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Necrotising enterocolitis (NEC) is an uncommon, but devastating intestinal inflammatory disease that
predominantly affects preterm infants. NEC is sometimes dubbed the spectre of neonatal intensive care units,
as its onset is insidiously non-specific, and once the disease manifests, the damage inflicted on the baby’s
intestine is already disastrous. Subsequent sepsis and multi-organ failure entail a mortality of up to 65%.
Development of effective treatments for NEC has stagnated, largely because of our lack of understanding of
NEC pathogenesis. It is clear, however, that NEC is driven by a profoundly dysregulated immune system.
NEC is associated with local increases in pro-inflammatory mediators, e.g. Toll-like receptor (TLR) 4, nuclear
factor-κB, tumour necrosis factor, platelet-activating factor (PAF), interleukin (IL)-18, interferon-gamma, IL-6,
IL-8 and IL-1β. Deficiencies in counter-regulatory mechanisms, including IL-1 receptor antagonist (IL-1Ra),
TLR9, PAF-acetylhydrolase, transforming growth factor beta (TGF-β)1&2, IL-10 and regulatory T cells likely
facilitate a pro-inflammatory milieu in the NEC-afflicted intestine. There is insufficient evidence to conclude a
predominance of an adaptive Th1-, Th2- or Th17-response in the disease. Our understanding of the
accompanying regulation of systemic immunity remains poor; however, IL-1Ra, IL-6, IL-8 and TGF-β1 show
promise as biomarkers. Here, we chart the emerging immunological landscape that underpins NEC by
reviewing the involvement and potential clinical implications of innate and adaptive immune mediators and
their regulation in NEC.

Introduction
Necrotising enterocolitis (NEC) is a serious gastro-
intestinal disease that most commonly afflicts infants
born prematurely. Although infrequent, NEC is a
major cause of morbidity and mortality in neonatal in-
tensive care units (NICUs). In older children, NEC
occurs most commonly in association with cyanotic
heart disease or major cardiac surgery (Ref. 1). NEC
is a multifactorial disease whose pathogenesis
remains poorly understood despite decades of research.
However, risk factors for NEC have been identified,
namely prematurity, formula feeding, hypoxic–ischae-
mic injury and abnormal bacterial colonisation. Yet, no
single risk factor is essential, and the mechanisms by
which each precipitates NEC are largely unknown.
Nonetheless, evidence is mounting that formula
feeding, hypoxia–ischemia, and dysbiosis lead to in-
flammation, and that immaturity of the immune
system in preterm babies – although itself poorly char-
acterised – is one of the pivotal pathogenic factors in
NEC. Here, we review current knowledge on inflam-
mation and immunity in NEC and highlight frontiers
emerging in this field.

Epidemiology, staging criteria and disease
outcomes
Death of extremely premature infants from most causes
has decreased across the period from 2000 to 2011,
whereas the incidence of death from NEC has increased
(Ref. 2). Thus, NEC is now the most common cause of
death between days 15 and 60 (Ref. 2). The overall in-
cidence of NEC is 1–3 per 1000 live births (Ref. 3), but
reaches 11% in very low birth weight infants (VLBW,
<1500 g) (Ref. 4). NEC-associated mortality has
changed little over the past 50 years, ranging from 20
to 30% in confirmed cases (Ref. 5). Approximately
20–50% of NEC infants require surgery; mortality
then rises to about 65% (Refs 4, 6, 7).
Treatment options for NEC infants are limited to

bowel rest, antibiotics and supportive therapy, e.g.
blood pressure management (Ref. 8). Decisions on
such treatment or escalation to surgery are aided by
Bell’s staging criteria (Refs 9, 10) (Fig. 1). The clinical
presentation of stage I NEC is largely non-specific,
which explains why diagnosing NEC early is difficult.
It is for this reason, and because NEC often manifests
rapidly and quickly wreaks intestinal and systemic
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havoc that many neonatologists perceive NEC as an
ever-looming spectre in NICUs.
Short-term consequences of NEC include severe mul-

tisystem morbidity, leading to extended hospitalisation
with all its financial and social burdens (Ref. 11). The
cost of surgically managed NEC is enormous at approxi-
mately US$200,000 per survivor in excess of the per-
baby cost of routine neonatal intensive care (Refs 11, 12).
In childhood, prior history of NEC is an independent

risk factor for bowel-related chronic conditions such
as diarrhoea and constipation (Ref. 13). Similarly,
neurodevelopmental issues often persist into later life
and may include epilepsy, attention deficit hyper-
activity disorder, cerebral palsy, deafness, blindness
and compromised mental and psychomotor functions
(Refs 13, 14, 15). Half of all surgically managed
NEC infants develop some degree of short-bowel syn-
drome/intestinal failure (Ref. 16), and poor growth is
common, particularly in extremely low birth weight
(ELBW, <1000 g) NEC infants (Ref. 15).

NEC pathogenesis and risk factors

Prematurity

NEC incidence and severity are most strongly asso-
ciated with prematurity, quantified either as low gesta-
tional age (GA) or low weight at birth (Refs 17, 18, 19).
Briefly, NEC may arise on the basis of the interactions

between two poorly developed systems, namely the in-
testine and the immune system (Refs 20, 21, 22)
(Fig. 2). Immaturity of intestinal motility and
mucosal/barrier functions facilitates a potentially
harmful composition of the microbiome and bacterial
translocation (Fig. 2a). Thus confronted with bacteria,
the premature immune system responds by unleashing
a violent inflammatory storm (Fig. 2e) that overwhelms
the extant endogenous counter-regulatory mechanisms
(Fig. 2f), leading to cell death and subsequent release
of intracellular components such as stored cytokines
termed alarmins (Fig. 2i) (Ref. 23), thus perpetuating
the inflammatory storm (Fig. 2g). As described below
in detail, a poorly controlled, excessive inflammatory
response is one of the major factors that not only trig-
gers the cascade that ultimately leads to NEC, but
also maintains disease activity as part of a vicious
cycle (Fig. 2g).

Formula feeding

Formula feeding is a well-established risk factor for
NEC (Fig. 2a), and the incidence of NEC in infants
fed their own mother’s milk is reduced compared
with formula-fed infants (Ref. 24). Exclusive feeding
with their own mother’s milk was also associated
with fewer episodes of late-onset sepsis and/or NEC
(OR 0.18; 95% CI 0.04–0.79, P= 0.02) and shorter

Bell’s stages

I 
(suspected NEC)

II 
(proven NEC)

III 
(advanced NEC)

Clinical signs Radiologic signs

Apnoea
Lethargy
Emesis

Mild abdominal distention
Bloody stool

Stage I signs, plus:
Mild metabolic acidosis/thrombocytopenia

Absent bowel sounds with 
or without abdominal tenderness

Stage II signs, plus:
Severe apnoea
Hypotension

Disseminated intravascular coagulation 
Neutropenia

Generalised peritonitis
Abdominal distention

Normal or intestinal dilation
Mild ileus

Intestinal dilation
Ileus

Pneumatosis intestinalis 
Portal venous gas

Stage II signs, plus: 
Definite ascites

Pneumoperitoneum

Modified Bell’s staging criteria for necrotising enterocolitis, adapted from (Ref. 10).
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FIGURE 1.

Modified Bell’s staging criteria for necrotising enterocolitis, adapted from (Ref. 10).

