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Many connections and dualities in representation theory and Lie theory can be
explained using quasi-hereditary covers in the sense of Rouquier. Recent work by the
first-named author shows that relative dominant (and codominant) dimensions are
natural tools to classify and distinguish distinct quasi-hereditary covers of a
finite-dimensional algebra. In this paper, we prove that the relative dominant
dimension of a quasi-hereditary algebra, possessing a simple preserving duality, with
respect to a direct summand of the characteristic tilting module is always an even
number or infinite and that this homological invariant controls the quality of
quasi-hereditary covers that possess a simple preserving duality. To resolve the
Temperley–Lieb algebras, we apply this result to the class of Schur algebras S(2, d)
and their q-analogues. Our second main result completely determines the relative
dominant dimension of S(2, d) with respect to Q = V ⊗d, the d-th tensor power of
the natural two-dimensional module. As a byproduct, we deduce that Ringel duals of
q-Schur algebras S(2, d) give rise to quasi-hereditary covers of Temperley–Lieb
algebras. Further, we obtain precisely when the Temperley–Lieb algebra is Morita
equivalent to the Ringel dual of the q-Schur algebra S(2, d) and precisely how far
these two algebras are from being Morita equivalent, when they are not. These
results are compatible with the integral setup, and we use them to deduce that the
Ringel dual of a q-Schur algebra over the ring of Laurent polynomials over the
integers together with some projective module is the best quasi-hereditary cover of
the integral Temperley–Lieb algebra.
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1. Introduction

The theory of quasi-hereditary covers, introduced in [49], gives a framework to
study finite-dimensional algebras of infinite global dimension through algebras
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having nicer homological properties, for instance, quasi-hereditary algebras via
an exact functor known as Schur functor. Quasi-hereditary covers appear natu-
rally and are useful in algebraic Lie theory, representation, theory and homological
algebra. In particular, they are in the background of Auslander’s correspondence
[2] and in Iyama’s proof of finiteness of representation dimension [37]. Fur-
ther, quasi-hereditary algebras arise quite naturally in the representation theory
of algebraic groups [4, 47] and algebras of global dimension at most two are
quasi-hereditary.

Schur algebras S(n, d) form an important class of quasi-hereditary algebras, they
provide a link between polynomial representations of general linear groups and rep-
resentations of symmetric groups. Classically, when n � d, the Schur algebra, via
the Schur functor, is a quasi-hereditary cover of the group algebra of the symmetric
group Sd. This connection is one of the versions of Schur–Weyl duality. Indeed, this
formulation clarifies the connection between the representation theory of symmet-
ric groups and the representation theory of Schur algebras, by detecting how the
subcategories of modules with Weyl filtrations and of modules with dual Specht
filtrations are related and how the Yoneda extension groups in these subcategories
are related by the Schur functor (see also [35]). Further, this connection becomes
stronger as the characteristic of the ground field increases. It was first observed in
[29] that this behaviour is captured by the classical dominant dimension. However,
this is not the case for all quasi-hereditary covers.

To fix this, in [10] the concepts of relative dominant dimension and relative
codominant dimension with respect to a module were introduced. Further, in [10]
these homological invariants were exploited to create new quasi-hereditary covers.
With this, the link between Schur algebras and symmetric groups can be regarded
as a special case of quasi-hereditary covers of quotients of Iwahori–Hecke algebras.

Temperley–Lieb algebras are quotients of Iwahori–Hecke algebras and they some-
times have infinite global dimension. They were introduced in [50] in the context
of statistical mechanics and they were popularized by Jones, in particular, they are
used to define the Jones polynomial (see [41]). However, contrary to Iwahori–Hecke
algebras no Hemmer–Nakano type result was known for Temperley–Lieb algebras
until now. Both classes of algebras are cellular (see e.g. [32]) and so an important
property that they have in common is the existence of a simple preserving duality.

Quasi-hereditary algebras with a simple preserving duality always have even
global dimension. Mazorchuk and Ovsienko have shown this fact in [45] by proving
that the global dimension of a quasi-hereditary algebra with a simple preserv-
ing duality is exactly twice the projective dimension of the characteristic tilting
module. Later, under much stronger conditions, the analogue result for dominant
dimension was obtained in [29] by Fang and Koenig exploiting that a faithful
projective–injective module is a summand of the characteristic tilting module.

The present paper has two aims. First, we will establish that the relative dom-
inant dimension of a quasi-hereditary algebra with respect to any summand of its
characteristic tilting module is always twice as large as that of the characteristic
tilting module, in the case when the algebra has a simple preserving duality. In par-
ticular, this homological invariant is always even for such quasi-hereditary algebras.
Further, Fang and Koenig’s result can then be recovered from ours by just fixing
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the summand to be a projective–injective module. Therefore, we obtain an alter-
native approach to the classical case of dominant dimension without any further
assumptions.

The second aim is to study classes of quasi-hereditary covers of Temperley–Lieb
algebras and their link to the representation theory of Temperley–Lieb algebras.
In particular, we aim to completely understand such a connection using the
representation theory of q-Schur algebras and their Ringel duals.

Questions to be addressed and setup

To make our results precise, we need further notation. In general, assume that B
is a finite-dimensional algebra over an algebraically closed field. A pair (A,P ) is
a quasi-hereditary cover of B if A is a quasi-hereditary algebra, P is a finitely
generated projective A-module such that B = EndA(P )op, and in addition the
restriction of the associated Schur functor F := HomA(P,−) : A-mod → B-mod to
the subcategory of finitely generated projective A-modules is full and faithful.

Let F(Δ) be the category of A-modules which have a filtration by standard
modules. We would like to get information on the category F(FΔ) of B-modules
which have a filtration by images under F of standard modules. Specifically, we
would like the functor F to be faithful on F(Δ) and to induce isomorphisms
Extj

A(X,Y ) → Extj
B(FX,FY ) for X,Y modules in F(Δ). If this is the case for

0 � j � i, then (A,P ) is called an i-F(Δ) cover of B. The largest n such that (A,P )
is an n-F(Δ) cover of B is called the Hemmer–Nakano dimension of F(Δ) in [29].
When n � 1, filtration multiplicities in the category F(FΔ) are well-defined, which
places the Hemmer–Nakano theorem on Specht filtrations into a wider context.
When B is self-injective, Fang and Koenig showed that this dimension is controlled
by the dominant dimension of a characteristic tilting module. In addition, they
proved that if B is a symmetric algebra and the quasi-hereditary cover admits a
certain simple preserving duality, then the dominant dimension of a characteristic
tilting module is exactly half of the dominant dimension of A.

Recently, in [10], the situation was generalized to include cases where B is not
necessarily self-injective. Moreover, it was proved in [10] that the Hemmer–Nakano
dimension of F(Δ) associated with a 0-F(Δ) cover can be determined using the
relative codominant dimension of a characteristic tilting module with respect to a
certain summand of the characteristic tilting module.

The concepts of relative dominant and relative codominant dimension (see the
definition below in § 2.3) and the concept of quasi-hereditary cover can be con-
sidered in an integral setup, that is, both of these concepts can be studied for
Noetherian algebras which are finitely generated and projective as modules over
a regular commutative Noetherian ring. In [9], methods were developed to reduce
the computations of Hemmer–Nakano dimensions in the integral setup to the setup
where the ground ring is an algebraically closed field. So, it will be enough for our
purposes to concentrate on the case when the coefficient ring is an algebraically
closed field.

The new approach to construct quasi-hereditary covers appears in [10, Theorem
5.3.1] and [10, Theorem 8.1.5] when applied to Schur algebras (and q-Schur
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algebras). The novelty is that it uses the Ringel dual of a Schur algebra, rather
than a Schur algebra, and works for arbitrary parameters n, d.

This can, in particular, be applied to the study of Temperley–Lieb algebras.
Recall that S(n, d) is isomorphic to the centralizer algebra of Sd in the endomor-
phism algebra of the tensor power (Kn)⊗d, where (Kn)⊗d affords a module structure
over Sd by place permutation for a field K. Furthermore, V ⊗d := (Kn)⊗d is in the
additive closure of a characteristic tilting module over S(n, d). When n = 2, the cen-
tralizer of S(2, d) (and its q-analogue) in the endomorphism algebra of the tensor
power can be identified with a Temperley–Lieb algebra. Indeed, all Temperley–Lieb
algebras arise in this way. Our cases of interest have a simple preserving duality,
and in such a case, for this situation, we can without ambiguity interchange the
concepts relative dominant dimension and relative codominant dimension.

Denote by Q-domdimAX the relative dominant dimension of an A-module X
with respect to Q. In this context, the following questions arise:

(1) What is the value of V ⊗d-domdimS(2,d) T , where T is a characteristic tilting
module of the quasi-hereditary algebra S(2, d)? What happens to this value
when we replace a Schur algebra by a q-Schur algebra?

(2) The Ringel duals of Schur algebras as well as Schur algebras have a sim-
ple preserving duality. Can we expect, like in the classical case (see [ 29,
Theorem 4.3]), the equality V ⊗d-domdimS(n, d) = 2 · V ⊗d-domdimS(n,d) T to
hold in general?

(3) Can we expect the quasi-hereditary cover of the Temperley–Lieb algebra
constructed in [ 10, Theorem 8.1.5] to be unique, in some meaningful way?

Our goal in this paper is to provide answers to these three questions.

Main results

Surprisingly, the answer to (2) is positive without using extra structure on S(n, d)
besides the quasi-hereditary structure and the existence of a simple preserving
duality.

Theorem A (see theorem 3.1). Let A be a quasi-hereditary algebra over a field K.
Suppose that there exists a simple preserving duality �(−) : A-mod → A-mod. Let T
be the characteristic tilting module of A. Assume that Q ∈ add(T ). Then

Q-domdimAA = 2 ·Q-domdimA T.

This means that for A as in the theorem, the characteristic tilting module T is a
test module to compute the relative dominant dimension of A with respect to direct
summands of T . By fixing Q to be a projective–injective module in this setting,
this result generalizes [29, Theorem 4.3] and our methods provide a new proof to
their case without using any information on A being an endomorphism algebra of
a faithful module over a symmetric algebra. In particular, our result also works for
dominant dimension exactly zero and when A is the endomorphism algebra of a
faithful module over a self-injective algebra. The left-hand side of the equation in
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theorem A is also known as the faithful dimension of Q in the sense of [3]. This
means that the faithful dimension of Q fully determines the connection between
EndA(Q) and its quasi-hereditary cover formed by the Ringel dual when the A is
a quasi-hereditary with a simple preserving duality.

Theorem A has many applications for quasi-hereditary algebras with a simple
preserving duality. For instance, it can be used to reprove a result of [36] which
states that there exists a unique minimal direct summand of the characteristic
tilting module affording a double centralizer property (see Appendix A). It can
also be used to reprove that Ringel duality preserves dominant dimension in this
setting.

Combining techniques of Frobenius twisted tensor products with theorem A we
obtain a complete answer to (1):

Theorem B (see also theorem 5.8 for the q-version). Let K be a field and let A be
the Schur algebra SK(2, d) and T be the characteristic tilting module of A. Then,

V ⊗d-domdimAA = 2 · V ⊗d-domdimA T =

{
d, if charK = 2 and d is even,
+∞, otherwise.

In this case, Q = V ⊗d and EndA(Q) is the quotient of the symmetric group alge-
bra, modulo the kernel of the action on V ⊗d, and theorem B provides information
about this quotient. When the relative dominant dimension is infinite, this quotient
is Morita equivalent to the Ringel dual of A. When charK = 2 and d is even theorem
B shows that for d � 6, the Hemmer–Nakano dimension is positive. Hence, in this
case, the filtration multiplicities in the category F(FΔ) are well-defined. These
are the modules filtered by Specht modules labelled by 2-part partitions and this
provides new information: in contrast, filtration multiplicities for arbitrary Specht
modules are not well-defined for p = 2, as shown in [35]. Further, theorem B and
its q-version generalizes [7, Theorem C (3), (4)] for Temperley–Lieb algebras. For
the quantum case, the same approach works. In the quantum case, the algebra A is
the q-Schur algebra SK,q(2, d), which can be defined as the centralizer of the Hecke
algebra Hq(d) acting on V ⊗d, again for dimV = 2 and in the theorem the charac-
teristic is replaced by the quantum characteristic. When we have v ∈ K such that
v2 = q and δ = −v − v−1, the Temperley–Lieb algebra TLK,d(δ) is a quotient of this
action. In both cases, the real difficulty lies in the case in which the characteristic
(resp. quantum characteristic) is two.

