THE DERIVATION ALGEBRA OF $M_{4}^{8}(C)$

BY

EDGAR G. GOODAIRE AND ROY C. SNELL ${ }^{(1)}$

1. The Main Theorem. Let C by a Cayley-Dickson algebra over an algebraically closed field F of characteristic 0 . A multiplication table for a basis of this 8 -dimensional alternative algebra can be found in [3], page 137, where we take $\alpha=\beta=$ $\gamma=-1$. C has an involution $x \mapsto \bar{x}$, and a matrix $X=\left(x_{i j}\right)$ with entries in C is called hermitian if $X=\left(\bar{x}_{j i}\right)$. The space $M_{n}^{8}(C)$ of all $n \times n$ hermitian matrices with entries in C becomes a commutative algebra under the product $X \circ Y=(X Y+Y X) / 2$, where juxtaposition denotes the standard matrix product. It is not hard to see that all these algebras are simple, but for $n>3$, they otherwise remain a mystery. They are not Jordan algebras [4] as is $M_{3}^{8}(C)$, and hence, because the identity of each is a sum of n pairwise orthogonal idempotents, they are not even powerassociative by Theorem 1 of [1]. Since a search for identities these algebras might satisfy seems a difficult problem, it seems more fruitful instead to investigate their derivation algebras, $\mathscr{D}\left(M_{n}^{8}(C)\right)$. The reason for this is that $\mathscr{D}\left(M_{3}^{8}(C)\right)$ is known to be F_{4}, one of the exceptional simple Lie algebras ([2]; pp. 142-145). Our study has revealed that $\mathscr{D}\left(M_{2}^{8}(C)\right)$ is B_{4}, one of the classical simple Lie algebras, and since this has dimension 36 and F_{4} has dimension 52, it is surprising to learn that $\mathscr{D}\left(M_{4}^{8}(C)\right)$ has dimension 20. In fact, we have:

Theorem 1.1. $\mathscr{D}\left(M_{4}^{8}(C)\right) \simeq A_{1} \oplus A_{1} \oplus G_{2}$, where A_{1} and G_{2} are the classical and exceptional simple Lie algebras, respectively.
2. The general derivation. A multiplication table for the basis E_{1}, \ldots, E_{52} of $M_{4}^{8}(C)$ was computed. In order for a linear transformation T to be a derivation, it is necessary and sufficient that

$$
T\left(E_{i} \circ E_{j}\right)=T\left(E_{i}\right) \circ E_{j}+E_{i} \circ T\left(E_{j}\right), \quad i, j=1, \ldots, 52
$$

Thus, letting $X=\left(x_{i j}\right), i, j=1, \ldots, 52$, we were able with the aid of a computer to determine relations among the $x_{i j}$ which must hold for X to represent a derivation.

Let

$$
\begin{equation*}
S_{1}=\{(1,5),(1,13),(1,21),(2,29),(2,37),(3,45)\} \tag{2}
\end{equation*}
$$

(2) $\quad S_{2}=\{(6,7), \ldots,(6,12),(7,8), \ldots,(7,12),(9,10),(9,11),(9,12)\}$
$S_{3}=\{(2,5),(3,13),(4,21),(3,29),(4,37),(4,45)\}$

