ∈Z such that hη(Rm
α
(x)) 	= hη(Rm

α
(y)).

(2) Suppose η < min{α, 1 − α} and let x, y ∈T be distinct points. Then, there exists m ∈Z such
that φη,α(Rm

α
(x)) 	= φη,α(Rm

α
(y)).

Proof. We denote the map hη : [0, 1) →R simply by h. Denote the periodic extension of h to R by h̃.
Suppose, for x, y ∈T, h(Rm

α
(x)) = h(Rm

α
(y)) for every m ∈Z. Then,

h̃(x + mα + n) = h̃(y + mα + n)

for all m, n ∈Z. This means that for all m, n ∈Z, (Tx̃h)(mα + n) = (Tỹh)(mα + n), where Tx̃h, Tỹh denote
the translations of h̃ by x, y respectively.

Since the set D = {mα + n : m, n ∈Z} is dense in R, Tx̃h, Tỹh are right continuous and they agree on
D, we can conclude that they agree on R. Then, Tz̃h = h̃ on R, where z = x − y. This clearly implies that
z is an integer. This proves (1).
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Let η < min{α, 1 − α} be given. Denote φη,α by φ. Note that for x ∈T,

φ(R−1
α

x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if x ∈ [0, η),

0 if x ∈ [η, α),

−1 if x ∈ [α, α + η),

0 if x ∈ [α + η, 1).

(5.8)

Let χ : {1, 0, −1} → {0, 1} be defined by χ (1) = 1 and χ (j) = 0 if j ∈ {0, −1}. Then,

χ (φ(R−1
α

x)) = hη(x).

The proof of (2) follows from the above equality and (1). This completes the proof.

Let α ∈ (0, 1) be irrational, and let η ∈ (0, 1) be such that η < min{α, 1 − α}. Denote hη by h and φη,α

by φ. Let Yα,η := T×Z, and let Xα,η := T×N. Define a Z2-action on Yα,η by

(x, t) + e1 := (x + α, φ(x) + t + 1); and (x, t) + e2 := (x, t + 1).

Since φ ≥ −1, it follows that Xα,η +N2 ⊂ Xα,η. Also, it is routine to verify that (Yα,η, Xα,η) is a pure
(Z2, N2)-space.

Let β be an arbitrary positive real number. Define a probability measure να,η on T by

να,η(E) := 1

||eβh||1

∫
E

eβh(x)dx.

In the above formula, dx is the Haar measure on the circle. Clearly,
d(να,η ◦ Rα)

dνα,η

= eβφ .

Define a measure μα,η on Yα,η by

μα,η(E × {n}) = (1 − e−β)e−βnνα,η(E).

It is easily verifiable that μα,η is an e−βc-conformal measure on the (Z2, N2)-space (Yα,η, Xα,η).

Proposition 5.2. With the foregoing notation, we have the following.

1. The Z2-action on Yα,η is essentially free and ergodic.
2. The measure μα,η is of type II.
3. The map

Yα,η � (x, t) → Q(x,t) ∈ Yu

is injective.
4. Suppose α1, α2 ∈ (0, 1

2
) are distinct irrationals, and let η1, η2 ∈ (0, 1) be such that for i = 1, 2,

ηi < min{αi, 1 − αi}. Then, the (Z2, N2)-spaces (Yα1,η1 , Xα1,η1 , μα1,η1 ) and (Yα2,η2 , Xα2,η2 , μα2,η2 ) are
not isomorphic. In particular, there are uncountably many type II extremal β-KMS states for
θ = 1.

Proof. Note that μα,η is absolutely continuous w.r.t. dxdn which is a Z2-invariant measure. The proofs
of (1) and (3) are very similar to the proof of Proposition 4.4. The proof that the map

Yα,η � (x, t) → Q(x,t) ∈ Yu

is injective is similar to Proposition 4.4, where instead of Lemma 4.2, we use Part (2) of Lemma 5.1.
We now prove (4). Let α1, α2 ∈ (0, 1

2
) be irrationals, and let η1, η2 ∈ (0, 1) be such that for i = 1, 2,

ηi < min{αi, 1 − αi}. Suppose (Yα1,η1 , Xα1,η1 , μα1,η1 ) and (Yα2,η2 , Xα2,η2 , μα2,η2 ) are isomorphic. Then, there
exist Z2-invariant null sets Nαi ⊂ Yαi ,ηi for i = 1, 2 and an invertible measurable map S : Yα1,η1\Nα1 →
Yα2,η2\Nα2 such that
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(i) the map S is Z2-equivariant, S(Xα1,η1\Nα1 ) = Xα2,η2\Nα2 , and
(ii) for every Borel subset E ⊂ Yα2,η2\Nα2 , μα2,η2 (E) = μα1,η1 (S−1(E)).