For tilting modules in general, going beyond the characteristic tilting module,
we can construct, via mutation, new tilting modules. In the context of Buan and
Solberg’s work [3], theorem B means that V ⊗d over S(2, d) is either a full tilt-
ing module or there are precisely d+ 1 indecomposable S(2, d)-modules X making
X ⊕ V ⊗d a full tilting module.

Using theorem B together with cover theory, we obtain a positive answer to
question (3) when we consider the Laurent polynomial ring over the integers as coef-
ficient ring and d > 2 (see § 7 and corollary 7.5). In such a case, the (integral) Schur
functor F induces an exact equivalence F(Δ) → F(FΔ). The quasi-hereditary cover
of the integral Temperley–Lieb algebra formed by the Ringel dual of a q-Schur
algebra is the unique quasi-hereditary cover which induces this exact equivalence.
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If d = 2, the Temperley–Lieb algebra is exactly an Iwahori–Hecke algebra, but this
is new information when d > 2.

We emphasize that the specialization of theorem A to projective–injective mod-
ules played a key role in determining the dominant dimension of Schur algebras
S(n, d) with n � d in [29] (also their q-analogues [30]). It is our expectation
that its use will be crucial to determine, in particular, V ⊗d-domdimS(n, d) and
domdimS(n, d) also in the cases 2 < n < d while the latter is also an open problem
for n = 2.

This article is organized as follows: in § 2, we introduce the notation and the
main properties of relative dominant dimension with respect to a module, split
quasi-hereditary algebras with a simple preserving duality, and cover theory to
be used throughout the paper. In § 3, we discuss elementary results on relative
injective dimensions and we give the proof of theorem A. We then deduce that the
dominant dimension is a lower bound for the faithful dimension of a faithful direct
summand of a characteristic tilting module fixed by a simple preserving duality (see
proposition 3.6). In § 4, we collect results on the quasi-hereditary structure of Schur
algebras S(2, d), in particular, reduction techniques and how to construct partial
tilting and standard modules inductively using the Frobenius twist functor. In § 5,
we compute the relative dominant dimension of S(2, d) with respect to V ⊗d in
terms of V ⊗d-domdimS(2,d) T , where T is a characteristic tilting module of S(2, d).
In particular, we give the proof of theorem B and its q-analogue (see theorem
5.8). As an application, we compute all complements of the almost complete tilting
module V ⊗4 when the ground field has characteristic two (see § 5.3). In § 6, we
recall that all Temperley–Lieb algebras can be realized as the centralizer algebras
of q-Schur algebras in the endomorphism algebra of the tensor power V ⊗d. As a
consequence, we determine the value of Hemmer–Nakano dimension of F(Δ) in all
cases associated with the cover of the Temperley–Lieb algebra formed by the Ringel
dual of a q-Schur algebra. This computation is contained in corollary 6.8. In § 7, we
determine the Hemmer–Nakano dimension of the abovementioned quasi-hereditary
cover in the integral setup, dividing the study into two cases: the coefficient ring
being or not 2-partially q-divisible (see § 7.1). When the coefficient ring does not
have such property, we show that a quasi-hereditary cover with such coefficient ring
has better properties. We conclude by addressing the problem of the uniqueness of
this cover (see § 7.2). In Appendix A, we provide two applications of theorem A
that involve faithful direct summands of the characteristic tilting module.

2. Preliminaries

2.1. The setting

This follows [10]. Throughout we fix a Noetherian commutative ring R with
identity, and A is an R-algebra which is finitely generated and projective as an
R-module. We refer to A as a projective Noetherian R-algebra. The set of invertible
elements of R is denoted by R×.

We denote by A-mod the category of finitely generated (left) A-modules. Given
M ∈ A-mod, we denote by addAM (or just addM) the full subcategory of A-mod
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whose modules are direct summands of a finite direct sum of copies of M . We also
denote addA by A-proj.

The endomorphism algebra of a module M ∈ A-mod is denoted by EndA(M).
We denote by DR or just D the standard duality HomR(−, R) : A-mod → Aop-mod
where Aop is the opposite algebra of A.

A module M ∈ A-mod∩R-proj is said to be (A,R)-injective if it belongs to
addDA, and we write (A,R)-inj∩R-proj for the full subcategory of A-mod∩R-proj
whose modules are (A,R)-injective.

Furthermore, an exact sequence of A-modules which is split as an exact sequence
of R-modules is said to be (A,R)-exact. In particular, an (A,R)-monomorphism is

a homomorphism f : M → N that fits into an (A,R)-exact sequence 0 →M
f→ N .

Given a left exact covariant additive functorG, we say thatX is aG-acyclic object
if Ri>0G(X) = 0. An exact sequence 0 → L→ X0 → X1 → · · · is called aG-acyclic
coresolution of L if all objects X0,X1, . . . are G-acyclic. Given X ∈ A-mod∩R-proj,
we denote by X⊥ the full subcategory

{M ∈ A-mod∩R-proj : Exti>0
A (Z,M) = 0,∀Z ∈addX},

and by ⊥X the full subcategory

{M ∈ A-mod∩R-proj : Exti>0
A (M,Z) = 0,∀Z ∈addX}.

2.2. Approximations

Assume that A is an R-algebra as above, and Q is a fixed module in
A-mod∩R-proj.

An A-homomorphism f : M → N is a left addAQ-approximation of M provided
that N belongs to addAQ, and moreover the induced map

HomA(N,X) → HomA(M,X)

is surjective for everyX ∈addAQ. Dually, one defines rightaddAQ-approximations.
Note that every module M ∈ A-mod has a left and a right addAQ-approximation.

2.3. Relative (co)dominant dimension with respect to a module

We recall from [10] the definition of relative (co)dominant dimensions.
Let Q,X ∈ A-mod∩R-proj. If X does not admit a left addQ-approximation

which is an (A,R)-monomorphism then the relative dominant dimension of X
with respect to Q is zero. Otherwise, the relative dominant dimension of X
with respect to Q, denoted by Q-domdim(A,R)X, or Q-domdimAX when R
is a field, is the supremum of all n ∈ N such that there is an (A,R)-exact
sequence:

0 → X → Q1 → Q2 → · · · → Qn

with all Qi ∈addQ, which remains exact under HomA(−, Q).
Dually, one defines the relative codominant dimension, denoted by

Q-codomdim(A,R)(X) with Q,X as above: if X does not admit a surjective
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right addQ-approximation, then Q-codomdim(A,R)(X) = 0. Otherwise it is the
supremum of all n ∈ N such that there is an (A,R)-exact sequence:

Qn → Qn−1 → · · · → Q1 → X → 0

with all Qi ∈addQ, which remains exact under HomA(Q,−).
Hence, Q-codomdim(A,R)X = DQ-domdim(Aop,R)DX. By Q-domdim (A,R) we

mean the value Q-domdim(A,R)A. We will write Q-codomdimAX to denote
Q-codomdim(A,R)X when R is a field.

2.3.1. Results from [10] We will give criteria towards finding these invariants. These
depend essentially on the theorems [10, Theorems 3.1.1, 3.1.4] and their dual ver-
sions. We briefly describe part of it. Assume Q ∈ A-mod∩R-proj such that the
endomorphism algebra of Q, B = EndA(Q), is a projective Noetherian R-algebra.
The Schur functor F = HomA(Q,−) has a left adjoint I := Q⊗B −. Let χ be the
associated counit χ : IF → idA-mod. Explicitly, if M belongs to A-mod∩R-proj,
then χM is the A-homomorphism:

Q⊗B HomA(Q,M) →M, χM (q ⊗ g) = g(q).

By Theorem 3.1.1 of [10], for a moduleM ∈ A-mod∩R-proj,Q-codomdim(A,R)M �
2 if and only if χM is an isomorphism. Theorem 3.1.4 of [10] states that
Q-codomdim(A,R) � n for n � 2 if and only if χM is an isomorphism and Q⊗B −
is exact on the first part of a projective resolution of HomA(Q,M) as a B-module.

Section 3.1 of [10] describes several consequences; we will use especially [10,
Corollary 3.1.5, Corollary 3.1.8, Proposition 3.1.11 and Corollary 3.1.12].

Lemma 2.1. Assume M ∈ A-mod∩R-proj, and let Qi ∈addQ. An exact sequence

0 →M
α0−→ Q0

α1→ Q1 → · · · → Qt

remains exact under HomA(−, Q) if and only if for every factorization Qi →
imαi+1 → Qi+1 of αi+1, the (A,R)-monomorphism imαi+1 → Qi+1 and α0 are
left addQ-approximations.

Proof. See [10, Lemma 2.1.4]. �

In addition to the assumptions on R,A, and Q, in the following, we also assume
that HomA(Q,Q) ∈ R-proj.

It is crucial to compare relative dominant dimensions for end terms of a
short exact sequence which remains exact under HomA(−, Q). This is completely
described in [10, Lemma 3.1.7], part of it is as follows.

Lemma 2.2. Let M ∈ A-mod∩R-proj and consider an (A,R)-exact sequence

0 →M1 →M →M2 → 0

which remains exact under HomA(−, Q). Let n = Q-domdimAM and ni =
Q-domdimAMi for i = 1, 2, then:
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(a) n � min{n1, n2}.
(b) If n = ∞ and n1 <∞ then n2 = n1 − 1.

Corollary 2.3. Let Mi for i ∈ I be a finite set of modules in A-mod∩R-proj.
Then

Q-domdimA

(⊕
i∈I

Mi

)
= inf{Q-domdimAMi | i ∈ I}.

Proof. See [10, Corollary 3.1.8]. �

Recall ⊥Q = {M ∈ A-mod∩R-proj | Exti>0
A (M,Q) = 0}. The following is proved

in [10, Proposition 3.1.11].

Proposition 2.4. Assume Exti>0
A (Q,Q) = 0, and M ∈ ⊥Q. An exact sequence

0 →M → Q1 → · · · → Qn

yields Q-domdim(A,R)(M) � n if and only if Qi ∈addQ and the cokernel of
Qn−1 → Qn belongs to ⊥Q.

The following is an application of lemma 2.2.

Corollary 2.5. Assume Q ∈ ⊥Q. Let M ∈ A-mod∩R-proj, and consider an
(A,R)-exact sequence:

0 →M → Q1 → · · · → Qt → X → 0

with Qi ∈addQ and t ∈ N. If Exti
A(X,Q) = 0 for 1 � i � t, then

Q-domdim(A,R)M = t+Q-domdim(A,R)X.

Proof. See [10, Corollary 3.1.12]. �

2.4. Split quasi-hereditary algebras with duality

For the definition and general properties of split quasi-hereditary algebras we refer
to [5, 9–11, 49]. In particular, we follow the notation of [9–11]. One of the advan-
tages to use such setup stems from the fact that split quasi-hereditary R-algebras
(A, {Δ(λ)λ∈Λ}) are exactly the algebras so that (S ⊗R A, {S ⊗R Δ(λ)λ∈Λ}) are
quasi-hereditary algebras for every commutative Noetherian ring S which is an
R-algebra. Concerning the terminology, we remark the word split arises from the
endomorphism algebra EndA(Δ(λ)) being isomorphic to the ground ring R. As it
was observed in [49], when (A, {Δ(λ)λ∈Λ}) is a split quasi-hereditary R-algebra,
the objects T (λ) satisfying add

⊕
λ∈Λ T (λ) = F(Δ̃) ∩ F(∇̃) are no longer unique,

in contrast to quasi-hereditary algebras over a field. For this reason, we will say
that T is a characteristic tilting module of A if addT = F(Δ̃) ∩ F(∇̃) and T is the
(basic) characteristic tilting module of A if A is a quasi-hereditary algebra over a
field and T =

⊕
λ∈Λ T (λ).
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The following prepares the ground for quasi-hereditary covers, constructed from
the Ringel dual R(A) = EndA(T )op of a quasi-hereditary algebra A with a charac-
teristic tilting module T . To see that Ringel duality is well defined in the integral
setup, we refer to [10, Subsection 2.2.3].