THE IMMUNOLOGICAL LANDSCAPE IN NECROTISING ENTEROCOLITIS2

https://doi.org/10.1017/erm.2016.13 Published online by Cambridge University Press

https://doi.org/10.1017/erm.2016.13


duration of hospital stay compared with formula- or
donor breast milk-fed infants (Ref. 25). A meta-ana-
lysis of studies comparing formula with donor breast
milk in preterm or LBW infants revealed that formula
triples the risk of NEC (Ref. 26). Infant formula con-
tains components such as unbound free fatty acids
(Ref. 27) that may facilitate NEC, and is deficient in po-
tentially protective factors such as anti-inflammatory
cytokines, immunoglobulins, growth factors, and
microbiota, which are present in breast milk (Refs 28,
29). Further details are discussed in the relevant sec-
tions below.

Hypoxia–ischaemia

Historically, intestinal hypoxic–ischaemic injury was
considered the single most important factor initiating

and perpetuating NEC, a view consistent with the pre-
dominant pathologic finding being coagulative necro-
sis, a common sequela of prior ischaemia (Ref. 30).
In addition, term neonates with NEC often have condi-
tions such as chronic heart disease that favour hypoxic
or ischaemic states (Fig. 2a) (Refs 31, 32). However, no
primary hypoxic–ischaemic event can be identified in
most preterm infants presenting with NEC. The appear-
ance of NEC at 2–3 weeks of age (Ref. 33) (when
pronounced or prolonged hypoxia/ischaemia is uncom-
mon) rather points to a role of intestinal bacterial colon-
isation, which is usually nearly complete by this time.

Microbial colonisation

The gut microflora plays an important role in regulating
gut immune homeostasis, e.g. by dampening excessive

Model of NEC pathogenesis in the preterm intestine.
Expert Reviews in Molecular Medicine © 2016 Cambridge University Press
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FIGURE 2.

Model of NEC pathogenesis in the preterm intestine. (a) Multiple factors are involved in the precipitation of NEC, including dysbiosis, formula
feeding, and ischaemic/hypoxic assaults. (b) Inappropriate increases in abundance of, and signalling by, pro-inflammatory pattern recognition
receptors (PRRs) such as TLR4 contribute to the initiation of a cascade that involves (c) antigen processing by antigen-presenting cells such as
dendritic cells (DCs) and (d) activation of other immune cells such as T cells, monocytes, macrophages and regulatory T cells (Tregs), leading to
(e) an inappropriate and excessive increase of pro-inflammatory cytokines, chemokines and transcription factors. (f) A deficiency in counter-
regulatory mediators contributes to this pro-inflammatory milieu to self-perpetuate and spiral out of control – (g) a vicious cycle is formed. (h)
Inflammation-, ischaemia/reperfusion- and hypoxia-associated injury compromises the endothelial integrity of the local blood vessels, which
also feeds the vicious cycle. (i) Necrotic cell death of the intestinal epithelium ensues, further exacerbating tissue injury and inflammation. ( j) In
line with the clinical stages (see Fig. 1), NEC severity can range from mild intestinal injury to segmental or even complete destruction of the
intestinal epithelium. (k) Disintegration of the intestinal epithelium compromises its barrier functions, ultimately leading to rampant bacterial
translocation into the lamina propria and the systemic circulation. Sepsis, multi-organ failure and death ensue. ∗, systemic data. #, strong evi-

dence to be harmful only from one paper.
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inflammatory responses and establishing an environ-
ment ‘tolerogenic’ for commensal bacteria (Ref. 34).
This dampening process may be disrupted in NEC
because of lower microflora diversity compared with
preterm controls (Ref. 35). It is currently unclear
whether the dysbiosis (Fig. 2a) that often accompanies
NEC is a consequence or one of the causes of abnormal
immune interactions between gut bacteria and the
preterm intestine. Nevertheless, the role of the initial
microbial colonisation in NEC is probably important
as experimental NEC does not develop in the absence
of bacteria, i.e. in germ-free piglets (Ref. 36) or mice
treated with antibiotics (Ref. 37).
Of note, animal studies have implicated Clostridium

butyricum in NEC (Refs 38, 39, 40), and a recent study
in human infants found this bacterium in the stool of
80% of NEC infants compared with 12% of controls
(Ref. 41). Although these findings are promising, it is
too early to conclude that C. butyricum is a bacterial
cause of NEC.

Animal models of NEC
Much of our understanding of NEC pathogenesis stems
from animal models of the disease, with the majority
using rats, mice or piglets [reviewed in (Ref. 42)].
Most published models employ one or several of the
known risk factors that induce NEC-like intestinal
injury. The earliest NEC model, dating to 1974, sub-
jected newborn rats to formula feeding and hypoxic
stress (Ref. 43). This model is still used today, the
most common variant being to subject caesarean-born
preterm rats to formula feeding, hypoxia and hypother-
mia. Other variants of the hypoxia–hypothermia model
include using caesarean-born E18.5 mice (Ref. 44),
naturally delivered newborn mice (Ref. 45) and
7–10-day-old mice (Ref. 46). As newborn mice are
more difficult to feed and handle than rats, the
variant using 10-day-old mice is widely used today.
Less commonly, murine NEC is induced using 2,4,6-
trinitrobenzene sulphonic acid by gavage or enema
in 10-day-old mice (Ref. 47), ablation of Paneth cells
in combination with gavage feeding of Klebsiella in
14–16-day-old mice (Ref. 48), and by oral administra-
tion of Cronobacter sakazakii in 3-day-old mice
(Ref. 49). Rabbit and hamster NEC models are occa-
sionally employed, but most large animal-work on
NEC is conducted in piglets. The gastrointestinal tract
of newborn piglets closely resembles that of human
babies in terms of anatomy, physiology, development
and function. Piglet NEC models commonly comprise
preterm birth, parenteral nutrition and formula feeding,
but no exposure to hypoxia or hypothermia. NEC can
also be modelled in primates, but such research is
rarely undertaken as it requires preterm delivery and
care for weeks in a NICU-like setting (Ref. 50).
Another rare model is the gnotobiotic quail, primarily
used for investigation of the role of clostridia in NEC
(Refs 39, 51).

NEC and Immunity
The relationship between the immature preterm immune
system and NEC is complex. A number of innate and
adaptive immune mediators have been implicated in
NEC, as summarised in Figure 3; note the distinction
between local and systemic events. It is also important
to keep inmind that evidence from human resection spe-
cimens is virtually always obtained from advancedNEC
stages; therefore, knowledge on the intestinal events oc-
curring in early human NEC is all but non-existent.

The immune system in preterm neonates
Detailed discussion of this topic is beyond the scope of
this review, but briefly: The immune system is divided
into two arms, innate and adaptive immunity. The
newborn relies predominantly on innate immunity
during early life as maturation of adaptive immunity
lags behind that of innate immunity (Ref. 52). Within
the adaptive arm, type 2 T-cell polarisation predominates
in mother and foetus, thus protecting both from graft-
versus-host-type rejections, which are mediated by type
1-polarised responses (Ref. 53). Compared with term
infants, other differences include lower immune cell
counts (Ref. 54), lower expression ofmajor histocompati-
bility class IImolecules (Ref. 55), and reduced phagocyt-
ic ability of monocytes and neutrophils (Ref. 56).

Innate immunity
The innate arm of immunity is phylogenetically older
than adaptive immunity and functions as the first line
of defence against potential pathogens. Innate immun-
ity has two key components; a static component that
consists of epithelial surfaces such as the skin and the
gastrointestinal epithelium, which serve as physical
barriers against microbial entry, and a reactive compo-
nent, which involves tissue-resident and patrolling
immune cells that are poised to respond rapidly to po-
tential threats.