Since μαi ,ηi is absolutely continuous w.r.t. dxdn, it follows that S preserves the measure dxdn. Let
S(x, t) = (S1(x, t), S2(x, t)), where S1 and S2 are the coordinate functions. Note that e2 acts by translation
by 1 on the second coordinate. Hence, for i = 1, 2, Nαi must be of the form Nαi = Uαi ×Z for some
Rαi -invariant subset Uαi ⊆T. Since the map S is Z2-equivariant, from the action of e2, we notice that,

S1(x, t) = S1(x, t + 1) and S2(x, t + 1) = S2(x, t) + 1. (5.9)

In particular, the function (x, t) → S1(x, t) does not depend on t. As S maps Xα1,η1\Nα1 onto Xα2,η2\Nα2

and Xαi ,ηi\(Xαi ,ηi + e2) =T× {0}, it follows that S2(x, 0) = 0 for x ∈T\Uα1 . Equation (5.9) implies that
S2(x, t) = t for (x, t) ∈T\Uα1 ×Z.

Now, from the action of e1, and by equation (5.9), we can conclude that

Rα2 S1(x, 0) = S1(Rα1 x, φη1,α1 (x) + 1) = S1(Rα1 x, 0).

Define a map S̃ : T\Uα1 →T\Uα2 by S̃(x) = S1(x, 0). Then, S̃ is an isomorphism between (T, dx, Rα1 )
and (T, dx, Rα2 ). This implies that α1 = α2. This completes the proof.

Type III examples: The uncountably many type III examples that we construct are directly based on the
works of Nakada ( [21] and [20]) on cylinder flows. We follow the exposition given in [2] and recall a few
facts from [2] concerning the ergodicity of cylinder flows. Let β > 0 be fixed. For an irrational α ∈ (0, 1),
let Rα be the rotation on T by angle α. We use additive notation. Thus, T= [0, 1) and Rα(x) = x + α

mod 1. For γ > 0, let Fγ : [0, 1) →C be defined by

Fγ (x) :=
{

1 if x ∈ [0, γ

γ+1
),

−γ if x ∈ [ γ

γ+1
, 1).

(5.10)

Remark 5.2 (Nakada). Thanks to Proposition 1.1, Theorem 1.4 and Theorem 1.6 of [2], we have the
following.

(a) There exists a unique non-atomic probability measure m := mα,β,γ on T such that d(m◦Rα )
dm

=
e−βFγ . Moreover, (Rα, m) is ergodic.

(b) The measure mα,β,1 is of type III.
(c) Suppose α has bounded partial quotients and γ

γ+1
/∈Q+Qα. Then, mα,β,γ is of type III.

We also need the description of the spectrum of Rα given in [20] (Page 476, Paragraph 1). Let β, γ > 0
be given. Define

Spec(Rα) := {λ ∈T : There exists ξ ∈ L∞(T, mα,β,γ ) such that ξ ◦ Rα = λξ}.
If α has bounded partial quotients, then Spec(Rα) = {e2π inα : n ∈Z}. In particular, if α1, α2 ∈ (0, 1

2
) are

distinct irrationals having bounded partial quotients, then the dynamical systems (T, mα1,β,γ , Rα1 ) and
(T, mα2,β,γ , Rα2 ) are not metrically isomorphic.

The case θ = 1: Let α ∈ (0, 1) be an irrational, and let Rα denote the rotation on T by angle α. Take
γ = 1 in equation (5.10), and consider F1 given by,

F1(x) =
{

1 if x ∈ [0, 1
2
),

−1 if x ∈ [ 1
2
, 1).