Proposition 2.6. Let (A, {Δ(λ)λ∈Λ}) be a split quasi-hereditary R-algebra with a
characteristic tilting module T . Denote by R(A) the Ringel dual EndA(T )op of A.
Suppose that Q ∈addA T is a partial tilting module. Then,

(i) HomA(T,Q)-codomdim(R(A),R)DT = Q-domdim(A,R) T .

(ii) DQ-domdim (A,R) = Q-codomdim(A,R)DA = Q-domdim (A,R).

(iii) inf{Q-codomdim(A,R)M : M ∈ F(∇̃)} = Q-codomdim(A,R) T .

Proof. For (i), see [10, Proposition 6.1.1]. For (ii), see [10, Corollary 3.1.5]. For
(iii), see [10, Theorem 5.3.1]. �

Recall that HomA(T,DA) 
 DT is a characteristic tilting module over R(A).
Relative codominant dimension can also be used to observe that a characteristic
tilting module behaves like a flat module in F(Δ̃R(A)).

Proposition 2.7. The functor HomA(T,−) : F(∇̃) → F(Δ̃R(A)) is an exact equiv-
alence with quasi-inverse the exact functor T ⊗R(A) − : F(Δ̃R(A)) → F(∇̃).

Proof. The fact that the functor HomA(T,−) : F(∇̃) → F(Δ̃R(A)) is an exact equiv-
alence follows from Ringel duality (see e.g. [10, 2.2.3], or [48, Theorem 6] in the
field case).

By proposition 2.6, T -codomdim(A,R)M � T -codomdim(A,R) T = +∞ for every
M ∈ F(∇̃). By Theorem 3.1.4 of [10], T ⊗R(A) HomA(T,M) →M is an
isomorphism and TorA

i>0(T,HomA(T,M)) = 0 for every M ∈ F(∇̃). Since
HomA(T,−) : F(∇̃) → F(Δ̃R(A)) is essentially surjective, the result follows. �

Proposition 2.8. Let (A, {Δ(λ)λ∈Λ}) be a split quasi-hereditary algebra over a
field k. Assume that there exists a simple preserving duality �(−) : A-mod → A-mod.
Let T be the characteristic tilting module of A and assume that Q ∈addA T . Then,

(i) �Δ(λ) 
 ∇(λ) for all λ ∈ Λ;

(ii) �T (λ) 
 T (λ) for all indecomposable direct summands of T ;

(iii) Q-domdim(A,R) T = Q-codomdim(A,R) T .

Proof. (i) and (ii) follow by applying the simple preserving duality to the canonical
exact sequences defining Δ(λ) and T (λ), respectively. For (iii), see [10, Proposition
3.1.6]. �

Let (A, {Δ(λ)λ∈Λ}) be a split quasi-hereditary algebra over a field k. The
∇-filtration dimension of X, denoted by dimF(∇)X, is the infimum of all n � 0
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such that there exists an exact sequence:

0 → X →M0 → · · · →Mn → 0

with M0, . . . ,Mn ∈ F(∇). Analogously, the Δ-filtration dimension is defined. The
∇-filtration dimensions first appeared in [31] in the study of cohomology of algebraic
groups.
∇- and Δ-filtration dimensions play a crucial role in [25, 45] establishing that the

global dimension of a quasi-hereditary algebra having a simple preserving duality is
always an even number. For us, they are of importance due to the following result.

Proposition 2.9. Let (A, {Δ(λ)λ∈Λ}) be a split quasi-hereditary algebra over a
field k. Assume that there exists a simple preserving duality �(−) : A-mod → A-mod.
If M ∈ A-mod satisfies dimF(Δ)M = t < +∞, then Ext2t

A (M, �M) �= 0.

Proof. See [45, Corollary 6]. �

2.5. Cover theory

The concept of a cover, and in particular, of a split quasi-hereditary cover
was introduced in [49] to give an abstract framework to connections in repre-
sentation theory like Schur–Weyl duality. Given a split quasi-hereditary algebra
(A, {Δ(λ)λ∈Λ}) over a commutative Noetherian ring R and a finitely gener-
ated projective A-module P , let B := EndA(P )op. We say that (A,P ) is a split
quasi-hereditary cover of B if the restriction of the functor

F := HomA(P,−) : A-mod → B-mod,

known as Schur functor, to A-proj is fully faithful. Given, in addition, i ∈
N ∪ {−1, 0,+∞}, following the notation of [9], we say that (A,P ) is an i-F(Δ̃)
(quasi-hereditary) cover of B if the following conditions hold:

• (A,P ) is a split quasi-hereditary cover of EndA(P )op;

• The restriction of F to F(Δ̃) is faithful;

• The Schur functor F induces bijections Extj
A(M,N) 
 Extj

B(FM,FN), for
every M,N ∈ F(Δ̃) and 0 � j � i.

Here, F(Δ̃) denotes the resolving subcategory of A-mod∩R-proj whose modules
admit a finite filtration into direct summands of direct sums of standard modules
Δ(λ), λ ∈ Λ.

The optimal value of the quality of a cover is known as the Hemmer–Nakano
dimension. More precisely, if (A,P ) is a (−1)-F(Δ̃) (quasi-hereditary) cover of B,
the Hemmer–Nakano dimension of F(Δ̃) with respect to F is i ∈ N ∪ {−1, 0,+∞}
if (A,P ) is an i-F(Δ̃) (quasi-hereditary) cover of EndA(P )op but (A,P ) is not
an (i+ 1)-F(Δ̃) (quasi-hereditary) cover of B. The Hemmer–Nakano dimension of
F(Δ̃) is denoted by HNdimF (F(Δ̃)).

Major tools to compute Hemmer–Nakano dimensions are classical dominant
dimension and relative dominant dimensions. This can be traced back to [29] which
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was later amplified in several directions in [9] and in [10], and it is briefly summa-
rized in the following result proved in [10, Theorem 5.3.1, Corollary 5.3.4]. Note
that HomA(T,Q) is projective as a B-module.

Theorem 2.10. Let R be a commutative Noetherian ring. Let (A, {Δ(λ)λ∈Λ}) be
a split quasi-hereditary R-algebra with a characteristic tilting module T . Denote by
R(A) the Ringel dual EndA(T )op of A. Assume that Q ∈addT is a (partial) tilting
module of A. Then, the following assertions hold.

(a) If Q-codomdim(A,R) T � n � 2, then (R(A),HomA(T,Q)) is an (n− 2)-
F(Δ̃R(A)) split quasi-hereditary cover of EndA(Q)op.

(b) Assume, in addition, that R is a field. Then, Q-codomdim(A,R) T � n � 2 if
and only if (R(A),HomA(T,Q)) is an (n− 2)-F(Δ̃R(A)) split quasi-hereditary
cover of EndA(Q)op.

Let B be a projective Noetherian R-algebra, (A,P ) be an (−1)-F(Δ̃) (quasi-
hereditary) cover of B and (A′, P ′) be an (−1)-F(Δ̃′) (quasi-hereditary) cover of
B. We say that (A,P ) is equivalent to (A′, P ′) as quasi-hereditary covers if there
exists an equivalence H : A-mod → A′-mod which restricts to an equivalence of
categories between F(Δ̃) and F(Δ̃′) making the following diagram commutative:

for some equivalence of categories L. The first application of uniqueness of covers
goes back to [49]. Split quasi-hereditary covers with higher values of Hem-
mer–Nakano dimension associated with them are essentially unique. In fact, this is
due to the following result which can be found in [9, Corollary 4.3.6].

Corollary 2.11. Let B be a projective Noetherian R-algebra, (A,P ) be a 1-F(Δ̃)
(quasi-hereditary) cover of B and (A′, P ′) be a 1-F(Δ̃′) (quasi-hereditary) cover of
B. If there exists an exact equivalence L : B-mod → B-mod which restricts to an
exact equivalence between F(HomA(P,−)Δ̃) and F(HomA′(P ′,−)Δ̃′), then (A,P )
is equivalent as split quasi-hereditary cover to (A′, P ′).

For a more detailed exposition on cover theory and Hemmer–Nakano dimensions
we refer to [9, 10].

3. The first main result

The aim of this section is to prove theorem A, that is, to prove the following.

Theorem 3.1. Let (A, {Δ(λ)λ∈Λ}) be a split quasi-hereditary algebra over a field k.
Suppose that there exists a simple preserving duality �(−) : A-mod → A-mod. Let T
be a characteristic tilting module of A. Assume that Q ∈addT . Then,

Q-domdimA = Q-codomdimADA = 2 ·Q-codomdimA T = 2 ·Q-domdimA T.
(3.1)
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3.1. Outline of the proof

The proof will be divided in two parts: �, �. The easier part is �, that is, to
prove that:

Q-domdimAA � 2 ·Q-domdimA T or equivalently

Q-codomdimADA � 2 ·Q-codomdimA T,

the latter being a particular case of lemma 3.4. For this inequality, there are two
main ideas. First, we construct (using Ringel duality) an exact sequence:

0 → C → Xn → · · · → X1 → DA→ 0 (3.2)

with the following properties:

• n = Q-domdimA T ;

• C ∈ F(∇) and Xi ∈addQ.

Hence, (3.2) remains exact under HomA(T,−) and under HomA(Q,−). Second, we
use the formula:

Q-codomdimA T = inf
M∈F(∇)

Q-codomdimAM.

On the other hand, to establish the part �, that is, to prove that
Q-codomdimADA cannot be larger than 2Q-codomdimA T = 2n, there are two
key steps:

(1) From any exact sequence Xn+1 → Xn → · · · → X1 → DA→ 0 that gives
Q-codomdimADA � n+ 1 we can infer that the kernel of Xn+1 → Xn,
denoted here by E (with X0 := DA if n = 0) satisfies Exti�n+2

A (X,E) = 0
for every X ∈ ⊥Q;

(2) Proposition 2.9 provides a method to use the simple preserving duality
functor to construct a module X ∈ ⊥Q that satisfies Extn+2

A (X,E) �= 0 if
Q-codomdimADA > 2n.

3.2. Relative injective dimension

Before we start with the proof of theorem A we need to discuss the concept of
relative injective dimension.

Definition 3.2. Let A be a full subcategory of A-mod. We define the A-injective
dimension of N ∈ A-mod (or the relative injective dimension of N with respect
to A) as the value:

inf{n ∈ N ∪ {0} : Exti>n
A (M,N) = 0,∀M ∈ A}. (3.3)

We denote by idimAN the A-injective dimension of N . Analogously, we define the
A-projective dimension of N ∈ A-mod as the value:

inf{n ∈ N ∪ {0} : Exti>n
A (N,M) = 0,∀M ∈ A}. (3.4)
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Lemma 3.3. Let A be a projective Noetherian R-algebra and let Q ∈ A-mod such
that Exti>0

A (Q,Q) = 0. Then, the following assertions hold.

(1) If there exists an exact sequence 0 → X → Y → Z → 0 with Y ∈addQ,
then idim⊥QX � 1 + idim⊥Q Z.

(2) If there exists an exact sequence 0 → X → Xr → · · · → X1 → Z → 0 with
X1, . . . , Xr ∈addQ, then idim⊥QX � r + idim⊥Q Z.

(3) If there exists an exact sequence 0 → X → Xr → · · · → X1 → Z → 0 with
X1, . . . , Xr ∈addQ, then for every Y ∈ Q⊥, Exti

A(X,Y ) 
 Exti+r
A (Z, Y ) for

all i ∈ N.

Proof. For each M ∈ ⊥Q, applying HomA(M,−) yields that Exti
A(M,Z) 


Exti+1
A (M,X) for all i � 1. Hence, (i) follows. By induction and using (i), (ii) fol-

lows. Denote by Ci the image of Xi+1 → Xi for all i = 1, . . . , r − 1. By applying
HomA(−, Y ) we deduce that Exti

A(X,Y ) 
 Exti+1
A (Cr−1, Y ) 
 Exti+2

A (Cr−2, Y ) 

Exti+r−1

A (C1, Y ) 
 Exti+r
A (Z, Y ). �

3.3. Computing relative dominant dimension of the regular module
using a characteristic tilting module

Let T be a characteristic tilting module of a split quasi-hereditary algebra A and
let Q be a partial tilting module. By proposition 2.6(ii)–(iii), the relative codomi-
nant dimension of T with respect to Q is a lower bound to the relative dominant
dimension of A with respect to Q. In the following we will see that this lower bound
can be sharpened.