Pattern recognition receptors (PRRs)
PRRs play a central role in innate immunity, as
they recognise pathogen-associated molecular patterns
of invading pathogens and initiate signalling cascades
that lead to target-independent inflammatory res-
ponses. As they are expressed by most cell types,
PRRs perform a key function in frontline surveillance
(Ref. 57). Two families of PRRs, Toll-like receptors
(TLRs) and Nod-like receptors (NLRs), have been
implicated in NEC.

Toll-like receptors
In the intestine, TLRs are expressed by immune cells
and intestinal epithelial cells (IECs) (Ref. 58). A fine
balance is required between preventing tissue invasion
by gut bacteria on the one hand and establishing toler-
ance of a luminal commensal, symbiotic gut flora on
the other. Therefore, the function of TLRs must be
tightly controlled, particularly during the transition of
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the newborn gut from a germ-free intrauterine environ-
ment to postnatal exposure to colonising bacteria. Of
note, much of our knowledge on TLRs in NEC stems
from animal experiments, and it should be kept in
mind that animal and human data are not always
congruent.

TLR4

Among the TLRs, TLR4 has received by far the most
attention in the context of NEC. TLR4 is activated by

the Gram-negative bacterial cell wall component lipo-
polysaccharide (LPS), a prototypical trigger of inflam-
mation. Abundance and function of TLR4 is tightly
regulated: Late in murine pregnancy (up to day 18;
normal duration 21 days), Tlr4 mRNA expression
increases, but rapidly decreases immediately following
birth, thus adapting innate responses to the new envir-
onment (Ref. 59). Functionally, murine foetal IECs are
significantly more responsive to LPS than IECs iso-
lated on postnatal days 1 and 6 (Ref. 60). Xenografts
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Expert Reviews in Molecular Medicine © 2016 Cambridge University Press

IL-4

PAF

IL-10L-10

IL-10L-10

IL-18L-18IL-6L-6

IL-6L-6

IL-18L-18

IL-1R8L-1R8

IL-18L-18

IL-8
IL-17IL-5Ig*

Ig*

Local

Systemic

In
cr

ea
se

d
 in

 N
E

C

NFNF-κB TNFTNF

TNFTNF

IL-1β

TGFTGF-β1

TGFTGF-βIL-12IL-12

TLR9TLR9NOD-2NOD-2

PAF-AHPAF-AH

ILIL-1β

IL-1α

IFNIFNγ

IFNγ

TLR4TLR4 IL-17RIL-17R#

IL-17AIL-17A#

MyD88MyD88 TRIFTRIF

TLR7

TLR3TLR2

IL-5 IL-23

IL-13IL-4

TLR1

TLR6

IL-10

IL-10

IL-1R8

IL-18

TGF-βIL-12

TLR9NOD-2

IL-8 IL-18IL-6

NF-κB TNF

IFNγ

TLR4 IL-17R#

IL-17A#

MyD88 TRIF

IL-10

IL-6

TNF

IL-1β

IL-18

TGF-β1PAF-AH

D
ec

re
as

ed
 in

 N
E

C

FIGURE 3.

Summary of the regulation and role of immune mediators in NEC. Green, protective; Grey, inconclusive; and Red, harmful. White text, animal
data; purple text, human data; yellow text, animal and human data; black text outline, functional and/or genetic data. Ig, immunoglobulin; IFNγ,
interferon gamma; IL, interleukin; IL-1Ra, interleukin-1 receptor antagonist; IL-1R8, IL-1 receptor 8; IL-17R, IL-17 receptor; MyD88, myeloid
differentiation factor 88; NF-κB, nuclear factor-κB; NOD-2, nucleotide-binding oligomerisation domain-containing protein 2; PAF, platelet-
activating factor; PAF-AH, PAF-acetylhydrolase; RORC, RAR-related orphan receptor C; TNF, tumour necrosis factor; TRIF, toll/IL-1R
domain containing adaptor inducing IFNβ; TLR, toll-like receptor; TGF-β, transforming growth factor beta; ∗, may be protective in NEC,

but Ig supplementation has not proven effective; #, strong evidence to be harmful only from one paper.

THE IMMUNOLOGICAL LANDSCAPE IN NECROTISING ENTEROCOLITIS 5

https://doi.org/10.1017/erm.2016.13 Published online by Cambridge University Press

https://doi.org/10.1017/erm.2016.13


from more immature human foetal ileum also express
3-fold more TLR4 than more mature grafts when trans-
planted into SCID (severe combined immunodefi-
ciency) mice (Ref. 61).
TLR4 gene and protein expression are elevated in the

small intestinal mucosa of both human and mouse NEC
compared with healthy controls (Fig. 2b) (Refs 59, 62,
63). This important signalling node is also target of
mediators in breast milk such as soluble CD14, lactad-
herin, lactoferrin and 2′-fucosyllactose (Ref. 64). In a
study in which lactating mice were milked under an-
aesthesia, mouse breast milk attenuated murine NEC
by reducing TLR4 signalling, and overexpression of
TLR4 in the intestinal epithelium reverses these pro-
tective effects (Ref. 65). In mice, excessive TLR4
expression was moreover linked to inhibition of intes-
tinal repair, via activation of the p53-up-regulated
modulator of apoptosis (Ref. 66) as well as induction
of endoplasmic reticulum (ER) stress in intestinal
stem cells (Ref. 67). Increased ER stress and apoptosis
have been observed in the intestinal crypts of human
NEC patients (Ref. 67).
A pathogenic role of TLR4 in NEC appears likely, as

TLR4-deficient mice (Ref. 37) and mice with non-
functional TLR4 (Ref. 63) were protected against
NEC-associated tissue damage, and a small molecule
TLR4 inhibitor (C34) administered by oral gavage
reduced ileal NEC injury (Ref. 68). Interestingly,
enterocyte-specific deletion of TLR4 also efficiently
protected from NEC, suggesting that the epithelium
participates in this aspect of the disease (Ref. 37).
Indeed, there is evidence that TLR4 expression in the
intestinal epithelium may influence the recruitment
and polarisation of T cells in the intestinal mucosa
(Ref. 69).

TLR9

Interestingly, TLR9, which recognises the characteris-
tically CpG-rich bacterial DNA, acts as a counter-
regulator of the disease-promoting effects of TLR4 in
NEC (Ref. 59). Regulation of Tlr9 gene expression in
the murine ileum is opposite to that of TLR4, so that
Tlr9 decreases during late pregnancy, but increases at
birth (Ref. 59). Mouse pups receiving two injections
of 1 mg/kg CpG-DNA per day (Ref. 59) or once-
daily oral CpG-DNA (Ref. 46) exhibited reduced
NEC severity compared to vehicle-treated pups,
demonstrating a functional relevance for TLR9 in
NEC. Conversely, a mutation rendering TLR9 unre-
sponsive to CpG-DNA causes increased NEC severity
in mice (Ref. 59). Similarly, Lactobacillus rhamnosus-
mediated protection in murine NEC is also dependent
on TLR9 activation, as protection was abolished upon
selective lentiviral knockdown of intestinal epithelial
TLR9 (Ref. 46). A small human study showed that
TLR9 protein abundance was reduced in NEC patients
compared with controls (Fig. 2b) (Ref. 59); however, a
protective function of TLR9 has not been confirmed in
humans.