Then by (a) and (b) of Remark 5.2, there exists a unique non-atomic type III probability measure m :=
mα,β,1 such that d(m◦Rα )

dm
= e−βF1 .
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Recall that the homomorphism c : G →R is given by c(v1) = 1 and c(v2) = 2. Define Yα =T×Z,
and set Xα =T× {0, 1, 2, · · · }. Let μα be the measure on Yα defined by,

μα(E × {n}) = (1 − e−2β)e−2nβm(E),

for a measurable subset E ⊂T. Clearly, μα(Xα) = 1. Define a Z2-action on Yα by
(x, t) + v1 := (Rα(x), 1[ 1

2 ,1)(x) + t); and (x, t) + v2 := (x, t + 1).

It is easy to see that (Yα, Xα) is a pure (Z2, N2)-space and μα is an e−βc-conformal measure on Yα.

Proposition 5.3. With the foregoing notation, we have the following.

1. The Z2-action on Yα is essentially free and ergodic.
2. The measure μα is of type III.
3. The map

Yα � (x, t) → Q(x,t) ∈ Yu

is injective.
4. If α1 	= α2 are distinct irrationals in (0, 1

2
) having bounded partial quotients, then the (Z2, N2)-

spaces (Yα1 , Xα1 , μα1 ) and (Yα2 , Xα2 , μα2 ) are not isomorphic. In particular, there are uncount-
ably many type III extremal β-KMS states for θ = 1.

Proof. With Remark 5.2 in hand, the proofs of (1), (2) and (3) are exactly similar to the proof of
Proposition 4.4, and hence, we omit the proof. For example, the proof for the injectivity of the map

Yα � (x, t) → Q(x,t) ∈ Yu

is similar to that of Proposition 4.4, where we work in the coordinate system determined by {v1, v2}, the
function φ is replaced with 1[ 1

2 ,1) and in place of Lemma 4.2, we appeal to Lemma 5.1 with η = 1
2
. With

the description of the spectrum alluded to in Remark 5.2, the proof of (4) is very similar to the proof of
Part (4) of Lemma 5.2. We leave the details to the reader.

The case of an irrational θ : The construction of type III examples for an irrational θ is similar to the
case θ = 1. Recall that the homomorphism c : G →R is given by c(e1) = 1 and c(e2) = θ . Take γ = θ in
5.10, and let Fθ be the function defined by

Fθ (x) =
{

1 if x ∈ [0, θ

θ+1
),

−θ if x ∈ [ θ

θ+1
, 1).

Choose α ∈ [0, 1)\Q such that α has bounded partial quotients and θ

θ+1
/∈Q+Qα. Then, by (a) and (c)

of Remark 5.2, there exists a unique non-atomic type III probability measure m := mα,β,θ on T such that
d(m◦Rα )

dm
= e−βFθ .

Define Yα =T×Z, and set Xα =T× {0, 1, 2, · · · }. Let μα be the measure on Yα given by,
μα(E × {n}) = (1 − e−β(1+θ))e−βn(θ+1)m(E)

for a measurable subset E ⊂T. Clearly, μα(Xα) = 1. Define a Z2-action on Yα by
(x, t) + v1 := (Rα(x), 1[ θ

θ+1 ,1)(x) + t); and (x, t) + v2 := (x, t + 1).

It is easy to see that (Yα, Xα) is a pure (Z2, N2)-space and μα is an e−βc-conformal measure on Yα.
If we make use of Remark 5.2, the proof of the following proposition is similar to that of

Proposition 5.3, and hence, the proof is omitted.

Proposition 5.4. With the foregoing notation, we have the following.

1. The Z2-action on Yα is essentially free and ergodic.
2. The measure μα is of type III.
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3. The map

Yα � (x, t) → Q(x,t) ∈ Yu

is injective.
4. Suppose α1 	= α2 are distinct irrationals in (0, 1

2
) having bounded partial quotients such that

θ

1+θ
/∈Q+Qαi for i = 1, 2. Then, the (Z2, N2)-spaces (Yα1 , Xα1 , μα1 ) and (Yα2 , Xα2 , μα2 ) are not

isomorphic. In particular, there are uncountably many type III extremal β-KMS states when θ

is irrational.

The type II and type III examples for other rational values of θ can be constructed from the base
case θ = 1 as follows. Let θ := p

q
be a positive rational. Assume that gcd (p, q) = 1. Choose a matrix[

x y

z w

]
∈ SL2(Z) such that x, y, z, w ≥ 0 and

x + z = q; y + w = p.