Lemma 3.4. Let (A, {Δ(λ)λ∈Λ}) be a split quasi-hereditary R-algebra with a charac-
teristic tilting module T . Denote by R(A) the Ringel dual EndA(T )op of A. Suppose
that Q ∈addT . Then,

Q-domdim(A,R) � Q-domdim(A,R) T +Q-codomdim(A,R) T. (3.5)

Proof. Observe that DQ⊗A Q ∈ R-proj (see e.g. [9, A.4.3]). By proposition 2.6(ii)
and (iii), we obtain that:

Q-domdim(A,R)A = Q-codomdim(A,R)DA � Q-codomdim(A,R) T. (3.6)

If Q-domdimA T = 0, then there is nothing more to prove. Assume that n :=
Q-domdim(A,R) T � 1. By proposition 2.6(i), HomA(T,Q)-codomdimR(A)DT = n.
That is, there exists an exact sequence:

0 → C → Xn → · · · → X1 → DT → 0 (3.7)

with all Xi ∈add(HomA(T,Q)), and so they are projective modules over R(A). The
modulesDT andXi are in F(Δ̃R(A)), which is closed under kernels of epimorphisms
and hence also C is in F(Δ̃R(A)).
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By the Ringel dual equivalence described in proposition 2.7, the functor
T ⊗R(A) − takes (3.7) to the exact sequence:

0 → C → Xn → · · · → X1 → T ⊗R(A) DT → 0, (3.8)

and Xi ∈addQ since T ⊗R(A) HomA(T,Q) =addQ. Moreover,

T ⊗R(A) DT 
 T ⊗R(A) HomA(T,DA) 
 DA

and C ∈ F(∇̃). Thus, the exact sequence (3.8) remains exact under HomA(Q,−).
By the dual version of corollary 2.5, we obtain that

Q-codomdim(A,R)DA = n+Q-codomdim(A,R) C.

Applying again proposition 2.6(iii) gives that Q-codomdim(A,R) C �
Q-codomdim(A,R) T. �

Remark 3.5. An alternative proof to lemma 3.4 would be to repeat the steps
of lemma 3.4 but only for quasi-hereditary algebras over a field. Then, since rel-
ative dominant dimension of modules with a standard filtration with respect to
direct summands of a characteristic tilting module remains invariant under change
of ground ring, the result would follow for split quasi-hereditary algebras with
arbitrary commutative Noetherian ground ring.

Surprisingly, theorem 3.1 generalizes [29, Theorem 4.3] without using any tech-
niques on symmetric algebras. In particular, for the following proof we do not
need to require A to be an endomorphism algebra of a generator over a symmetric
algebra.

Proof of theorem 3.1. By proposition 2.6(ii), proposition 2.8, and lemma 3.4,
part � follows. So, it remains to show that

Q-codomdimADA � 2 ·Q-codomdimA T.

If Q-codomdimA T = +∞, then there is nothing to prove. Denote by n the value
Q-domdimA T = Q-codomdimA T . Assume first that n > 0. So, we can consider
again exact sequences of the form (3.7) and (3.8). Assume, for a contradiction, that
Q-codomdimADA > 2n. Hence, also Q-codomdimA C > n according to the dual of
corollary 2.5. So, there exists an exact sequence:

0 → L→ X2n+1 → X2n → · · · → Xn+1 → C → 0 (3.9)

which remains exact under HomA(Q,−) and Xi ∈addQ, i = n+ 1, . . . , 2n+ 1.
In particular, 0 → L→ X2n+1 → · · · → X1 → DA→ 0 is an HomA(Q,−)-acyclic
coresolution of L, so it can be used to compute Exti

A(Q,L) for all i. Since it
remains exact under HomA(Q,−) we obtain that Exti>0

A (Q,L) = 0 and so L ∈ Q⊥

and �L ∈ ⊥Q. Let E be the kernel of the map Xn+1 → C and consider the exact
sequence:

0 → E → Xn+1 → Xn → · · · → X1 → DA→ 0. (3.10)

By lemma 3.3(2), idim⊥QE � n+ 1. Since (3.10) remains exact under HomA(Q,−)
we have that E ∈ Q⊥. On the other hand, observe that E cannot belong to F(∇)
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because otherwise (3.10) would remain exact under HomA(T,−) yielding that n <
HomA(T,Q)-codomdimR(A)DT contradicting the definition of n.

So, the exact sequence 0 → E → Xn+1 → C → 0 yields that dimF(∇)E = 1.
Hence, dimF(Δ)

�E = 1. By proposition 2.9, we obtain that 0 �= Ext2A(�E, ��E) 

Ext2A(�E,E). By lemma 3.3(3) on the exact sequence 0 → �E → �Xn+2 → · · · →
�X2n+1 → �L→ 0 we obtain 0 �= Ext2A(�E,E) 
 Extn+2

A (�L,E). This contradicts
idim⊥QE being at most n+ 1. We will now treat the case n = 0. Assume, for
the sake of contradiction, that Q-codomdimADA � 1, then there exists an exact
sequence 0 → L→ X1 → DA→ 0 which remains exact under HomA(Q,−) and
X1 ∈addQ. Hence, L ∈ Q⊥, �L ∈ ⊥Q, dimF(∇)(L) � 1 and the ⊥Q-injective dimen-
sion of L is at most one. In particular, Ext2A(�L,L) = 0. By proposition 2.9, we must
have that L ∈ F(∇). But, then applying HomA(T,−) to 0 → L→ X1 → DA→ 0
yields that HomA(T,Q)-codomdimR(A) HomA(T,DA) � 1 which, in turn, implies
that n = Q-domdimT � 1 by proposition 2.6(i). �

The following gives a positive answer to the Conjecture 6.2.4 of [8], which is a
special case by taking A to be a Schur algebra and Q the tensor space V ⊗d.

Proposition 3.6. Let (A, {Δ(λ)λ∈Λ}) be a split quasi-hereditary algebra over a
field k with a simple preserving duality. Let T be a characteristic tilting module of
A. Assume that Q ∈addT satisfies Q-domdimAA � 2. Then,

Q-domdimAA = 2 ·Q-domdimA T � 2 domdimA T = domdimA. (3.11)

Proof. Let P be a faithful projective–injective module over A. By assumption,
Q-domdimAA � 2, so by corollary 2.3 it follows that Q-domdimA P � 2. Since P
is injective we must have that P ∈addQ. Hence, HomA(T, P ) ∈add HomA(T,Q).

By proposition 2.6(i),

Q-domdimA T = HomR(A)(T,Q)-codomdimR(A)DT

� HomA(T, P )-codomdimR(A)DT

= P -domdimA T = domdimA T. (3.12)

Applying theorem 3.1 to the partial tilting modules P and Q, the result follows. �

Example 3.7. We illustrate the proof of theorem A, using the Schur algebra S(2, 4)
over a field of characteristic 2. Its basic algebra A is isomorphic to KQ/I where Q
is the quiver

and I = 〈βα, γδ, (αβ)δ, γ(αβ)〉 (see [26, 5.6]). (Here, we label vertices consistent
with later sections.) The partial order is 4 > 2 > 0, all standard modules are unis-
erial, Δ(2) has composition factors labelled 2, 0 and Δ(4) has composition factors
labelled 4, 0, 2. Then, T (4) and T (2) are uniserial, with

0 → Δ(4) → T (4) → Δ(2) → 0, 0 → Δ(2) → T (2) → Δ(0) → 0

We take Q = T (4) ⊕ T (2), then the characteristic tilting module is Q⊕ T (0) and
T (0) is the simple module L(0).
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Consider the sequences in the proof of lemma 3.4. First, sequence (3.7) is the
start of a minimal projective resolution of DT as a module for R(A). We apply
T ⊗R(A) (−) which gives sequence (3.8). We know that it is a resolution of D(A)
with terms in add(Q) which is exact under Hom(Q,−), and from this information
we see that it is

0 → C 
 T (0)2 → X2 → X1 → D(A) → 0

(where X1 = T (4)3 ⊕ T (2) and X2 
 T (2)2). This shows, by the dual of corollary
2.5, that

Q-codomdimAD(A) = 2 +Q-codomdimA T (0).

In particular, HomA(T,Q)-codomdimR(A)DT = 2. By proposition 2.6(i), n =
Q-domdimA T = 2. In this case, C is already too simple and we know its rela-
tive codominant dimension using the simple preserving duality, thus this is enough
already to deduce that Q-codomdimADA = 4.

Assume, for the moment, that at this point we did not know the value of
Q-codomdimA C. We consider now the proof of theorem 3.1. The exact sequence
(3.10) is precisely:

0 → Δ(2) → T (2) → X2 → X1 → DA→ 0,

where the map T (2) → X2 factors through T (0). Hence, E = Δ(2). Step (1), that is,
(3.10) together with lemma 3.3(2) gives that idim⊥Q Δ(2) � 3. Indeed, the (abso-
lute) injective dimension idimA Δ(2) is exactly 3, so idim⊥Q Δ(2) must be at most 3.
By the proof of theorem 3.1, if Q-codomdimADA > 2 · 2 = 4, then proposition 2.9
through the object �L would give that idim⊥Q Δ(2) > 3 which does not happen.

4. Input from Schur algebras

The main work to prove the second main result, to determine the Hemmer–Nakano
dimension of F(Δ) over the quasi-hereditary cover for the Temperley–Lieb algebra,
in §6 and 7, will be done for Schur algebras, and we can work over an algebraically
closed field. In this section, we give an outline of the background. To keep the
notation simple, we do this for the classical case.

AssumeK is an algebraically closed field. The Schur algebra S = SK(n, d) (or just
S(n, d)) of degree d over K can be defined in different ways. One can start with the
symmetric group Sd which acts (on the right) by place permutations on the tensor
power V ⊗d where V is an n-dimensional vector space. Then, the Schur algebra
S(n, d) is the endomorphism algebra EndKSd

(V ⊗d). Analogously, the integral Schur
algebra SR(2, d) is defined as the endomorphism algebra EndRSd

((R2)⊗d) where
(R2)⊗d affords a right RSd-module structure via place permutations with R being
a commutative Noetherian regular ring (of positive Krull dimension). Alternatively
one can construct S(n, d) via the general linear group GL(V ), for details see for
example [33, 2.3] or [16, Section 1]. The first route shows that the endomorphism
algebra of S(n, d) acting on V ⊗d is a quotient of KSd. The second approach allows
one to use tensor products and Frobenius twists as tools to study representations.
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The Schur algebra S(n, d) is quasi-hereditary, with respect to the dominance
order on the set Λ+(n, d) of partitions of d with at most n parts, which is the stan-
dard labelling set for simple modules. It has a simple preserving duality �(−) (see
e.g. [20, p. 83]). For each partition λ of d with at most n parts, the correspond-
ing simple module will be denoted by L(λ). We denote the standard module with
simple top L(λ) by Δ(λ), then the costandard module with simple socle L(λ) is
∇(λ) = �Δ(λ). For background we refer to [21, 22, 27].

Of central importance for the quasi-hereditary structure is the characteris-
tic tilting module T : by [48] the indecomposable modules in F(Δ) ∩ F(∇) are
in bijection with the weights. Write T (λ) for the indecomposable labelled by
λ ∈ Λ+(n, d). Then, the direct sum T :=

⊕
λ∈Λ+(n,d) T (λ) (or a module with the

same indecomposable summands) is a distinguished tilting module, known as the
characteristic tilting module of S. Its endomorphism algebra R(S) := EndS(T )op

is again quasi-hereditary and R(R(S)) is Morita equivalent (as quasi-hereditary
algebra) to S.

For each λ, there is an associated exact sequence:

0 → Δ(λ) → T (λ) → X(λ) → 0 (4.1)

where X(λ) has Δ-filtration where only Δ(μ) with μ < λ occur. We will refer to
this as a standard sequence.

We follow the usual practice in algebraic Lie theory to refer to a module in add(T )
as a tilting module, and to T as a full tilting module (this will not be ambiguous
here).

For the connection between Schur algebras and symmetric groups, the tensor
space V ⊗d is of central importance. As it happens, the tensor space is a direct sum
of tilting modules, and T (λ) occurs as a summand if and only if λ is p-regular (i.e.
does not have p equal parts). For the quantum case, T (λ) occurs in the tensor space
if and only if λ is �-regular where q is a primitive �-th root of 1. This is proved in [27,
4.2], or combining the reasoning of [27, 4.2] with [20, 2.2(1), 4.3, 4.7] respectively.
Hence, the following result has become folklore.