TLR5 and other TLRs

Gene expression of Tlr1, -2, -3, -6 and -7 was increased
in ileal tissue of NEC rats compared with dam-fed con-
trols, with only Tlr5 decreased (Refs 70, 71). A NEC-
associated decrease in Tlr5 is consistent with TLR5
knockout mice developing spontaneous colitis
(Refs 72, 73). The underlying mechanism between
decreased TLR5 and chronic intestinal inflammation
remains unknown, but it was speculated that absence of
epithelial TLR5 may reduce epithelial barrier functions
and thus increase bacterial translocation (Ref. 72).
Alternatively, the decrease in Tlr5 mRNA may be sec-
ondary to increased TLR2 and -4 activation (Ref. 74);
notably, Tlr2 and -4 are elevated in resected intestinal
tissue from infants with stage III NEC (Ref. 62).
In summary, aberrantly elevated TLR4 signalling

has a pathogenic role in NEC, whereas TLR9 and pos-
sibly TLR5 act as counter-regulators of TLR4. The
functional relevance of other TLRs in the disease
remains poorly defined.

Nucleotide-binding oligomerisation domain
(NOD)-like receptors
NLRs are intracellular PRRs and are critical mediators
of the assembly of the inflammasome, which converts
the pro-forms of the pro-inflammatory cytokines inter-
leukin (IL)-1β and IL-18 into their mature, active
forms. Data on NLRs in NEC are scant.

NOD-2

NOD-2 is a sensor of bacterial cell-wall fragments, spe-
cifically muramyl dipeptide (MDP). NOD-2 mediates
production of anti-bacterial defensins in epithelial
Paneth cells (Ref. 75) and elicits immune responses
through the nuclear factor (NF)-κB pathway (Ref.
76). NOD-2 activity may exert protective effects in
NEC as daily injections of MDP almost completely
abolished NEC-associated intestinal tissue damage in
mice (Ref. 77). Similarly, in humans, NOD-2 loss-of-
function mutations has been associated with Crohn’s
disease (CD) (Refs 78, 79) and VLBW infant carriers
of two or more NOD-2 loss-of-function alleles had
an increased risk for NEC requiring surgery (OR
3.57; 95% CI 1.3–10.0, P= 0.03) (Ref. 80).

Mediators of innate immunity

IL-1

IL-1 is the prototypical pro-inflammatory cytokine, and
is induced in numerous cell types by a wide variety of
triggers. Active at picogram concentrations, IL-1
induces a plethora of inflammatory effects, including
the production of other pro-inflammatory mediators,
tissue damage and fever (Ref. 81). The two isoforms,
IL-1α and IL-1β, bind to the same heterodimeric cell
surface receptor (Ref. 81). Activation and release of
IL-1β are tightly controlled by post-translational
mechanisms such as processing by caspase-1, which
in turn is regulated by the inflammasome. Therefore,

THE IMMUNOLOGICAL LANDSCAPE IN NECROTISING ENTEROCOLITIS6

https://doi.org/10.1017/erm.2016.13 Published online by Cambridge University Press

https://doi.org/10.1017/erm.2016.13


data on IL1B mRNA not accompanied by protein mea-
surements may not be indicative of biological activity
and should be interpreted with great caution. IL-1
binding to its receptor triggers a signalling cascade
that results in activation of pro-inflammatory transcrip-
tion factors such as NF-κB and AP-1, which in turn
induce pro-inflammatory cytokines such as IL-6,
tumour necrosis factor (TNF) and IL-1 itself (Ref. 81).
Studies on IL-1α in NEC are rare. In caesarean-

delivered preterm piglets with NEC, lysates of the
small intestine exhibited increased IL1A mRNA abun-
dance compared to colostrum-fed controls (Refs 82,
83). This increase in IL1A expression was rapid, occur-
ring at 8 h and persisting for up to 34 h post-NEC in-
duction (Ref. 82).
IL-1β protein was elevated systemically (Ref. 84)

and in intestinal tissue in animal models of NEC
(Fig. 2e) (Refs 70, 85). In newborn rats, 48 h of
formula feeding alone increased IL-1β protein in the
terminal ileum 3-fold compared with dam-fed controls
(Ref. 70). Induction of NEC increased IL-1β up to 6-
fold compared with dam-fed controls (Refs 70, 85).
Importantly, the authors highlighted that increases in
IL-1β preceded tissue injury, which did not occur
before 72 h (Ref. 70).
In one of the few human studies on IL-1β in NEC,

ileal IL1B mRNA in surgical NEC infants was more
than 10-fold higher compared with GA-matched non-
NEC controls (Ref. 86). Similarly, in situ hybridisation
experiments showed a more than 2-fold increase in
IL1B mRNA in full-thickness sections of stage III
NEC infants compared with surgical controls
(Ref. 87). Systemically, there was no difference
between the pre-operative serum IL-1β abundance in
NEC babies and non-NEC controls (Ref. 88).
Similarly, limited time course experiments in human
NEC infants beginning at NEC onset (defined by a
combination of clinical and laboratory findings) and
covering 8, 24, 48 and 72 h showed no significant
change in serum IL-1β (Ref. 89). However, there was
a trend towards higher IL-1β abundance in stage III
infants compared with stage I and II infants (Ref. 89).
Overall, the available data indicate that increased IL-1

precedes NEC injury, suggesting that IL-1 aggravates
tissue damage and contributes to NEC initiation and
perpetuation of the vicious cycle (Fig. 2g).

IL-1 receptor antagonist (IL-1Ra)

IL-1Ra is an anti-inflammatory cytokine that functions
by competitively inhibiting the binding of the two pro-
inflammatory ligands IL-1α and IL-1β to their receptor.
IL-1Ra is in clinical use as reviewed in (Ref. 81),
though at present not in NEC.
As IL-1Ra is one of the endogenous counter-regula-

tory mechanisms induced by inflammation, its abun-
dance is often associated with disease severity in
inflammatory diseases. However, the considerable
increases in IL-1Ra observed in NEC (Ref. 89)
clearly do not curtail the overwhelming inflammation

that underpins NEC; perhaps IL-1Ra concentrations
are insufficiently elevated in the gut where the inflam-
matory damage is occurring. Interestingly, IL-1Ra was
decreased 2–3 weeks prior to NEC onset in buccal
swabs from at-risk infants (Ref. 90), suggesting a
causative connection between NEC and IL-1Ra defi-
ciency (Fig. 2f). Indeed, IL-1Ra shows promise as a
NEC biomarker as described below.

Tumour necrosis factor

TNF, like IL-1, is a key pro-inflammatory cytokine that
activates inflammatory mediators such as NF-κB in vir-
tually any cell type.
TNF was increased systemically (Ref. 91) and in in-

testinal tissue (Ref. 92) of NEC patients compared with
non-NEC controls (Fig. 2e), but was not indicative of
disease severity (Refs 88, 93, 94, 95). Ileal and sys-
temic TNF were also increased in rat models of NEC
(Refs 96, 97, 98), with the mRNA rising as early as
1.5 h after the first feed (Ref. 99). Although others
did not observe such increases in TNF (Ref. 100),
functional data indicate a disease-promoting role for
TNF. Inhibition of TNF via administration of a
monoclonal anti-TNF antibody (Refs 98, 101), pentox-
iphylline (Ref. 102), etanercept (Ref. 103) or in-
fliximab (Ref. 104) significantly reduced intestinal
inflammation and tissue injury in neonatal NEC rats.
However, others have reported no significant improve-
ment with pentoxiphylline in hypoxia/reperfusion-
induced rabbit NEC (Ref. 105).
These observations suggest that TNF contributes to

NEC progression, likely with a major role in the
early stages of the disease. The usefulness of TNF as
a biomarker in NEC appears limited.