[^0]| MULTIPLICATION TABLE FOR $\mathscr{D}\left(M_{4}^{8}(C)\right)$ | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\overline{D_{1}}$ | ${ }_{\text {d }}{ }_{\text {d }}$ | ${ }_{\text {d }}{ }_{\text {D }}$ | ${ }^{D_{4}}$ | $\overline{D_{5}}$ | $\overline{D_{6}}$ | D_{7} 0 | D_{8} 0 | D_{9} 0 | D_{10} 0 | D_{11} 0 |
| ${ }^{D_{1}}$ | $\frac{1}{2} D_{4}$ | | - ${ }^{\frac{2}{2} D_{5}}$ | - ${ }_{\frac{1}{2} D_{1} D_{2}}$ | | $\frac{1}{2} D_{3}$ | 0 | 0 | 0 | 0 | 0 |
| D_{3} | $\frac{1}{2} D_{5}$ | $\frac{1}{2} D_{6}$ | 0 | ${ }_{0}$ | $-\frac{1}{2} D_{1}$ | $-\frac{1}{2} D_{2}$ | 0 | 0 | 0 | 0 | 0 |
| D_{4}^{3} | $-\frac{1}{2} D_{2}$ | | | 0 | $-\frac{1}{2} D_{6}$ | | 0 | 0 | 0 | 0 | 0 |
| D_{5} | $-\frac{1}{2} D_{3}$ | 0 | $\frac{1}{2} D_{1}$ | ${ }_{\frac{1}{2} D_{6}}$ | 0 | $-\frac{1}{2} D_{4}$ | 0 | 0 | 0 | 0 | 0 |
| D_{6} | | $-\frac{1}{2} D_{3}$ | $\frac{1}{2} D_{2}$ | - ${ }_{2} D_{5}$ | ${ }^{\frac{1}{2} D_{4}}$ | | 0 | 0 | 0 | 0 | 0 |
| D_{7} | 0 | | | | | 0 | 0 | $-D_{13}$ | $-D_{14}$ | $-D_{11}-D_{15}$ | $D_{10}-D_{16}$ |
| D_{8} | 0 | 0 | 0 | 0 | 0 | 0 | D_{13} | | $-D_{11}$ | | |
| D_{9} | 0 | | 0 | 0 | 0 | 0 | D_{14} | D_{11} | 0 | $-D_{18}$ | $-2 D_{8}-2 D_{19}$ |
| D_{10} | 0 | 0 | 0 | 0 | 0 | 0 | $D_{11}+D_{15}$ | $2 D_{12}$ | D_{18} | | $-D_{20}$ |
| D_{11} | - | 0 | 0 | | 0 | 0 | $-D_{10}+D_{16}$ | $-D_{9}$ | $2 D_{8}+2 D_{19}$ | D_{20} | 0 |
| D_{12} | 0 | 0 | 0 | 0 | 0 | 0 | | $-2 D_{10}$ | | $2 D_{8}$ | D_{18} |
| D_{13} | 0 | 0 | 0 | 0 | 0 | 0 | $-D_{8}$ | D_{7} | $-D_{16}$ | $-D_{17}$ | $-D_{12}+D_{14}$ |
| D_{14} | | 0 | 0 | | 0 | 0 | $-D_{9}$ | $-D_{10}$ | | | $-D_{13}+D_{18}$ |
| D_{15} | 0 | 0 | 0 | 0 | 0 | 0 | $-D_{10}+D_{16}$ | $D_{9}+D_{17}$ | $-D_{8}-D_{19}$ | $D_{7}-D_{20}$ | |
| D_{16} | 0 | 0 | | 0 | 0 | 0 | $-D_{11}-D_{15}$ | | D_{13} | | $D_{2}-D_{20}$ |
| D_{17} | 0 | 0 | 0 | 0 | 0 | 0 | $-D_{12}$ | $-D_{11}-D_{15}$ | 0 | D_{13} | $D_{8}+D_{19}$ |
| D_{18} | 0 | 0 | | | 0 | 0 | D_{19} | D_{20} | $-D_{10}$ | D_{9} | $-D_{12}$ |
| D_{19} | 0 | 0 | 0 | 0 | 0 | 0 | $-D_{18}$ | 0 | $-D_{11}$ | D_{12} | D_{9} |
| D_{20} | - | 0 | 0 | 0 | 0 | 0 | 1 | $-D_{18}$ | $-D_{12}$ | $-D_{11}$ | D_{10} |