Lemma 4.1. Assume that n = 2 and d is a natural number. If charK �= 2 or d is
odd, then V ⊗d is a characteristic tilting module over SK(2, d).

Proof. If K has characteristic zero, then the Schur algebra S(2, d) is semi-simple
(see e.g. [33, (2.6)e]) and since V ⊗d is faithful over S(2, d) it contains the regular
module in its additive closure, and in particular, V ⊗d is a characteristic tilting
module. If K has positive characteristic, as discussed before V ⊗d is a characteristic
tilting module over S(2, d) if and only if all partitions of d in at most 2 parts are
charK-regular partitions of d. Of course, all partitions of d in at most 2 parts are
p-regular if p > 2. If d is odd, then there are no partitions of d in exactly two equal
parts. �

From now on we assume n = 2 and charK = 2, or in the quantum case that
� = 2. We also assume d is even (unless specified differently).
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4.1. On the quasi-hereditary structure of S(2, d)

Let S = S(2, d), and let e = ξ(d) be the idempotent corresponding to the largest
weight (in the notation of [33, 3.2]). Then, SeS is an idempotent heredity ideal
and S/SeS is isomorphic to S(2, d− 2) (for details see e.g. [26, 1.3]). Since SeS is
a heredity ideal corresponding to (d), factoring it out is compatible with the quasi-
hereditary structure. Furthermore, as it is proved in the appendix of [22] computing
Exti’s for S/SeS-modules is the same whether in S or in S/SeS. In particular,
S(2, d)-mod is the full subcategory of S(2, d+ 2)-mod consisting of modules whose
composition factors are different from those appearing in the top of Se.

We work mostly with the restrictions of simple modules, (co)standard modules
and tilting modules to SL(2,K). Recall that L(λ) and L(μ) are isomorphic as
SL(2,K)-modules if and only if they can be regarded both as S(2, d)-modules
for some large d and they are isomorphic as S(2, d)-modules. This fact can be
seen using the canonical surjective map of KSL(2,K) onto S(2, d). Since every
partition (λ1, λ2) of d in at most two parts is completely determined by the value
λ1 − λ2, it follows that L(λ) and L(μ) are isomorphic as SL(2,K)-modules if and
only if λ1 − λ2 = μ1 − μ2. Similarly, we may label the standard modules and tilting
modules.

We therefore label these modules by m = λ1 − λ2 if λ = (λ1, λ2) (such labellings
can also be found e.g. in [24, Subsection 3.2]). This means that we consider Schur
algebras S = S(2, d), allowing degrees to vary but keeping the parity. We make the
convention that we view tacitly modules for S(2, d′) with d′ � d of the same parity
as modules for S(2, d). We say that such a degree d′ is admissible for the module
defined in degree d. With this, the weights labelling the simple modules for S(2, d)
are precisely all non-negative integers m � d of the same parity. The dominance
order when p = 2 and the degree is even, is the linear order.

The tilting module T (0) is simple, it is the trivial module for SL(2,K). As a
building block, the tilting module T (1) appears, which is isomorphic to the natural
SL(2,K)-module V . Furthermore, T (2) ∼= V ⊗2. For d � 4 we have that V ⊗d is the
direct sum of T (k) where all T (k) occur for k of the same parity of d, except that
T (0) does not occur when d is even. (See e.g. [27, 4.2], it is implicitly in [17, 3.4].)

4.2. The category F(Δ) and projective modules

Non-split extensions of standard modules satisfy a directedness property, that is:

Ext1S(Δ(r),Δ(s)) �= 0 implies r < s.

This has the following immediate consequence:

Lemma 4.2. Every module in F(Δ) has a filtration in which weights of Δ-quotients
increase from top to bottom.

Proof. This follows for example from [22, Lemma 1.4], see also [11, B.0.6]. See [38],
for an earlier reference. �

Of main interest for us are the indecomposable projective modules. Let Pd(m)
denote the indecomposable projective of S(2, d) with simple quotient L(m). Recall
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Figure 1. Decomposition matrix for S(2, 46) for p = 2. The (m, n)-entry denotes
(Δ(m) : L(n)), the column label is the same as the row label.

Pd(m) has a Δ-filtration, and that the filtration multiplicities [Pd(m) : Δ(w)] are
the same as the decomposition numbers. That is,

[Pd(m) : Δ(w)] = (∇(w) : L(m)) = (Δ(w) : L(m)).

where we write (M : L(m)) for the multiplicity of L(m) as a composition factor
of the module M . Note this also shows that projective modules depend on the
degree d. In this case, decomposition numbers are always 0 or 1, see [34, Prop. 2.2,
Theorem 3.2]. We give an example in figure 1.

It follows that either Pd(m) ∼= Pd−2(m) as a module for S(2, d), or else there is
a non-split exact sequence:

0 → Δ(d) → Pd(m) → Pd−2(m) → 0. (4.2)

Namely, the top of Pd−2(m) is L(m), so there is a surjective homomorphism from
Pd(m) onto Pd−2(m). Recall that F(Δ) is closed under kernels of epimorphisms. By
the filtration property in lemma 4.2 if this is not an isomorphism, then its kernel
is a direct sum of copies of Δ(d) and there is only one since the decomposition
numbers are �1.

4.3. Twisted tensor product methods

Let (−)F denote the Frobenius twist (see [20, p. 64]), this is an exact functor.
In our setting, that is for even characteristic, we have the following tools, due to
[17]. Odd degrees when p = 2 are less important. Namely, each block of S(2, d)
for d odd is Morita equivalent to some block of some Schur algebra S(2, x) with
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x = (d− 1)/2 via the functor Δ(1) ⊗ (−)F , see for example [23, Lemma 1] or [18,
Section 4, Theorem].

(1) (a) Let m = 2t. There is an exact sequence of S-modules:

0 → Δ(t− 1)F → Δ(m) → Δ(t)F → 0

Taking contravariant duals gives the analogue for costandard modules.

(b) Let m = 2t+ 1, then Δ(m) ∼= L(1) ⊗ Δ(t)F .
(See e.g. [6, Prop. 3.3]).

We note that this determines recursively the decomposition numbers, as input
using that Δ(t) is simple and isomorphic to L(t) for t = 0, 1, recall p = 2. This
can also be used to show that when p = 2 and d is even, the algebra S(2, d) is
indecomposable. Further, this also implies, by induction, that the decomposition
numbers are always 0 and 1 when p = 2 and d is even.

(2) We have a complete description of the indecomposable tilting modules in this
case. We have already described T (m) for m � 2. The following is due to
Donkin, see [17, Example 2, p. 47].

Proposition 4.3. Let m = 2s and m � 2, then

T (m) ∼= T (2) ⊗ T (s− 1)F

If m = 2s+ 1, then T (r) ∼= T (1) ⊗ T (s)F .

This describes recursively all indecomposable tilting modules.
The following shows that filtration multiplicities [T (m) : Δ(w)] are � 1.

Proposition 4.4. The Δ-filtration multiplicities of indecomposable tilting modules
in even degree can be computed recursively from:

0 → Δ(2t+ 2) → T (2) ⊗ Δ(t)F → Δ(2t) → 0.

To prove this, one may specialize [6, Prop. 3.4].
We will see below that modules T (2) ⊗XF for X in F(Δ) have infinite relative

dominant dimension with respect to V ⊗d. This means that we can use lemma 2.2
(from Lemma 3.1.7 of [10]) to relate the relative V ⊗d-dominant dimension of the
end terms, and this suggests a route towards the proof of our second main result.

We define a twisted filtration of a module M ∈ F(Δ) to be a filtration where each
quotient is isomorphic to T (2) ⊗ Δ(t)F for some t.

Lemma 4.5. Let m = 2s � 1. Then, the tilting module T (m) has a twisted filtration

0 = Mk ⊂Mk−1 ⊂ · · · ⊂M1 ⊂M0 = T (m)

with Mi−1/Mi
∼= T (2) ⊗ Δ(si)F , with quotients Δ(2si) and Δ(2si + 2), for s1 <

s2 < · · · < sk.
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Proof. We have T (m) ∼= T (2) ⊗ T (s− 1)F . The module T (s− 1) has a Δ-filtration

Nk = 0 ⊂ Nk−1 ⊂ . . . ⊂ N0 = T (s− 1)

with Ni−1/Ni
∼= Δ(si) and such that s1 < s2 < · · · < sk, by lemma 4.2. Applying

the exact functor T (2) ⊗ (−)F gives the claim. �

Remark 4.6. (1) The algebra S(2, d) is Ringel self-dual for p = 2 and d even if
and only if d = 2n+1 − 2 for some n, see [23, Theorem 27] and for a functorial
proof see [24, 5.4]. In [23, Corollary 21] and [24, Section 5], the projective
tilting modules (and also the injective tilting modules) have been identified
for these degrees.

(2) Each T (m) has a simple top, by proposition 4.3, using [23, Lemma 11], or
[24, 3.4].

5. The relative dominant dimension of the regular module with respect
to V ⊗d

Let S = S(2, d) and assume that K has characteristic p. Recall that the indecom-
posable summands of V ⊗d are precisely the T (λ) where λ is a partition of d with at
most two parts, such that λ does not have p equal parts. Recall that we identify λ
with m = λ1 − λ2. Hence, unless p = 2 and d is even, all indecomposable summands
of T occur in V ⊗d, and then V ⊗d-domdimS S = ∞, by the following:

Lemma 5.1. If V ⊗d has all T (λ) as direct summands, then

inf{V ⊗d-domdimS M : M ∈ F(Δ)} = +∞.

Proof. Every module in F(Δ) admits a finite addT -coresolution (see e.g. [48,
lemma 6] or [15]) which, in particular, remains exact under HomS(−, V ⊗d). By
corollary 2.5, the result follows. �

5.1. The characteristic two case

Lemma 5.1 leaves us to consider p = 2 and d even (�= 0). In this case, as mentioned
above, the components of V ⊗d are the T (m) with m �= 0. The standard sequence
(4.1) is an addT -approximation, this follows from a special case of proposition 2.4.
In particular,

V ⊗d-domdimS Δ(d) = 1 + V ⊗d-domdimS X(d). (5.1)

Theorem 5.2. Let d = 2s > 0. We have

V ⊗d-domdimS(Δ(d)) = s+ V ⊗d- domdimS(T (0)).

To prove this, we will use lemma 2.2 on extensions of Δ(t) by Δ(2 + t).
The cases d = 2 and d = 4 are easy.

(1) For d = 2 we have the exact sequence 0 → Δ(2) → T (2) → Δ(0) = T (0) → 0,
which proves the statement of the theorem by corollary 2.5.
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(2) Let d = 4, we have the exact sequence 0 → Δ(4) → T (4) → Δ(2) → 0. Splic-
ing this with the sequence for Δ(2) gives the claim.

Degrees d � 6 need more work. The main ingredient is the observation that sub-
quotients of the form T (2) ⊗NF with N ∈ F(Δ) are not relevant for a minimal
V ⊗d-approximation.

Lemma 5.3. Let X ∈ S(2, s)-mod. Assume that X ∈ F(Δ). Then, the module
T (2) ⊗XF has infinite relative dominant dimension with respect to V ⊗d for any
even degree d greater or equal to 2s+ 2.

Proof. By lemma 2.2 it suffices to prove this when X = Δ(s). We proceed by induc-
tion on s. When s = 0 or s = 1 we see that T (2) ⊗ Δ(s)F is a summand of V ⊗d.
For the inductive step consider the exact sequence:

0 → T (2) ⊗ Δ(s)F → T (2) ⊗ T (s)F → T (2) ⊗X(s)F → 0.