IL-6

IL-6 is an important acute phase immune mediator; for
example, it stimulates hepatocytes to produce acute-
phase proteins such as C-reactive protein (CRP). In
fact, both CRP and IL-6 are in clinical use as biomar-
kers of acute inflammation (Ref. 106).
It is likely that excessive IL-6 plays a pathogenic role

in NEC. Genetic analysis of IL-6 single nucleotide
polymorphisms (SNPs) in neonates of 32 weeks gesta-
tion or less revealed that Caucasians with IL-6
rs1800795, an SNP that is associated with increased
plasma IL-6 in neonates (Ref. 107), were six times
more likely to develop NEC and seven times more
likely to progress to stage III disease (Ref. 108).
These observations agree with studies that demon-
strated elevated IL-6 protein (Ref. 109) and mRNA ex-
pression (Refs 62, 110) in resected intestinal tissue of
stage III NEC patients compared with controls
(Fig. 2e). IL-6 may thus be useful as a biomarker in
NEC; see the Biomarkers section.

IL-10

IL-10 is an important dampener of immune responses
in the intestine, and loss of IL-10 or its receptor
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(IL-10R) results in early-onset inflammatory bowel
disease in humans (Ref. 111) and mice (Ref. 112).
Although the interaction between the intestinal micro-
biome and immunity is not part of this review, it is
interesting to note that the intestinal inflammation of
IL-10-deficient mice does not develop in a pathogen-
free environment (Ref. 112).
IL-10 functionality in macrophages curtails intes-

tinal inflammation, as specific knockout of IL-10R
signalling in intestinal lamina propria-resident macro-
phages results in severe spontaneous colitis in mice
(Ref. 113). The number of regulatory T cells (Treg),
an important source of intestinal IL-10 (Ref. 114),
was reduced in the ileum of NEC rats compared to
dam-fed controls (Fig. 2f) (Ref. 115). Similarly, in
humans, the total number of CD4+Foxp3+ Treg and
the Treg/T effector ratio was reduced in the lamina
propria of surgical NEC infants compared to surgical
controls (Ref. 86). Mice deficient in IL-10 exhibited
more severe epithelial damage and overall NEC
injury than wild-type controls (Fig. 2f) (Ref. 116).
Moreover, administration of exogenous IL-10 to IL-
10-deficient mice prior to NEC induction prevented
mucosal injury (Ref. 116). IL-10 as a protective
factor in NEC is supported by the observation that
human breast milk contains high concentrations of bio-
active IL-10 (Ref. 117) and lower IL-10 abundance in
breast milk correlates with increased human NEC inci-
dence (Ref. 118).
However, a deficiency in IL-10 is not observed in

human NEC; indeed, both serum and ileal IL-10 were
markedly increased in infants diagnosed with NEC,
particularly in those with advanced NEC (Refs 86,
88, 89), which, as with IL-1Ra, is likely part of the
immune system’s inadequate attempt at countering
the excessive inflammation. As NEC predominantly
affects preterm infants, it should also be noted that pre-
maturity does not predispose to IL-10 deficiency
(Refs 119, 120) or inducibility by TLR agonists
(Refs 119, 121, 122).
It thus appears likely that IL-10 contributes to dam-

pening inflammation in NEC, but its precise role in
NEC pathogenesis remains unclear.

Mediators of innate immune signalling

Nuclear factor-κB

NF-κB is the prototypical pro-inflammatory transcrip-
tion factor, with many pathways converging at this
central node of inflammatory signalling. TLR-, IL-1 re-
ceptor (IL-1R)-, and TNFR-activation trigger a cascade
that leads to release of cytoplasmic NF-κB from its in-
hibitory protein, the inhibitor of κB (IκB), allowing
NF-κB to translocate to the nucleus and to actuate the
transcription of pro-inflammatory mediators, including
cytokines, chemokines and leukocyte adhesion mole-
cules (Ref. 123). Developmental regulation of NF-κB
pathway components may favour NEC, e.g. a reduced
abundance of IκB in foetal primary IEC compared

with mature adult enterocytes (called T84 cells)
(Ref. 124).
In animals, vaginal birth may trigger a transient, low-

grade increase in NF-κB activation in the small
intestine, possibly allowing a tolerogenic immune sur-
veillance of the early stages of bacterial colonisation
(Ref. 60): NF-κB was activated in murine IECs as
early as 60 min after natural birth in the absence of in-
flammatory stimuli (Ref. 60) before its activation
returned to baseline by 24 h (Ref. 99). Conversely,
NF-κB activity was nearly undetectable in the small in-
testine of newborn rats delivered by caesarean section
(Ref. 125). These findings may contribute to the unex-
pected observation that vaginal birth is a risk factor for
early onset NEC (defined as <14 days, stage II or
higher) in human preterm infants of <33 weeks GA
(Ref. 126). However, the association between vaginal
birth and intestinal NF-κB activation has not been
demonstrated in human infants.
On the other hand, there is clear evidence for an in-

volvement of NF-κB in NEC. First, NEC severity was
correlated with increased NF-κB activity in the epithe-
lial cells of caesarean-born pups (Fig. 2e) (Refs 71, 99,
125), and second, specific inhibition of NF-κB (using a
NEMO-binding domain peptide) in NEC rats markedly
reduces disease incidence and severity (Ref. 125).
Furthermore, in a human study, 100% of NEC infants
were carriers of the NFKB1 variant –94delATTG,
which leads to more pronounced inflammatory
responses to LPS (Ref. 127), compared to 65% of the
non-NEC infants (Ref. 128).

MyD88 (myeloid differentiation factor 88), TRIF [Toll/
IL-1R domain containing adaptor inducing interferon
(IFN)β] and IL-1R8 (IL-1 receptor 8, previously called
SIGIRR)

The first step in the TLR- and IL-1R signalling cas-
cades is recruitment of adapter molecules to the intra-
cellular domains of the receptors. For example, TLR4
activates two signalling pathways, one via the adapter
MyD88 and one via TRIF (Ref. 129).
In concordance with the finding that TLR4-deficient

mice were protected from NEC injury (Ref. 37), defi-
ciency in MyD88 (Ref. 130) and TRIF (Ref. 37) also
attenuated the disease (Fig. 2b). Unexpectedly, the pro-
tection conferred by the absence of MyD88 was not as
complete as that observed in mice deficient in TLR4
and TRIF, indicating an important role for TRIF-
dependent signalling in NEC (Ref. 37). Similarly, a
deficiency in IL-1R8, which is a negative regulator of
TLR- and IL-1R signalling (Refs 131, 132), may also
be important as a small study associated NEC infants
with stop-, missense- or splice region-IL-1R8 variants
(Fig. 2b) (Ref. 133).

Adaptive immunity
The immune system’s adaptive arm responds to highly
specific antigens, which must be processed and
presented, again in a highly specific fashion, by
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antigen-presenting cells (APC). The prototypic APC
are dendritic cells (DC), which present antigens to T
and B cells, the major effector cells of adaptive immun-
ity. Such presentation results in the polarisation of
naïve CD4+ T helper (Th) cells into different subsets,
including Th1, Th2, Th17 and Treg, with the subset de-
termination depending on the state of the APC, the
antigen, its presentation, and the local cytokine
milieu. Each subset is characterised by predominance
of a transcription factor (T-bet, GATA-3, Ror-γt and
Foxp3, respectively) and signature cytokines (IFNγ,
IL-4, IL-17A and IL-10, respectively). Generally, the
subsets antagonise each other, e.g. Th1 cytokines
inhibit Th2 polarisation.
There are conflicting data on the lymphocyte fraction

of the inflammatory tissue infiltrate in NEC: Whereas a
lamina propria CD4+ T cell component of 30–40% in
NEC mouse pups and human infants was reported
(Ref. 69), others observed a paucity of lymphocytes
in the inflammatory infiltrate in human NEC infants
(Refs 47, 134). Thus, the data discussed below need
to be interpreted with caution. Nevertheless, some
animal studies provide evidence to support a role for
CD4+ T cell influx as an important pathogenic event
in NEC. For example, recombination activating gene-
deficient (Rag1−/−) mice, which are deficient in
functional T and B cells, exhibit significantly reduced
NEC-associated intestinal injury and Il1b expression
compared with wild-type controls (Ref. 69). In add-
ition, adoptive transfer of naïve CD4+ T cells to
Rag1−/− mice prior to NEC induction restored suscep-
tibility to severe NEC (Ref. 69). Furthermore, transfer
and repopulation of Rag1−/− mice with CD4+ T
cells from wild-type mice with NEC led to intestinal
damage and increased Il1b expression after 48 h
(Ref. 69). RNA sequencing of ileal samples from
surgical NEC infants also revealed strongly altered
T and B cell signalling in NEC compared with
non-NEC preterm controls (Ref. 135). Although sur-
prisingly little information is available on the role of
Th subsets in initiation and/or perpetuation of NEC,
some of the signature cytokines have been investigated.