To see that this is possible, observe that if q = 1, then the matrix

[
1 p − 1

0 1

]
will do. Suppose q ≥ 2.

Choose x ∈ {1, 2, · · · , q − 1} such that xp ≡ 1 mod q. Write xp = yq + 1 with y ∈Z. Set z := q − x and

w := p − y. Then, x, y, z, w ≥ 0,

[
x y

z w

]
∈ SL2(Z) and

x + z = q; y + w = p.

Let us fix notation. Let φ : Z2 →Z2 be the isomorphism that corresponds to the matrix

[
x y

z w

]
.

Note that φ(N2) ⊂N2. We denote the homomorphism Z2 →R that sends e1 → 1 and e2 → θ by cθ . If
θ = 1, we denote cθ simply by c. It is clear that 1

q
(c ◦ φ) = cθ .

Fix β > 0 and let t ∈ {II, III}. Let (Y , X) be a pure (Z2, N2)-space together with an e− βc
q -conformal

measure m on Y such that

(A1) the map

Y � y → Qy := {s ∈ G : y − s ∈ X} ∈ Yu

is injective, and
(A2) the dynamical system (Y , m, G) is essentially free, ergodic and is of type t.

Define

Yφ := Y; Xφ := X; mφ := m.

Define a new Z2-action on Yφ as follows:

y ⊕ (m, n) := y + φ(m, n).

With this new action, (Yφ , Xφ , mφ) is a pure (Z2, N2)-space and mφ is e−βcθ -conformal. Since φ is an
automorphism of Z2, it follows that (Yφ , mφ , Z2) inherits the essential freeness, ergodicity and the type
from that of (Y , m, Z2). Note that for y ∈ Yφ ,

Qφ

y := {(m, n) ∈Z2 : y � (m, n) ∈ Xφ} = φ−1(Qy).

Since the map Y � y → Qy ∈ Yu is injective, it follows that Yφ � y → Qφ
y ∈ Yu is injective. Thus, the

(Z2, N2)-space (Yφ , Xφ) together with the e−βcθ -conformal measure satisfies (A1) and (A2).
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Moreover, since φ is an automorphism, it is clear that the above construction, i.e.

(Y , X, m) → (Yφ , Xφ , mφ)

maps metrically non-isomorphic spaces to metrically non-isomorphic spaces.
As we have already proved the existence of a continuum of metrically non-isomorphic (Z2, N2)-spaces

satisfying (A1) and (A2) for θ = 1 and for every β > 0, we can conclude that that there is a continuum
of metrically non-isomorphic (Z2, N2)-spaces that satisfy (A1) and (A2) for every rational θ > 0 and for
every β > 0. We can apply Proposition 3.5 to conclude that for a rational θ > 0 and for every β > 0,
there are uncountably many β-KMS states of type II and of type III.

We have now proved the following theorem.

Theorem 5.1. Suppose θ > 0 Let σ := {σt}t∈R be the 1-parameter group of automorphisms on C∗
c (N2)

given by

σt(v(m,n)) = ei(m+nθ)tv(m,n).

Then, for every β > 0, there is a continuum of extremal β-KMS states on C∗
c (N2) for σ of both type II

and type III.

We end our paper by posing a problem. Constructing type III product measures for the Bernoulli
shift on two symbols have always been a subject of interest. The first such example was due to Hamachi
([12]). We refer the reader to [3] and the references therein for more recent developments. In the recent
years, the focus is on constructing product measures of various Krieger types. Given this interest, the
following question, we believe, is worth investigating.

Question: Let θ > 0 be irrational, and suppose β > 0. Let χ : {0, 1}Z →R be the potential defined by

χ (x) =
{

1 if x0 = 0,

−θ if x0 = 1.

(1) Does there exist an ergodic probability measure for the Bernoulli shift of type II∞ that is e−βχ -
conformal?

(2) Let λ ∈ [0, 1) be given. Does there exist an ergodic probability measure of type IIIλ that is
e−βχ -conformal?

Nakada’s work shows that type III1 is possible. Note that the type II examples that we have constructed
in this paper are of type II1.
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