The middle term is isomorphic to T (2 + 2s). Since X(s) has a filtration with quo-
tients Δ(t) for t < s it follows by induction (and lemma 2.2) that the module
T (2) ⊗X(s)F has infinite V ⊗d-dominant dimension for any even degree d � 2s+ 2.
We deduce that the module T (2) ⊗ Δ(s)F has infinite V ⊗d-dominant dimension as
well. �

Proof of theorem 5.2. Assume d = 2s � 4. By proposition 4.4, there exists
S(2, d)-exact sequences

0 → Δ(2t+ 2) → T (2) ⊗ Δ(t)F → Δ(2t) → 0, (5.2)

for every 0 � t � s− 1. Moreover, they remain exact over HomS(2,d)(−, V ⊗d) since
V ⊗d is a partial tilting module and so Ext1S(2,d)(Δ(2t+ 2), V ⊗d) = 0. By lemma
5.3, T (2) ⊗ Δ(t)F has infinite relative dominant dimension with respect to V ⊗d for
0 � t � s− 1. By lemma 2.2,

V ⊗d-domdimS(2,d) Δ(2t+ 2) = 1 + V ⊗d-domdimS(2,d) Δ(2t), 0 � t � s− 1.
(5.3)

Hence, V ⊗d-domdimS(2,d) Δ(0) = s+ V ⊗d-domdimS(2,d) Δ(d). �

We will now determine the relative dominant dimension of S(2, d) with respect
to V ⊗d. Let Pd(m) be the indecomposable projective S(2, d)-module with homo-
morphic image L(m). Throughout, d and m are even.

Lemma 5.4. Consider a projective module Pd(m) where d and m are even with
m < d. Then, one of the following holds.

(a) The number of quotients in a Δ-filtration of Pd(m) is even and Pd(m) has a
twisted filtration.

(b) There is an exact sequence

0 → Δ(d) → Pd(m) → Pd−2(m) → 0

and Pd−2(m) has a twisted filtration.
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Proof. Our strategy consists of proving that the projective module Pd(m) is a
quotient of a tilting module and then to combine this fact with lemma 4.5. Let
rn := 2n+1 − 2. There is a unique n such that rn−1 < d � rn. By our convention,
we can view Pd(m) as a module in degree rn. Since it has a simple top isomorphic
to L(m), it is isomorphic to a quotient of Prn

(m).
By [23, Corollary 21] or [24, Section 5], we have the following.

(i) If 0 � m < (rn)/2, then Prn
(m) is a tilting module (in fact, it is isomorphic

to T (rn −m)).

(ii) For (rn)/2 < m � rn, the projective module Prn
(m) is a factor module of the

tilting module T (rn+1 −m).

We exploit this now. Let m̂ be the weight as above such that Pd(m) is a quotient
of T (m̂). With the notation as in lemma 4.5, since F(Δ) is closed under kernels
of epimorphisms there is a submodule U ⊆ T (m̂) which has a Δ-filtration, with
Mi ⊆ U ⊂Mi−1 where 0 < i � k, and Pd(m) ∼= T (m̂)/U .

If U = Mi then we have part (a). Otherwise, Pd(m) has the submodule Mi−1/U
which is isomorphic to Δ(2si) and U/Mi

∼= Δ(2si + 2). Moreover, Pd(m)/Δ(2si) 

T (m̂)/Mi−1 which has a twisted filtration. Since Δ(2si) ⊂ Pd(m) we deduce 2si � d.
Suppose we have 2si < d, then 2si + 2 � d. Hence, T (m̂)/Mi ∈ S(2, d)-mod. Since
Pd(m) is a quotient of the indecomposable T (m̂), T (m̂) has a simple top isomorphic
to L(m). So, the module T (m̂)/Mi has a simple top isomorphic to L(m) and is in
degree d, and therefore must be a quotient of Pd(m). In particular, we would obtain
Mi = U . This is not so in the case considered. Therefore, 2si = d and the result
follows from (4.2). �

Example 5.5. Consider figure 1, with d = 28. Then, rn = 30 and the projective
modules Pd(m) for 15 < m < 28 are as follows. We have (a) when m = 18, 20, 22, 26
and we have (b) when m = 16, 24. Note that cases Pd(m) ∼= Pd−2(m) occur in (a).

Corollary 5.6. With the setting as in lemma 5.4,
if (a) occurs, then V ⊗d-domdimS Pd(m) = +∞.
If (b) occurs, then for d = 2s we have V ⊗d-domdimS Pd(m) = V ⊗d-domdimS Δ(d).

In particular,

V ⊗d-domdimS S(2, d) = V ⊗d-domdimS Δ(d) = (d/2) + V ⊗d-domdimS T (0).

Proof. This follows directly from lemmas 5.4 and 2.2. �

This completes the proof of theorem B for algebraically closed fields. By [10,
Lemma 3.2.3], the result also holds over arbitrary fields.

5.2. The quantum case

Remark 5.7. If q is not a root of unity, then SK,q(2, d) is semi-simple [20, 4.3(7)]
and V ⊗d being faithful is a characteristic tilting module. Otherwise, the summands
of V ⊗d over SK,q(2, d) are the tilting modules labelled by the �-regular partitions of
d in at most two parts, where q is an �-root of unity. Hence, replacing charK by �
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in lemma 4.1, we obtain that V ⊗d is a characteristic tilting module over SK,q(2, d)
if q + 1 �= 0 or d is odd.

For the quantum case, it is enough to take S = SK,q(2, d) where q + 1 = 0. In
this case, everything is exactly the same as over S(2, d) when charK = 2. Namely,
we may take SK,q(2, d) as Aq(2, d)∗ as it is done in [6, 20], and also in [12, 19].
The definition of Aq(2) may be found in [12, p. 16]. This means that one takes the
quantum group G(2) as defined in [12] instead of SL(2,K).

As it is explained in [24, Sections 3.1 and 3.2], we can use the same labelling for
weights; in that paper the parameter q is a primitive �-th root of 1 and we only
need � = 2. We can regard SK,q(2, d) as a factor algebra of SK,q(2, d+ 2), using [20,
Section 4.2], and therefore regard modules in degree d again as modules in degree
d′ for d′ > d of the same parity.

There is a Frobenius morphism from the quantum group G(2) to the classical
setting, hence if Δ(m) (resp. T (m)) is a standard module (resp. a tilting module) for
the classical setting, then Δ(m)F (resp. T (m)F ) is a module for the quantum group,
and so are the tensor products T (2) ⊗ Δ(m)F and T (2) ⊗ T (m)F modules for the
quantum group. The q-analogues of the exact sequences in § 4.3 and proposition
4.4 exist by [6, Prop. 3.3 and 3.4]. See also [24, Proposition 3.1] (our situation of
interest is recovered by fixing l = 2 in their setup). The q-analogue of proposition
4.3 can be found in [20, Section 3.4, p. 73, (8)].

We note that (1) of § 4.3 and the q-analogue imply, by induction, that all
decomposition numbers are 0 or 1.

In [12], it is shown that this version of the q-Schur algebra is the same as our
definition, as the endomorphism algebra of the action of the Iwahori–Hecke algebra
on the tensor space V ⊗d, see § 6. The definition of the Iwahori–Hecke algebra, as
we take it is given in 6.2. In particular, we denote by H the Iwahori–Hecke algebra.
Their strategy in [12, Section 3] is to show that the action of the Iwahori–Hecke
algebra on the tensor space is a comodule homomorphism (see 3.1.6 of [12]). The
H-action in [12, 3.1.6] is not the same as ours, but it is explained in detail (see
4.4.3 of [12]) that the action we use also can be taken.

Hence, the arguments of § 5 remain valid in the quantum case and therefore, we
obtain the following:

Theorem 5.8. Let K be a field and fix q = u−2 for some u ∈ K. Let S be the
q-Schur algebra SK,q(2, d) and T be the characteristic tilting module of S. Then,

V ⊗d-domdimS S = 2 · V ⊗d-domdimS T =

{
d, if 1 + q = 0 and d is even,
+∞, otherwise .

Remark 5.9. One might want to know for which m it is true that
V ⊗d-domdimS Pd(m) is finite. In principle, one can answer this, using the formula
in [34] for decomposition numbers. Namely, this V ⊗d-dominant dimension is finite
if and only the number of Δ-quotients of Pd(m) is odd, that is the number of 1s in
the column of L(m).

Example 5.10. We give an illustration of theorem B, we continue with example 3.7.
Let A = S(2, 4) where K has characteristic 2, then add(V ⊗4) = add[T (2) ⊕ T (4)].
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The fact that Q-domdim Δ(4) = 2 +Q-domdimA T (0) for this example
was already done in the proof of theorem 5.2. Case (a) of lemma 5.4
occurs for P (2). Indeed, Q-domdimA P (2) = +∞ since P (2) 
 T (4). Case
(b) of lemma 5.4 occurs for P (0). Indeed, there exists an exact sequence
0 → Δ(4) → P (0) → T (2) → 0, where Q-domdimA T (2) = +∞. So, lemma 2.2
gives that Q-domdimA P (0) = Q-domdimA Δ(4). Therefore, Q-domdimA =
Q-domdimA Δ(4) = 2 +Q-domdimA T (0) = 2 +Q-domdimA T = 4.

5.3. An application of theorem B

In [3], Buan and Solberg characterize complements of almost complete (co) tilting
modules. Let Q be an A-module, then the faithful dimension of Q as they define
it, is equal to Q-domdimAA. A partial tilting module Q is almost complete if it is
not a tilting module, but there is an indecomposable module X such that Q⊕X
is a tilting module. In this case, call X a complement of Q. Recall that a module
M is a tilting module over A if and only if DM is a cotilting module over Aop and
M -domdimA = DM -domdimAop A.

Hence, dualizing [3, Theorem 3.6] and [3, Proposition 3.2] of Buan and Solberg
we have the following.

Theorem 5.11. Let A be a finite-dimensional algebra over a field.

(1) Let n be a non-negative integer. An almost complete tilting A-module Q has
n+ 1 complements if and only if Q-domdimAA = n.

(2) Let Q ∈ A-mod so that Q⊕X is a tilting A-module. If g : M0 → X is a sur-
jective minimal rightaddAQ-approximation of X, then ker g is a complement
of Q.

(3) Let Q ∈ A-mod so that Q⊕X is a tilting A-module. If f : X →M0 is
an injective minimal left addAQ-approximation of X, then coker f is a
complement of Q.

Assume A = S(2, d) for char(K) = 2 and d even, then Q = V ⊗d is an almost
complete tilting module. We have proved that Q-domdimA = d, so there should be
in general d+ 1 complements.

Example 5.12. Assume A = S(2, 4) when p = 2, we continue with the notation
as in example 5.10. Consider Q = V ⊗4. We know T (0) is a complement of Q.
By computing minimal right add(Q)-approximations, we get the following exact
sequence:

0 → P (0)
f2−→ T (2) ⊕ T (4)

f1−→ T (2)
f0−→ T (0) → 0. (5.4)

Namely, the kernel of the surjection f0 : T (2) → Δ(0) ∼= T (0) is Δ(2). Take f1 to
be the map where the first component has image L(0) and the second component
has image Δ(2), this is a right addQ approximation, and its kernel is isomorphic to
P (0). It is minimal since P (0) is indecomposable. A minimal right addQ approxima-
tion of P (0) cannot be surjective since P (0) is projective but not a direct summand
of Q.
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By (2) of theorem 5.11 on (5.4), we get that kerf0 = Δ(2) and P (0) are comple-
ments of Q. Now, applying the simple preserving duality functor to (5.4) we get an
exact sequence:

0 → T (0) → T (2) → T (2) ⊕ T (4) → I(0), (5.5)

and surjective minimal right approximations are sent to injective minimal left
approximations. Thus, the complements of Q are

P (0), Δ(2), T (0), ∇(2), I(0) → 0.

6. Temperley–Lieb algebras

These algebras were introduced in the context of statistical mechanics [50], and
then became popular through the work of Jones. In particular, he noticed that
they occur as quotients of Iwahori–Hecke algebras [40, 41]. See also [51] for further
details. We give the definition and discuss the connections with Schur algebras.

Definition 6.1. Let R be a commutative ring and δ an element of R. The
Temperley–Lieb algebra TLR,d(δ) over R is the R-algebra generated by elements
U1, U2, . . . , Ud−1 with defining relations, here 1 � i, j � d− 1 such that each term
is defined:

(a) UiUj = UjUi (|i− j| > 1),

(b) U2
i = δUi,

(c) UiUi+1Ui = Ui, 1 � i � n− 2,

(d) UiUi−1Ui = Ui, 2 � i � n− 1.

It can be viewed as a diagram algebra, with a very extensive literature, but we
will not give details since we do not use diagram calculations.

6.1. The classical case

We will start by considering the class of Temperley–Lieb algebras of the form
TLR,d(−2) which can be viewed as quotients of group algebras of the symmetric
group.

Lemma 6.2. There is a surjective algebra homomorphism Φ : RSd → TLR,d(−2)
taking the generator Ti = (i i+ 1) of Sd to Ui + 1 for 1 � i � d− 1.