Th1 Cytokines

IFNγ

IFNγ is the signature cytokine of Th1 immune responses.
It contributes to the differentiation of Th1 cells and exerts
pro-inflammatory actions by inducing Th1 chemokines,
activating macrophages and facilitating phagocytosis
(Ref. 136). The combined effects of IFNγ are critical to
clearance of intracellular pathogens. Of note, prematurity
is associated with a reduced capacity to mount Th1
responses and produce IFNγ (Ref. 137).
Whereas one human study reported no difference

between peri-operative serum IFNγ in NEC infants
and non-NEC controls (Ref. 88), others found a
4-fold higher frequency of cells spontaneously secret-
ing IFNγ in peripheral blood mononuclear cells

(PBMCs) isolated from stage II and III NEC infants
at diagnosis compared with age-matched healthy con-
trols (Ref. 138). Similarly, contradictory observations
were made on IFNG mRNA in intestinal resection spe-
cimens (Refs 139, 140).
In rats and mice, the data more clearly point to a

disease-promoting role for IFNγ, as ileal IFNγ
protein abundance dramatically increased after in-
duction of experimental NEC compared with dam-fed
controls (Fig. 2e) (Refs 70, 141). Mechanistically, ex-
cessive IFNγ interferes with epithelial barrier integrity
and regeneration, including function of intercellular
gap junctions and IEC migration (two processes
impaired in wild-type NEC mice but unaffected in
IFNγ-deficient NEC mice) (Ref. 141). Abrogation of
these detrimental effects of IFNγ is likely to contribute
to the observation that 10-day-old IFNγ-deficient mice
are completely protected from NEC-associated ileal
tissue damage (Ref. 141).

IL-12

The principal function of IL-12 is to promote and main-
tain Th1 polarisation, for example by induction of
IFNγ. Animal studies of NEC are inconclusive about
IL-12, one reporting lower (Ref. 100), others higher
(Refs 142, 143), expression. Interestingly, in human
infants, reduced IL-12 abundance might be a risk
factor for NEC: Preterm infants with a low bioactivity
IL-12p40 promoter polymorphism exhibited a higher
risk of NEC (CTCTAA allele, OR 2.9, 95% CI
1.4–6.0, P= 0.004) compared with infants with homo-
zygous IL-12 CTCTGC alleles (Ref. 144).

IL-18

IL-18 is a pleiotropic cytokine with functions in innate
and adaptive immunity. In concert with IL-12, IL-18
enhances IFNγ production and promotes Th1 differen-
tiation (Ref. 145).
In experimental NEC, IL-18 appears to aggravate the

disease process. Ileal IL-18 protein abundance
increased progressively with severity of NEC injury
in rats (Fig. 2e) (Refs 143, 146). Furthermore, IL-18-
deficient mice were partially protected from NEC
injury (Ref. 147), and the protection of anti-TNF treat-
ment was associated with reduced intestinal IL-18
protein (Ref. 101).
However, the available human evidence disagrees

with the animal findings. Ileal IL18 mRNA was
decreased in NEC infants compared with controls
(Ref. 86). Similarly, a low-expression polymorphism
(IL-18 A-607) was more frequent in infants with
stage III NEC than in those with stage I/II
(Ref. 148), and plasma IL-18 was moderately reduced
in ELBW infants who subsequently developed NEC
compared with infants that did not (Ref. 149).

Th2 Cytokines
Th2 cytokines studied in NEC include IL-4, IL-5, and
IL-13. IL-4 is the signature cytokine of the Th2 subset
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as it promotes Th2 polarisation, suppresses Th1
responses, and induces B cell immunoglobulin class
switching to IgE. The functions of IL-13 are similar
to those of IL-4, including IgE class switching and
activation of mast cells and eosinophils. IL-5 acts on
eosinophils, promoting their activation, survival, and
adhesion (Ref. 145). The intrauterine environment
favours Th2 polarisation (Ref. 53).
Increased ileal IL-4 and IL-5 accompanies NEC pro-

gression in rats (Ref. 70). Similarly, in a small human
study, PBMCs isolated from stage II and III NEC
infants at diagnosis exhibited 3-fold more cells spon-
taneously secreting IL-4 than GA-matched healthy
controls (Ref. 138). However, comparing pre-operative
NEC infants and GA-matched controls, serum IL-4
was not different, while IL-5 was 50% lower
(Ref. 88), a surprising finding as onset of NEC coin-
cides with eosinophilia (Ref. 150). Moreover, infants
affected by NEC less frequently carried a high-
bioactivity variant of the IL-4Rα chain (Ref. 151).
A marked increase in ileal IL-13 in NEC rats oc-

curred after onset of tissue injury (Ref. 70). Others
have proposed that IL-13 protects the gut by curbing
excessive IL-17 and limiting its colitogenic effects
(Ref. 152). However, IL-13 also causes epithelial dys-
function such as goblet cell hyperplasia and mucus
hypersecretion.

Th17 Cytokines
The Th17 signature cytokine, IL-17A, has several pro-
inflammatory effects that are important for host protec-
tion against extracellular bacteria, including induction
of chemokines (CXCL1, CXCL6 and CXCL10) and
neutrophil recruitment and activation (Ref. 145). IL-
23 induces Th17 polarisation, stimulates IL-17A in ef-
fector T cells, and is necessary for differentiation and
effector functions of Th17 cells. Dysregulation of the
Th17 pathway has been linked to inflammatory bowel
diseases such as CD and ulcerative colitis (Ref. 153).
Th17 responses likely also play a pathogenic role in