D_{12}	D_{13}	D_{14}	D_{15}	D_{16}	D_{17}	D_{18}	D_{19}	D_{20}	
0	0	0	0	0	0	0	0	0	D_{1}
0	0	0	0	0	0	0	0	0	D_{2}
0	0	0	0	0	0	0	0	0	D_{3}
0	0	0	0	0	0	0	0	0	D_{4}
0	0	0	0	0	0	0	0	0	D_{5}
0	0	D		0	D	D	0	0	${ }^{D_{6}}$
$-D_{17}$	D_{8}	${ }^{\text {d }}$	$D_{10}-D_{16}$	$D_{11}+D_{15}$	${ }^{D_{12}}$	- D_{19}	${ }_{0}{ }_{18}$		D_{7}
$2 D_{10}$	$-D_{7}$	- ${ }_{\text {D }}$	$-D_{9}-D_{17}$		$D_{11}+D_{15}$	$-D_{20}$		${ }^{D_{18}}$	${ }_{\text {D }}$
$\begin{gathered} -D_{20} \\ -2 D_{8} \end{gathered}$	D_{16} D_{17}	- D_{7} $-D_{8}$		$-{ }_{0}^{-D_{13}}$	$\stackrel{0}{0}{ }_{-D_{13}}^{\text {(}}$	D_{10} $-D_{9}$	D_{11} $-D_{12}$	D_{12} D_{11}	$\stackrel{D_{9}}{D_{10}}$
$\begin{gathered} -2 D_{8}^{8} \\ -D_{18} \end{gathered}$	${ }_{\text {D }}{ }_{\text {D }}{ }^{D_{12}-D_{14}}$	$\bar{D}^{-D_{8}-D_{18}}$	$-D_{7}+D_{20}$	$\stackrel{0}{-D_{7}+D_{20}}$		$-D_{9}$ D_{12}	- D_{12} $-D_{9}$	- ${ }_{111}$	${ }^{D_{11}}$
${ }^{0}{ }^{18}$	$\begin{gathered} D_{12}-D_{14} \\ -D_{11}-D_{15} \end{gathered}$	${ }_{0}{ }_{0}{ }^{13}$	$D_{13}-D_{18}$	$D_{8}{ }^{\text {d }}$	${ }_{-8}-D_{7}$	- D_{11}			${ }_{1} D_{12}$
$D_{11}+D_{15}$		D_{0}		$-2 D_{17}$	2D ${ }^{26}$		$-D_{20}$	${ }^{D_{19}}$	D_{13}
	$-D_{15}$	$-2 D_{13}+2 D_{18}$	$2 D_{13}-2 D_{18}$	$-D_{19}$	$-D_{20}$	D_{15} $-D_{14}$	- ${ }^{D_{16}}$	${ }^{D_{17}}$	${ }^{D_{14}}$
$-D_{13}+D_{18}$	$\begin{gathered} D_{14}^{D_{14}} \\ D_{17} \end{gathered}$	${ }^{-2 D_{13}+2 D_{18}}{ }_{D_{19}}$	$\stackrel{0}{D}^{0}$	$-D_{20}$			$-D_{17}$ $-D_{14}$		D_{15} D_{16}
${ }^{D_{7}}$	-2D16	${ }^{D_{19}}$	- ${ }^{\text {dio }}$	$2 D_{13}$	0	- ${ }^{17}$		- D_{14}	${ }^{D_{17}}$
D_{11}	${ }^{\text {d }}$	- ${ }^{\text {20 }}$	D_{14}	$-D_{17}$	D_{16}		$-2 D_{20}$	$2 D_{19}$	D_{18}
$-D_{10}$	- ${ }_{20}$	$-D_{16}$	D_{17}	${ }^{D_{14}}$	$-D_{15}$	$2 D_{20}$		$-2 D_{18}$	D_{19}
D_{9}	$-D_{19}$	$-D_{17}$	$-D_{16}$	D_{15}	D_{14}	$-2 D_{19}$	$2 D_{18}$	0	D_{20}

Notice that an integer j appearing in the second component of an element of S_{1} appears just once, and occurs again exactly once in the second component of an element of S_{3}. Thus there is a natural pairing of elements in S_{1} with those in S_{3}. With this in mind, the matrix X representing the general derivation of $M_{4}^{8}(C)$ has the following form:

$$
\begin{array}{ll}
x_{i j}=-x_{k j} & \text { for } \\
x_{j i}=-x_{i j} & \text { for } \tag{3}\\
(i, j) \in S_{3},(k, j) \in S_{1} \cup S_{3}
\end{array}
$$

Except for the cases of (3), the matrix is skew-symmetric. The 7×7 (skewsymmetric) submatrix with (1,1)-entry in the (6,6)-position of X, has entries satisfying:

$$
\begin{align*}
x_{8,9} & =x_{6,11}-x_{7,10} \\
x_{8,10} & =x_{6,12}+x_{7,9} \\
x_{8,11} & =x_{7,12}-x_{6,9} \\
x_{8,12} & =-x_{6,10}-x_{7,11} \tag{4}\\
x_{10,11} & =x_{6,7}+x_{9,12} \\
x_{10,12} & =x_{6,8}-x_{9,11} \\
x_{11,12} & =x_{7,8}+x_{9,10}
\end{align*}
$$

and is repeated six times along the main diagonal with a single 0 separating each repetition. The remaining entries in X are 0 , except for some entries on four diagonals above and parallel to the main diagonal (and their four negative transposes). Let $D_{i, j}^{\ell}$ be the set $\left\{x_{i+k, j+k}: k=1, \ldots, \ell\right\}$. Then these non-zero entries are of the following form:

$$
\begin{gather*}
D_{4,12}^{8}=D_{36,44}^{8}=\left\{\frac{1}{2} x_{2,29}\right\}, \quad D_{12,20}^{8}=D_{28,36}^{8}=\left\{\frac{1}{2} x_{3,45}\right\} \tag{5}\\
D_{4,20}^{8}=\left\{\frac{1}{2} x_{2,37}\right\}, \quad D_{12,28}^{16}=\left\{\frac{1}{2} x_{1,5}\right\} \tag{6}\\
\quad x_{29,45}=\frac{1}{2} x_{2,37}, \quad D_{29,45}^{7}=\left\{-\frac{1}{2} x_{2,37}\right\} \tag{7}\\
x_{5,29}=\frac{1}{2} x_{1,13}, \quad D_{5,29}^{7}=\left\{-\frac{1}{2} x_{1,13}\right\}, \quad D_{20,44}^{8}=\left\{\frac{1}{2} x_{1,13}\right\} \tag{8}\\
\\
x_{5,37}=x_{13,45}=\frac{1}{2} x_{1,21}, \quad D_{5,37}^{7}=D_{13,45}^{7}=\left\{-\frac{1}{2} x_{1,21}\right\}
\end{gather*}
$$