Proof. Recall that the group algebra RSd is generated by the Ti subject to the
relations:

(a) TiTi+1Ti = Ti+1TiTi+1,

(b) TiTj = TjTi (|i− j| > 1),

(c) T 2
i = 1,
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for 1 � i, j � d− 1 such that each factor is defined. To show that the map is well-
defined one has to check that it preserves these relations; this is straightforward. It
is clear that Φ is surjective, noting that Ui = Φ(Ti − T 2

i ). �

The following description of the kernel of Φ goes back to [42, p. 364].

Theorem 6.3. For each i = 1, 2, . . . , d− 2 define

xi := TiTi+1Ti − TiTi+1 − Ti+1Ti + Ti + Ti+1 − 1 ∈ RSd.

Let I be the ideal of RSd generated by the xi for 1 � i � d− 2. Then, there is an
exact sequence

0 → I → RSd
Φ→ TLR,d(−2) → 0

Proof. One checks that Φ(xi) = 0 for each i = 1, . . . , d− 2. So, we have a commu-
tative diagram:

where π maps the image of Ti in RSd/I to Φ(Ti) = Ui + 1, and ι is the inclusion
map. Consider π′ : TLR,d(−2) → RSd/I defined by taking Ui to the image of Ti − 1
in RSd/I. One checks that π′ preserves the defining relations for TLR,d(−2), so that
it is a well-defined map. Finally,

π′(π(Ti + I)) = Ti + I, π(π′(Ui)) = Ui.

Therefore, ker Φ = I. �

It is nowadays widely known that Temperley–Lieb algebras can be viewed as
the centralizer algebras of quantum groups sl2 in the endomorphism algebra of a
tensor power and this goes back to the work of Martin [44] and Jimbo [39]. Recall
that over R, the Schur algebra SR(2, d) is defined as the endomorphism algebra
EndRSd

((R2)⊗d), where (R2)⊗d affords a right RSd-module structure via place
permutation. In order to relate the Temperley–Lieb algebra to the Schur algebra,
we need a suitable action of the Temperley–Lieb algebra on the tensor space. It is
as follows.

Theorem 6.4. Let V be a free R-module of rank 2. Then, V ⊗d is a module over Λ =
TLR,d(−2) where Ui acts as id⊗(i−1)

V ⊗ τ ⊗ id⊗(d−i−1)
V . Here, τ is the endomorphism

of V ⊗2 defined by

τ(v1 ⊗ v2) = v2 ⊗ v1 − v1 ⊗ v2

(for v1, v2 ∈ V ). Moreover, there is an algebra isomorphism

Λ → EndSR(2,d)(V ⊗d)op.
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Proof. We know that RSd acts by place permutations on V ⊗d and we can view
this as a right action. With this, Ti − 1 acts as Ui on the space V ⊗d. This shows
that it factors through Λ. In particular, to show that Λ → EndS(2,d)(V ⊗d)op is
surjective it is enough to check that the canonical map RSd → EndS(2,d)(V ⊗d)op

is surjective. But this follows from classical Schur–Weyl duality (see e.g. [43]). In
fact, this can be seen in the following way: let K be a field, then the canonical map
KSd → EndS(2,d)(V ⊗d)op fits in the following commutative diagram:

Here, ψ is surjective because domdimSK(d, d) � 2 and φ is surjective by [27, 1.7]
and [20, 4.7] because (Kd)⊗d is a projective–injective module over S(d, d). Observe
that EndSR(2,d)(V ⊗d)op ∈ R-proj (see e.g. [9, Proposition A.4.3, Corollary A.4.4])
and it has a base change property (see e.g. [9, Corollary A.4.6]). In particular,
R(m) ⊗R EndSR(2,d)(V ⊗d)op 
 EndSR(m)(2,d)(V ⊗d)op for every maximal ideal m of
R. By the above discussion, the maps R(m)Sd → EndSR(m)(2,d)(V ⊗d)op are sur-
jective for every maximal ideal m of R. Now, by Nakayama’s lemma the map
RSd → EndSR(2,d)(V ⊗d)op is surjective.

It remains to show that the action of Λ is injective. Let
∑

i aiUi ∈ Λ act-
ing as zero on V ⊗d. The action of

∑
i aiUi in yk, defined as the basis element

e1 ⊗ · · · ⊗ e1 ⊗ e2 ⊗ e1 ⊗ · · · ⊗ e1 where e2 appears in position k + 1, yields that
ak = ak+1 = 0. This concludes the proof. �

6.2. The q-analogue

We shall now discuss the general case of theorem 6.4 and its importance for all
Temperley–Lieb algebras.

Let R be a commutative Noetherian ring with an invertible element u ∈ R. We
fix a natural number d, and we set q := u−2. We take the Iwahori–Hecke algebra
H = HR,q(d) to be the R-algebra with basis {T̃w | w ∈ Sd} with relations:

T̃wT̃s =

{
T̃ws if l(ws) = l(w) + 1
(u− u−1)T̃w + T̃ws otherwise.

Here, s runs through the set of transpositions S = {(i i+ 1) | 1 � i < d} in Sd, and
l(w) is the usual length for w ∈ Sd, that is the minimal number of transpositions
needed in a factorization of w.

This presentation corresponds to the presentation used in [12–14, 20] by

T̃w = (−u)l(w)Tw.

The algebra H can also be defined by the braid relations, together with T̃ 2
s =

(u− u−1)T̃s + 1, that is

(T̃s − u)(T̃s + u−1) = 0 (s ∈ S).
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Lemma 6.5. Let δ = −u− u−1. Then, there is a surjective algebra homomorphism

Φ : HR,q(d) → TLR,d(δ)

taking the generator T̃i := T̃(i i+1) to Ui + u for 1 � i � d− 1.

Proof. We must show that Φ is well-defined, that is it respects the relations of
the Hecke algebra. It is clearly surjective. We work with the presentation via the
braid relations, together with (T̃i − u)(T̃i + u−1) = 0 (for 1 � i < d− 1). With the
definition given, Φ(T̃i + u−1) = Ui + u+ u−1 = Ui − δ and Φ(T̃i − u) = Ui. Hence,
we have Φ(T̃i + u−1)Φ(T̃i − u) = (Ui − δ)Ui = 0.

To check the braid relations, we compute:

(Ui + u)(Ui+1 + u)(Ui + u) = Ui + (uδ)Ui + u(UiUi+1 + Ui+1Ui) + 2u2Ui

+ u2Ui+1 + u3.

The coefficient of Ui is equal to u2. With this, the expression is symmetric in i, i+ 1
and is therefore equal to (Ui+1 + u)(Ui + u)(Ui+1 + u). �

We want to determine the kernel of Φ.

Theorem 6.6. For each i = 1, 2, . . . , d− 2 define

xi := T̃iT̃i+1T̃i − uT̃iT̃i+1 − uT̃i+1T̃i + u2T̃i + u2T̃i+1 − u3 ∈ H.

Let I be the ideal of HR,q(d) generated by the xi for 1 � i � d− 2. Fix
δ = −u− u−1, then there is an exact sequence

0 → I → HR,q(d)
Φ→TLR,d(δ) → 0.

Proof. From the proof of lemma 6.5 we see that

Φ(T̃i)Φ(T̃i+1)Φ(T̃i) = u2(Ui + Ui+1) + u(Ui+1Ui + UiUi+1) + u3

and with this one gets that Φ(xi) = 0 for all i. Hence, I ⊆ ker(Φ). Analogously to
the proof of theorem 6.3 replacing the map π′ with the map TLR,d(δ) → HR,q(d)
defined by taking Ui to the image of T̃i − u in HR,q(d)/I one proves equality. �

Let V ⊗d be the free R-module of rank n over R (later we will take n = 2). Then,
V ⊗d is a right H-module, which can be regarded as a deformation of the place per-
mutation action of Sd. Denote by I(n, d) the set of maps {1, . . . , d} → {1, . . . , n} and
by ij the image i(j). If i ∈ I(n, d) labels the basis element ei = ei1 ⊗ · · · ⊗ eid

of V ⊗d

and s = (t t+ 1) ∈ S we write ei · s for the basis element obtained by interchanging
eit

and eit+1 . Then

ei · T̃s :=

⎧⎨⎩
ei · s it < it+1

uei it = it+1

(u− u−1)ei + ei · s it > it+1

Focusing on the Temperley–Lieb algebra, we take n = 2. Recall that the q-Schur
algebra Sq(2, d) is the endomorphism algebra EndH(V ⊗d) via the action as above.
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Theorem 6.7. The H-module structure on V ⊗d factors through Φ : H → Λ =
TLR,d(δ), where δ = −u− u−1. Hence, Us acts as:

eiUs :=

⎧⎨⎩
eis − uei it < it+1

uei − uei it = it+1

(−u)−1ei + eis it > it+1

where s = (t t+ 1) ∈ S. Moreover, there is an algebra isomorphism

Λ → EndSR,q(2,d)(V ⊗d)op.

Proof. The first statement follows by checking that the elements xi act as zero on
V ⊗d.

The element T̃i − u acts exactly as the action of Ui in V ⊗d, so the canonical
map HR,q(d) → EndSR,q(2,d)(V ⊗d)op factors through Λ, that is, there is an algebra
homomorphism Λ → EndSR,q(2,d)(V ⊗d)op. The same argument as the one given in
theorem 6.4 works in this case replacing the Schur algebra by the q-Schur algebra
and the group algebra of the symmetric group by the Iwahori–Hecke algebra. The
injectivity follows again by considering the action of the elements in Λ, acting as zero
on V ⊗d, on the elements yk defined in the exactly same way as in theorem 6.4. �

Theorem 6.7 places V ⊗d in a central position in the representation theory of
Temperley–Lieb algebras where it plays a role similar to that played by (Rn)⊗d in
the study of the representation theory of symmetric groups via Schur algebras. In
fact, Theorem 8.1.5 of [10] specializes to the following.

Corollary 6.8. Let K be a field and fix q = u−2 for some element u ∈ K×. Let
T be a characteristic tilting module of S and let R(S) be the Ringel dual of S :=
SK,q(2, d) over a field K.

Then, (R(S),HomS(T, V ⊗d) is a (V ⊗d-domdimS T − 2)-F(ΔR(S)) quasi-
hereditary cover of TLK,d(−u− u−1), where ΔR(S) denotes the set of standard
modules over R(S). Moreover, the following assertions hold:

(i) If q + 1 �= 0 or d is odd, then TLK,d(−u− u−1) is the Ringel dual of
SK,q(2, d), and in particular, it is a split quasi-hereditary algebra over K;

(ii) If q + 1 = 0 and d is even, then (R(S),HomS(T, V ⊗d) is a
(

d
2 − 2

)
-F(ΔR(S))

quasi-hereditary cover of TLK,d(0) and HNdimF F(ΔR(S)) = d
2 − 2. In par-

ticular, the Schur functor

F := HomR(S)(HomS(T, V ⊗d),−) : R(SK,q(2, d))- mod → TLK,d(0)-mod

induces bijections

Exti
R(S)(M,N) 
 Exti

TLK,d(0)(FM,FN), ∀M,N ∈ F(ΔR(S)),

0 � i � d

2
− 2.

Proof. The result follows from theorem 5.8, [10, Theorem 8.1.5] and [10, Theorem
6.0.1]. �
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7. Uniqueness of the quasi-hereditary cover of TLR,d(δ)

In corollary 6.8, we have constructed a quasi-hereditary cover of TLK,q(δ) using
the Ringel dual of a q-Schur algebra. We will argue now that it is the best
quasi-hereditary cover of TLK,d(δ) if d > 2 (in the sense that there is no other
quasi-hereditary cover of the Temperley–Lieb algebra which satisfies (7.3)). For
that, going to the integral case is helpful. Assume that R is a commutative Noethe-
rian ring. Let u be an invertible element of R and fix q = u−2. If d = 1, 2 then
the Temperley–Lieb algebra TLR,q(−u− u−1) coincides with the Iwahori–Hecke
algebra HR,q(d) and so this case was dealt with in [9, Subsection 7.2].