NEC. For example, RNA sequencing has revealed re-
markable similarities in the signalling pathways
affected by NEC, CD and paediatric CD (Ref. 135).
Lamina propria CD4+ Th17 cells were more than
2-fold more abundant in NEC mice compared with
controls (Ref. 69), and intestinal IL-17A and IL-17
receptor A (IL-17RA) was increased in mouse and
human NEC (Ref. 69). These observations are in agree-
ment with formula-fed preterm NEC baboons who
exhibit a 5-fold increase in ileal IL17A gene expression
compared with GA-matched non-NEC preterm con-
trols (Ref. 50), and with ileal Il23 mRNA being 6-
fold higher in NEC rats than in dam-fed controls
(Refs 142, 154). Moreover, intraperitoneal injection
of recombinant IL-17A in newborn mice led to loss
of intercellular tight junctions in the villi, reduced en-
terocyte proliferation and increased crypt apoptosis
(Ref. 69). The detrimental effects of IL-17A in
murine NEC were mediated by IL-17R, as these

effects were abrogated by blockade of IL-17R with
an antibody (Ref. 69). Similarly, inhibition of
STAT3, a critical mediator of T cell differentiation
towards a Th17 phenotype, using the compound
WP1066 was also protective against murine NEC;
WP1066 reduced Th17 cells and increased Tregs
(Ref. 69). In fact, the balance between Tregs and
Th17 cells may be critical in facilitating NEC, as one
of the consequences of TLR4 deficiency was restor-
ation of the Treg/Th17 ratio and near complete preven-
tion of the NEC-associated intestinal infiltration of
CD4+ T cells (Ref. 69).
By contrast, systemic IL-17 was reduced in 21-day-

old babies that subsequently developed NEC compared
with infants that did not (Ref. 149). Likewise, there
were 50% fewer of the Th17-associated intestinal
intraepithelial γδ-T cells in the ileum of acute surgical
NEC infants than in non-NEC controls (Ref. 155).
Furthermore, expression of the Th17 transcription
factor RAR-related orphan receptor C (RORC) was
10-fold less in the ileal mucosa of NEC infants com-
pared to non-NEC controls (Ref. 155).
In summary, although a disease-promoting role for

Th17 polarisation may be emerging (Ref. 69), the
data from humans frequently contradict those from
animals in the field of adaptive immunity in NEC,
and there are only few mechanistic studies. Moreover,
the possibility that different Th subsets may dominate
during different NEC stages remains poorly studied;
thus, current evidence does not allow a conclusion on
the relevance of Th polarisation in NEC.

Immunoglobulins
Immunoglobulins (Ig) are produced by B cells in five
isotypes (IgA, IgD, IgE, IgG and IgM) and function
as antibodies or receptors that target foreign invaders
such as bacteria, viruses, fungi, parasites and toxins,
assisting in their neutralisation in cooperation with
other immune cells. Ig-mediated host defence in the
gut is immature even in infants born at term and is
thus temporarily dependent on Ig transfer from the
mother (Ref. 156). Breast milk is a major source of
Ig for the newborn infant and has been proposed as
one of the major factors by which breast milk protects
against NEC. The Ig content in infant formula is low or
absent (Ref. 28).
Ig supplementation was suggested as a prophylactic

for NEC, with two small human studies reporting suc-
cessful reduction of NEC incidence in infants orally
administered either IgG alone (Ref. 157) or a mixture
of IgA and IgG (Ref. 158). However, in a larger
study, oral supplementation of IgG alone did not
reduce NEC incidence (Ref. 159). A systematic
review of these studies concluded that IgG or
IgG+IgA demonstrated no significant reduction in in-
cidence of definite NEC, suspected NEC, need for
surgery or death from NEC in preterm and LBW
infants (Ref. 160). Similarly, a systematic review
of intravenous immunoglobulin administration to
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preterm or LBW infants or both also did not find any
statistically significant difference in the incidence of
NEC (Ref. 161). Thus, current evidence does not
support the administration of oral or intravenous Ig
for the prevention of NEC.

Chemokines

IL-8

IL-8 is a member of the CXC chemokine family that is
produced by a variety of immune and non-immune
cells (Ref. 145). Its main effector role is to recruit neu-
trophils to the site of inflammation.
The premature human gut readily produces IL-8

(Ref. 162) and unlike in the adult immune system,
IL-8 production is also a major T-cell effector function
in preterm infants (Ref. 163). IL8 mRNA expression
was increased in intestinal resection specimens from
NEC infants compared with non-NEC controls
(Fig. 2e) (Refs 86, 164) and serum IL-8 holds substan-
tial potential as a diagnostic marker for NEC (see the
‘Biomarkers’ section).

Other mediators

Transforming growth factor beta (TGF-β)

The biological activities of TGF-β are pleiotropic and
strongly dependent on the target cell/organ and the
local cytokine milieu. In the context of adaptive im-
munity, TGF-β may support anti- and pro-inflamma-
tory responses, for example suppressing Th1- and
Th2-polarisation and promoting Treg functions, but
also inducing Th17 cell differentiation (Ref. 165).
However, there is good evidence that TGF-β-defi-

ciency promotes NEC. Disruption of TGF-β-signalling
via depletion of TGF-βRII significantly increased the
severity of platelet-activating factor (PAF)+ LPS-
induced NEC injury in 10–12-day-old mice compared
with controls (Ref. 166). Moreover, tissue damage
was ameliorated by enteral TGF-β2-supplementation
in the PAF+ LPS model and in formula-, hypoxia-,
and cold stress-triggered mouse NEC (Ref. 166).
Likewise, oral administration of TGF-β1 to NEC rats
resulted in moderate suppression of NF-κB activation
in ileal IECs and was associated with a 20% overall re-
duction in NEC incidence compared with vehicle-fed
controls (Ref. 167).
Intestinal TGF-β2 bioactivity, protein abundance, and

gene expressionweremarkedly reduced inNECpatients
compared to GA-matched non-NEC controls (Fig. 2f)
(Ref. 166) and preterm versus term infants (Refs 50,
166). A similar TGF-β2 deficiency was observed in
the intestine of formula-fed preterm baboons, and was
even more pronounced in preterm baboons with NEC
(Ref. 50). In fact, the protective properties of human
breast milk may in part be mediated by TGF-β2, which
it contains in high quantities (Ref. 28).
Mechanistic studies showed that human adult

PBMC-derived macrophages develop increasing LPS

tolerance when exposed to media conditioned by
increasingly mature intestines, an effect mediated pri-
marily through TGF-β2 and to a lesser extent
by TGF-β1 (Ref. 166). In the developing intestine,
macrophage production of pro-inflammatory cytokines
may thus be suppressed by TGF-β, promoting tolero-
genicity to commensal bacteria (Ref. 166). This func-
tion combines with TGF-β2-mediated cytoprotection
(Refs 168, 169), rendering TGF-β2 a key protective
player in NEC.

Platelet-activating factor

PAF is a pro-inflammatory phospholipid mediator that
activates pathways such as protein-kinase C (PKC),
mitogen-activated protein kinases (MAPK), phosphati-
dylinositol 3-kinase (PI3K) and NF-κB (Refs 170,
171).
Intravenous administration of PAF in adult rats

causes NEC-like ischaemic necrosis in the small intes-
tine (Ref. 172). Pre-treatment with a low dose of LPS
further aggravates these lesions, suggesting a synergis-
tic effect between TLR signalling and PAF in intestinal
disease (Ref. 172).
Whereas a moderate elevation of circulating and

stool PAF is physiological upon commencement of
enteral feeding in newborn babies (Refs 173, 174),
this increase is more pronounced in formula-fed
infants. Even higher PAF concentrations were observed
in NEC patients compared with non-NEC controls
(Fig. 2e) (Refs 91, 174).
The human neonate has a reduced capability to

control substantial increases in PAF as the activity of
its degrading enzyme, PAF-acetylhydrolase (PAF-
AH) remains low in the first few weeks of life
(Fig. 2f) (Ref. 175). Unlike formula, breast milk con-
tains PAF-AH, which likely contributes to breast
milk-mediated protection from NEC (Ref. 176).
Although postnatally the circulating PAF-AH concen-
trations are similar in term and preterm infants
(Ref. 175), in the setting of NEC, PAF-AH activity is
reduced by more than 50% compared with non-
NEC controls (Ref. 91). PAF-AH-deficient mice were
more than twice as likely to develop experimental
NEC than wild-type mice and exhibited a signifi-
cantly higher abundance of inflammatory mediators
such as CXCL1 and inducible nitric oxide synthase
(Ref. 177). A beneficial role of PAF-AH is supported
by the demonstration that intravenously administered
recombinant PAF-AH protected against experimental
NEC injury (Ref. 178). Furthermore, blockade of the
PAF receptor ameliorated NEC-associated tissue
damage in rats (Ref. 179) and piglets (Ref. 180).