3. Proof of theorem. We define a basis D_{1}, \ldots, D_{20} for $\mathscr{D}\left(M_{4}^{8}(C)\right)$ in the following way: D_{1}, \ldots, D_{6} are those derivations obtained from the general derivation X by setting in turn, for each $(i, j) \in S_{1}, x_{i, j}=1$ and $x_{k, \ell}=0$ if $(k, \ell) \neq$ $(i, j) . D_{7}, \ldots D_{20}$ are obtained from S_{2} in the same way. A computer was again called upon to evaluate $D_{i} D_{j}-D_{j} D_{i}$ for $i, j=1, \ldots, 20$, thus producing the multiplication table for the derivation algebra. We have attached this table to our article.

It is immediately apparent that the algebra is a direct sum of the algebra L_{1} with basis D_{1}, \ldots, D_{6} and the algebra L_{2} with basis D_{7}, \ldots, D_{20}. We investigate first L_{1}.

Letting \langle,$\rangle denote the Killing form, one checks that \left\langle D_{i}, D_{i}\right\rangle=-1, i=1, \ldots, 6$ and $\left\langle D_{i}, D_{j}\right\rangle=0$ for $i \neq j, i, j \in\{1, \ldots, 6\}$. It follows that L_{1} is semi-simple. Now let i denote $(-1)^{1 / 2}$ and

$$
\begin{array}{rlrl}
H_{1} & =-2 i\left(D_{1}+D_{6}\right), & H_{2} & =2 i\left(D_{6}-D_{1}\right) \\
X_{1} & =i D_{2}+D_{3}+D_{1}-i D_{5}, & X_{2} & =i D_{2}-D_{3}+D_{4}+i D_{5} \tag{9}\\
Y_{1} & =-i D_{2}+D_{3}+D_{4}+i D_{5}, & Y_{2}=-i D_{2}-D_{3}+D_{4}-i D_{5}
\end{array}
$$

Defining J_{i} to be $F X_{i} \oplus F Y_{i} \oplus F H_{i}, i=1,2$, one verifies first that $L_{1} \simeq J_{1} \oplus J_{2}$, and then notes that $J_{1} \simeq J_{2} \simeq A_{1}$.

For L_{2}, we have $\left\langle D_{i}, D_{i}\right\rangle=-16, i=7, \ldots, 20$, and

$$
\begin{align*}
& \left\langle D_{12}, D_{14}\right\rangle=\left\langle D_{10}, D_{16}\right\rangle=\left\langle D_{13}, D_{18}\right\rangle=\left\langle D_{7}, D_{20}\right\rangle=-8 ; \\
& \left\langle D_{11}, D_{15}\right\rangle=\left\langle D_{9}, D_{17}\right\rangle=\left\langle D_{8}, D_{19}\right\rangle=8 \tag{10}
\end{align*}
$$

From this, it is again easy to check that L_{2} is semi-simple, and that $H=F D_{7}+F D_{20}$ is a Cartan subalgebra. Letting $\alpha_{1}\left(D_{7}\right)=i, \alpha_{1}\left(D_{20}\right)=-i, \alpha_{2}\left(D_{7}\right)=0, \alpha_{2}\left(D_{20}\right)=i$, and extending α_{1} and α_{2} to H by linearity, it is straightforward to show that the positive roots of L_{2} are $\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, \alpha_{1}+3 \alpha_{2}, 2 \alpha_{1}+3 \alpha_{2}$, and hence $L_{2} \simeq G_{2}$.

Acknowledgements. The authors wish to thank A. G. Buckley for his frequent assistance in writing several computer programmes. We also express appreciation to C. T. Anderson for inspiring and showing continual interest in the problem.

References

1. A. A. Albert, A Theory of Commutative Power-Associative Algebras, Trans. Amer. Math. Soc. 69 (1950), 503-527.
2. N. Jacobson, "Lie Algebras", Interscience, New York, 1962.
3. E. Kleinfeld, A Characterization of the Cayley Numbers, "Studies in Modern Algebra" (A. A. Albert, Editor), Studies in Mathematics, Vol. 2, Math. Assoc. of America, Prentice-Hall, New Jersey, 1963, 126-143.
4. R. D. Schafer, The Exceptional Simple Jordan Algebras, Amer. J. Math. 70 (1948), 82-94.

Memorial University

St. John's, Newfoundland
Canada
Royal Roads Military College,
F.M.O. Victoria, B.C., Canada

[^0]: ${ }^{(1)}$ This author was chiefly responsible for the computer programmes used in the preparation of this paper.