Assume from now on that d > 2. Combining theorem 6.7 with Theorem 8.1.5 of
[10] we obtain the following:

Corollary 7.1. Let R be a commutative Noetherian ring. Fix an ele-
ment u ∈ R× and q = u−2. Let T be a characteristic tilting module of
(SR,q(2, d), {Δ(λ)λ∈Λ+(2,d)}). Denote by R(S) the Ringel dual of (SR,q(2, d),
{Δ(λ)λ∈Λ+(2,d)}), that is, R(S) = EndSR,q(2,d)(T )op.

Then, (R(S),HomSR,q(2,d)(T, V ⊗d)) is a (V ⊗d-domdimSR,q(2,d),R T − 2)-F(Δ̃R(S))
split quasi-hereditary cover of TLR,d(−u− u−1).

In the following, we will write R(S) to denote the Ringel dual EndSR,q(2,d)(T )op.
Denote by FR,q the Schur functor associated with the quasi-hereditary cover con-
structed in corollary 7.1. The aim now is to compute HNdimFR,q

F(Δ̃R(S)) and in
particular to determine V ⊗d-domdimSR,q(2,d),R T in terms of the ground ring R.

Theorem 7.2. Let R be a commutative Noetherian ring. Fix an element
u ∈ R× and q = u−2. Let T be a characteristic tilting module of (SR,q(2, d),
{Δ(λ)λ∈Λ+(2,d)}). Then,

V ⊗d-domdim(SR,q(2,d),R) T =

⎧⎨⎩
d

2
, if 1 + q /∈ R× and dis even

+∞, otherwise
.

Proof. The algebra SR,q(2, d) has the base change property: S ⊗R SR,q(2, d) 

SS,1S⊗q(2, d) as S-algebras for every commutative ring S which is an R-algebra
and the standard modules of SS,1S⊗q(2, d) are of the form S ⊗R Δ(λ), λ ∈ Λ+(n, d)
(see e.g. [11, Subsection 3.3, Section 5]). Hence, the result follows from theorem
5.8, [9, Propositions A.4.7, A.4.3], and [10, Theorem 3.2.5]. �

7.1. Hemmer–Nakano dimension of F(Δ̃R(S))

Similarly to the classical case (see also [9]), there are two cases to be considered.
Following [9], the commutative Noetherian ring R is called 2-partially q-divisible

if 1 + q ∈ R× or 1 + q = 0.

Theorem 7.3. Let R be a local regular 2-partially q-divisible (commutative Noethe-
rian) ring, where q = u−2, u ∈ R×. Let T be a characteristic tilting module of
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SR,q(n, d). Then,

HNdimFR,q
F(Δ̃R(S)) = V ⊗d-domdim(SR,q(2,d),R) T − 2. (7.1)

Proof. By corollary 7.1, HNdimFR,q
F(Δ̃R(S)) � V ⊗d-domdim(SR,q(2,d),R) T − 2.

If V ⊗d-domdim(SR,q(2,d),R) T = +∞, then d is odd, and then there is nothing to
prove. Assume that it is finite. By theorem 7.2, V ⊗d-domdim(SR,q(2,d),R) T = d

2 . In
particular, d is even and 1 + q /∈ R×. Hence, 1 + q must be zero. Therefore,

Q(R) ⊗R V ⊗d-domdim(SQ(R),q(2,d),Q(R))Q(R) ⊗R T =
d

2
,

where Q(R) is a quotient field of R.
By [10, Corollary 5.3.6], HNdimQ(R)⊗RFR,q

F(Q(R) ⊗R ΔR(S)) cannot be higher
than V ⊗d-domdim(SR,q(2,d),R) T − 2. It follows that

V ⊗d-domdim(SR,q(2,d),R) T − 2 = HNdimQ(R)⊗RFR,q
F(Q(R) ⊗R ΔR(S))

� HNdimFR,q
F(Δ̃R(S)).

�

Theorem 7.4. Let R be a local regular commutative Noetherian ring which is
not a 2-partially q-divisible commutative ring, where q = u−2, u ∈ R×. Let T be
a characteristic tilting module of SR,q(n, d). Then,

HNdimFR,q
F(Δ̃R(S)) = V ⊗d-domdim(SR,q(2,d),R) T − 1. (7.2)

Proof. By corollary 7.1, if V ⊗d-domdim(SR,q(2,d),R) T is infinite, then there is noth-
ing to show. So, assume that V ⊗d-domdim(SR,q(2,d),R) T is finite. By theorem 7.2,
d is even and 1 + q /∈ R×. By assumption, 1 + q �= 0, otherwise R would be a
2-partially q-divisible ring. It follows that

Q(R) ⊗R V ⊗d-domdim(Q(R)⊗RSR,q(2,d),R)Q(R) ⊗R T

is infinite by theorem 7.2. The result for d = 2 follows from [9, Theorem
7.2.7]. Assume that d � 4. By corollary 7.1 and [10, Theorem 3.2.5],
HNdimFR(m),qm

F(R(m) ⊗R ΔR(S)) � 0 and HNdimQ(R)⊗RFR,q
F(Q(R) ⊗R ΔR(S)) =

+∞, where m is the unique maximal ideal of R, and qm is the image of q in
R/m. By [9, Theorem 5.0.9], HNdimFR,q

F(Δ̃R(S)) � d
2 − 1. The Hemmer–Nakano

dimension cannot be higher because similarly to the proof of Theorem 7.2.7
of [9] there exists a prime ideal of height one p such that 1 + q ∈ p. Hence,
Q(R/p) ⊗R V ⊗d-domdimSQ(R/p),qp (2,d),Q(R/p) is exactly d

2 , where qp denotes the
image of q in R/p ⊂ Q(R/p). The result follows from [9, Theorem 5.1.1]. �

7.2. Uniqueness

In this part, assume that R = Z[x, x−1] and fix q = x−2. Assume that d > 2. By
[9, Proposition 5.0.3] and theorem 7.4, HNdimFR,q

F(Δ̃R(S)) � d
2 − 1. In particular,

the Schur functor FR,q induces an exact equivalence:

F(Δ̃R(S)) → F(FR,qΔ̃R(S)). (7.3)
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Corollary 7.5. (R(S),HomSR,q(2,d)(T, V ⊗d)) is the unique split quasi-hereditary
cover of TLR,d(−x− x−1) satisfying property (7.3), where T is a characteristic
tilting module of SR,q(2, d) and R(S) denotes the Ringel dual of SR,q(2, d). In par-
ticular, TLR,d(−x− x−1) is a split quasi-hereditary algebra over R if and only if d
is odd.

Proof. The first statement follows from corollary 2.11 together with [9, Proposition
5.0.3] and theorem 7.4. For the second statement see for example [9, Proposition
A.4.7] or [10, Theorem 6.0.1] together with theorem 7.2). �

As a consequence, when d is odd, the Temperley–Lieb algebra TLR,d(−x− x−1)
is exactly a Ringel dual of SZ[x,x−1],q(2, d).
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Appendix A. More applications of theorem A

In this section, we give two applications of theorem 3.1 showing how it can be a
useful tool to understand other problems.

Appendix A.1. Minimality of faithful direct summands of the
characteristic tilting module

In this subsection, we prove that there exists a unique minimal direct summand
of the characteristic tilting module, Q, affording a double centralizer property. Here,
minimal means that every other direct summand of the characteristic tilting module
affording a double centralizer property has Q as a direct summand. This fact was
first established in [36] using a different concept of relative dominant dimension;
however, our proof is shorter knowing theorem A. We also refer to [36, 46] for
previous background on this question.

Let M be an A-module and B its endomorphism algebra, then M satisfies the
double centralizer property if the canonical algebra homomorphism A→ EndB(M)
is an isomorphism. There are several characterizations in the literature for this
property. If A is a finite-dimensional algebra over a field, M satisfies the double
centralizer property if and only if M -domdimA � 2 (see e.g. [1, Corollary 2.4] or
[10, Lemma 5.1.2, Theorem 3.1.1, Corollary 3.1.5]).

A.1.1. Existence Let A be a split quasi-hereditary algebra (over a field) with a
simple preserving duality. Let T be the characteristic tilting module of A and denote
by R(A) the Ringel dual EndA(T )op of A. We use properties as summarized in § 3.

https://doi.org/10.1017/prm.2024.35 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.35


Quasi-hereditary covers of Temperley–Lieb algebras 35

Let P0(DT ) be the projective cover of DT as R(A)-module. Fix
T0 := T ⊗R(A) P0(DT ) ∈addA T . We show first that T0-domdimA � 2. The pro-
jective cover of DT gives the exact sequence

0 → Ω(DT ) → P0(DT ) → DT → 0 (A.1)

of R(A)-modules. Recall that DT is the characteristic tilting module of R(A), hence
is in F(ΔR(A)), and so is P0(DT ). Since F(ΔR(A)) is closed under kernels of epimor-
phisms, Ω(DT ) ∈ F(ΔR(A)). Therefore, by proposition 2.7, applying T ⊗R(A) − to
(A.1) gives the exact sequence

0 → T ⊗R(A) Ω(DT ) → T0 → T ⊗R(A) DT → 0. (A.2)

Moreover, T ⊗R(A) Ω(DT ) ∈ F(∇) and T ⊗R(A) DT 
 DA, so the exact sequence
(A.2) remains exact under HomA(T0,−). That is, T0-codomdimADA � 1. By
theorem 3.1, T0-domdimA � 2. So, T0 affords a double centralizer property.

A.1.2. Uniqueness and minimality Pick another Q ∈addA T satisfying
Q-domdimA � 2. By theorem 3.1, Q-domdimA T � 1. Applying proposition 2.6(i)
shows that

HomA(T,Q)-codomdimR(A)DT � 1.

Therefore, the projective cover of DT is in the additive closure of HomA(T,Q).
Therefore,

T0 ∈addA T ⊗R(A) HomA(T,Q) =addAQ.

Theorem A.1. Let A be a split quasi-hereditary algebra (over a field) with a simple
preserving duality. Then, the following assertions hold:

(1) T0 is the unique minimal direct summand of the characteristic tilting module
affording a double centralizer property.

(2) For every Q ∈addA T affording a double centralizer property, the following
holds:

Q-domdimAA � T0-domdimAA � 2.

Proof. Part (1) was proved in the above discussion. By proposition 2.6(i),

Q-domdimA T = HomA(T,Q)-codomdimR(A)DT � T0-codomdimR(A)DT

= T0-domdimA T

where the inequality holds since T0 ∈addAQ. By theorem 3.1, part (2) follows. �

Appendix A.2. Invariance of dominant dimension under Ringel duality

Given a split quasi-hereditary algebra A (over a field) with a simple preserving
duality, there are currently at least two methods to see that its dominant dimension
remains invariant under Ringel duality.
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Indeed, in such a setup, the Ringel dual of A also has a simple preserving duality
(see e.g. [29, Proposition 2.4, Lemma 3.2(1), (2)]) and so the Ringel dual of A
also has a faithful projective–injective if A has one. Moreover, in such a setup, the
Ringel dual of A has a faithful projective–injective if and only if A has one because
the Ringel dual of the Ringel dual of A is up to Morita equivalence A again. Since
the Ringel dual of A and A are derived equivalent, Theorem 5.5 of [28] states that
A and the Ringel dual of A have the same dominant dimension.

Under the addition of the assumption that A has positive dominant dimension
so that the endomorphism algebra of the faithful projective–injective module is a
symmetric algebra, Fang and Koenig proved in [29, Theorem 4.3] that the dominant
dimension of A is equal to the dominant dimension of the Ringel dual of A.

In the rest of this section, we propose a new proof of this fact.

Theorem A.2. Let (A, {Δ(λ)λ∈Λ}) be a split quasi-hereditary algebra over a field k.
Suppose that there exists a simple preserving duality �(−) : A-mod → A-mod. Then

domdimA = domdimR(A),

where R(A) denotes the Ringel dual of A.

Proof. Let T be the basic characteristic tilting module of A. As discussed above,
A has positive dominant dimension if and only if the Ringel dual of A has positive
dominant dimension. Assume that A has positive dominant dimension and assume
that P is a faithful projective–injective A-module. Then, HomA(T, P ) is a partial
tilting over R(A) since P is injective over A and it is projective since P is partial
tilting over A. Thus, HomA(T, P ) is a projective–injective module since each partial
tilting module is self-dual under the simple preserving duality functor (see e.g. [45,
Section 2]).

Then, by theorem 3.1 and proposition 2.6,

domdimA = 2domdimA T = 2P -domdimA T = 2HomA(T, P )-codomdimR(A)DT

= domdimR(A).

�
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