Biomarkers
Among the major challenges clinicians face in caring
for infants who may have NEC, unequivocal identifica-
tion of the disease in its early stages, differentiating it
from sepsis or spontaneous intestinal perforation
(SIP), and deciding if and when to proceed with
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surgery, stand out. Identifying and validating biomar-
kers to guide clinical decision making would represent
a major advance in neonatal medicine. A recent review
summarised potential biomarkers in NEC (Ref. 181);
here, we focus on promising candidates with a rele-
vance to immunology.
The acute phase reactant CRP is widely used as a

marker of inflammation in NEC and many other dis-
eases. Whereas CRP is non-specific and cannot be
used to differentiate NEC from sepsis, it may be useful
to determine disease progression; for example, a persist-
ently elevated CRP may be indicative of treatment
failure, whereas normalisation may indicate success.
IL-6 may have greater sensitivity and specificity than

CRP for charting NEC disease. In surgical NEC
infants, serum IL-6 was up to 60-fold higher than in
controls (Refs 88, 109, 110), and was correlated with
disease severity. In small studies on blood samples
obtained within 48 h of NEC diagnosis (Refs 94, 95),
IL-6 was undetectable in stage I, whereas the mean
concentrations were 127 pg/ml in stage II and
3127 pg/ml in stage III patients. Post-operatively,
stage III patients exhibited a decline in serum IL-6 to
stage II levels, and importantly, mean IL-6 was 3-fold
higher in infants that subsequently died than in survi-
vors (Ref. 95). Furthermore, pre-operative IL-6 concen-
trations were markedly lower in SIP, a condition that is
sometimes difficult to differentiate from NEC (Refs 62,
182). Similarly, a mathematical model employing the
sequential use of IL-10, IL-6 and RANTES plasma
measurements predicted the development of dissemi-
nated intravascular coagulation in VLBW infants with
severe sepsis and NEC (Ref. 183). Thus, IL-6 may
assist clinicians in assessing NEC disease severity
and progression, and in distinguishing between NEC
and SIP, but not sepsis.
Several other biomarkers of immune function and in-

testinal injury have been suggested to predict the pro-
gress of NEC. Higher plasma and urinary abundance
of I-FABP is correlated with more severe intestinal
damage, and predicted the need for surgery
(Refs 184, 185, 186). Similarly, increased serum IL-
1Ra (>130 000 pg/ml) at NEC onset was 92% specific
in identifying infants whose disease subsequently pro-
gressed to stage III (Ref. 89). Moreover, serum IL-1Ra
(>60 000 pg/ml) at NEC onset was 100% specific and
68% sensitive in classifying patients as suspected
(stage I) or definite (stages II and III) NEC (Ref. 89).
NEC patients exhibited higher serum IL-8 than
healthy infants and babies with sepsis and non-inflam-
matory intestinal conditions (Refs 88, 109, 149, 187).
Increased serum IL-8 at diagnosis of NEC predicted

the need for surgery and correlated with 60-day mortal-
ity (Ref. 188). Pre-operative serum IL-8 moreover
predicted subsequent NEC severity, with 20-fold
more IL-8 in pan-intestinal than in focal NEC cases
(2750 versus 171 pg/ml) (Ref. 189). Furthermore,
compared with pre-operative abundance, serum IL-8
dropped by 60% in focal NEC, by 92% in multifocal

NEC, and by 96% in pan-intestinal NEC by post-opera-
tive day 3 in infants that survived the disease; note there
were no postoperative data on non-survivors, as most of
them died within 24 h (Ref. 189). Like IL-6, IL-8 also
differentiated NEC from SIP (Ref. 182).
Deficiencies in anti-inflammatory mediators such as

TGF-β1 and inter-alpha inhibitor protein (IaIp) may
serve as predictive biomarkers for NEC onset. ELBW
infants who subsequently developed NEC exhibited
low circulating TGF-β1 from the first day of life, a con-
centration <1380 pg/ml predicted 64% of NEC cases
(Ref. 149). Similarly, low plasma IaIp differentiated
between NEC and non-specific abdominal disorders
(Ref. 190).
Stool measurement of calprotectin also has potential

for predicting NEC onset and severity (Refs 191, 192,
193). However, larger studies are required to resolve
the wide variations in calprotectin concentrations in
faecal matter and to establish universal thresholds for
NEC diagnosis (Ref. 181).
It is common practice to combine several biomarkers

into scores to achieve maximal diagnostic and predict-
ive power. An example in NEC is the combined use of
serum amyloid A and apoplipoprotein CII (ApoSAA
score) that can guide the decision to initiate antibiotic
treatment, as the ApoSAA score stratifies infants into
low- and high-risk groups for sepsis/NEC (Ref. 194).
The LIT [liver-fatty acid binding protein, intestinal-
fatty acid binding protein (I-FABP) and trefoil factor-
3] score can be used to determine NEC from sepsis
and, more importantly, to differentiate the need for
surgery and predict chance of survival (Ref. 195).

Clinical trials
No immune mediator or inhibitor has been tested for ef-
ficacy in treatment of NEC. The clinical trials land-
scape is dominated by probiotics, which are thought
to restore the gut flora to its healthy, diverse state,
thus indirectly modulating the preterm gut immune
system towards its tolerogenic poise.

Conclusion and Outlook
Although the current data paints a complex picture of the
vicious disease cycle inNEC (Fig. 2), two features stand
out. First, there is a clear link between marked increases
in certain pro-inflammatorymediators, includingTLR4,
TNF, IL-18, IFNγ, PAF, IL-6, IL-8, IL-1β, NF-κB and
possibly IL-17A, in intestinal tissue on the one hand,
and increased NEC severity on the other. Thus,
beyond confirming that NECoccurs in the setting of ex-
cessive inflammation, research should focus on the
aforementioned mediators in order to identify potential
therapeutic targets. Second, it is likely that deficiencies
in protective mediators such as TLR9, IL-1R8, IL-1Ra,
TGFβ2, PAF-AH, and IL-10, as well as in Tregs, permit
development of excessive inflammation in NEC, and
thereby predispose infants to the disease.
On the biomarker front, immune mediators such as

IL-1Ra, IL-6, IL-8, and TGF-β1 have emerged as
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promising candidates. Measurement of gut-specific
markers such as I-FABP also demonstrates potential
for management of NEC. Before clinical implementa-
tion, these observations need to be confirmed in
larger multicentre trials.
At present we have insufficient evidence to draw a

conclusion on the involvement of adaptive immunity
in NEC initiation and perpetuation; however, recent
data on a pathogenic role of Th17 responses and a
Th17/Treg imbalance invite further exploration. On a
cautionary note, findings in animal models and in the
human have frequently proven contradictory, pointing
to the danger inherent to relying too heavily on
animal work. Furthermore, increasing the use of
‘omics’-approaches in NEC research will identify yet
unknown mediators that contribute to NEC pathogen-
esis, and studies addressing the contribution of differ-
ent cell types to the disease (e.g. IEC versus
macrophages versus lymphocytes) are needed. The
large datasets that are becoming increasingly available
should also be mined in search for abnormalities such
as SNPs or other genetic variants relevant to NEC.
While we have in recent years made progress in

understanding some aspects of NEC, it is clear that a
major research effort is required if an immunology-
based treatment for NEC is to emerge. Only such an
effort can banish the spectre of NEC, which looms
over NICUs and continues to kill preterm infants.
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