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THE DERIVATION ALGEBRA OF Ml(Q 

BY 

EDGAR G. GOODAIRE AND ROY C. SNELL(1) 

1. The Main Theorem. Let C by a Cayley-Dickson algebra over an algebraically 
closed field F of characteristic 0. A multiplication table for a basis of this 8-dimen-
sional alternative algebra can be found in [3], page 137, where we take oc=/?= 
y = — 1. C has an involution JCH->X, and a matrix X= (xi}) with entries in C is called 
hermitian if X=(xH). The space M%

n{C) of all nxn hermitian matrices with entries 
in C becomes a commutative algebra under the product Xo Y=(XY+YX)I2, 
where juxtaposition denotes the standard matrix product. It is not hard to see 
that all these algebras are simple, but for n>3, they otherwise remain a mystery. 
They are not Jordan algebras [4] as is Ml(C), and hence, because the identity of 
each is a sum of n pairwise orthogonal idempotents, they are not even power-
associative by Theorem 1 of [1]. Since a search for identities these algebras might 
satisfy seems a difficult problem, it seems more fruitful instead to investigate their 
derivation algebras, ^(M^(C)). The reason for this is that 2#(Ml(C)) is known to 
be JP4, one of the exceptional simple Lie algebras ([2]; pp. 142-145). Our study 
has revealed that 2(M\(C)) is i?4, one of the classical simple Lie algebras, and since 
this has dimension 36 and F± has dimension 52, it is surprising to learn that 
&}(M\{C)) has dimension 20. In fact, we have: 

THEOREM 1.1. 2{M\{C))'^.AX®A1®GZ, where Ax and G2 are the classical and 
exceptional simple Lie algebras, respectively. 

2. The general derivation. A multiplication table for the basis Ev . .., E52 

of M\(C) was computed. In order for a linear transformation T to be a derivation, 
it is necessary and sufficient that 

1) T(E, o £,) = T(EJ o Es+Et o T(E,), i, j = 1 , . . . , 52 

Thus, letting X=(xij), i,j=l,... , 52, we were able with the aid of a computer to 
determine relations among the xu which must hold for X to represent a derivation. 

Let 

S, = {(1, 5), (1, 13), (1, 21), (2, 29), (2, 37), (3, 45)} 

(2) S2 = {(6, 7 ) , . . . , (6,12), (7, 8 ) , . . . , (7,12), (9,10), (9,11), (9,12)} 

53 = {(2, 5), (3,13), (4, 21), (3, 29), (4, 37), (4, 45)} 

(1) This author was chiefly responsible for the computer programmes used in the preparation 
of this paper. 
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Notice that an integer j appearing in the second component of an element of 
Si appears just once, and occurs again exactly once in the second component of 
an element of S3. Thus there is a natural pairing of elements in Sx with those in 
iS3. With this in mind, the matrix X representing the general derivation of M\(C) 
has the following form: 

*w = - * « f o r (*> ; ) e S3, (fc, j) e Sx 

v * n = -xit for (iJ)eS1uS3 

Except for the cases of (3), the matrix is skew-symmetric. The 7x7 (skew-
symmetric) submatrix with (1, l)-entry in the (6, opposition of X, has entries 
satisfying: 

* 8 . 9 

* 8 . 1 0 

* 8 , 1 1 

* 8 , 1 2 

*io.n 

*10 .12 

X l l , 1 2 

= 
= 

= 

= 

= 

= 
= 

* 6 , 1 1 " ~ * 7 . 1 0 

* 6 , 1 2 • * 7 , 9 

* 7 , 1 2 * 6 , 9 

~"~*6,10~""*7.11 

^ 6 , 7 "1-^9,12 

^e.s"""^.!! 

*7,8"T"*9,10 

and is repeated six times along the main diagonal with a single 0 separating each 
repetition. The remaining entries in X are 0, except for some entries on four diag
onals above and parallel to the main diagonal (and their four negative transposes). 
Let Ditj be the set {xi+kij+k:k=l,...,/}. Then these non-zero entries are of the 
following form: 

( 5 ) ^4 .12 = ™36,44 = s {2*2,29/? A L 2 , 2 0 = ^28,36 = 12^3.45} 

(6) ^ 4 * 2 0 = 1 ^ X 2 , 3 7 } J -^12,28 = { 2*1 ,5 / 

*29.45 = = ÏÏ*2,37> ^29,45 = {"—1*2.37/ 

(7) *5.29 = = 1*1.135 ^5,29 = \ — l " ^ l t 13JJ ^20.44 = = {2*1.13/ 

( 8 ) *5,37 = *13,45 — 1*1.21» ^5 ,37 = ^13.45 = ( ~ 2*1.21/ 

3. Proof of theorem. We define a basis D19..., D20 for Q{M\{Cj) in the 
following way: Dl9... , D6 are those derivations obtained from the general 
derivation X by setting in turn, for each (/,/) e Sl9 xitj=l and x ^ = 0 if (k, f)^-
(i,j). Dl9... D20 are obtained from S2 in the same way. A computer was again 
called upon to evaluate D^D,—Z^D* for i9j=l9... , 20, thus producing the 
multiplication table for the derivation algebra. We have attached this table to our 
article. 

It is immediately apparent that the algebra is a direct sum of the algebra Lx with 
basis Dl9... , D6 and the algebra L2 with basis Dl9. . . , D20. We investigate 
first Lv 
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Letting ( , ) denote the Killing form, one checks that (Di9 D{)= — 1, / = 1 , . . . ,6 
and (Di9 Dj)=0 for zVy, i,j e { 1 , . . . , 6}. It follows that Lx is semi-simple. Now 
let /denote (-l)1 / 2and 

Hx = - 2 / ( ^ + 2 ^ ) , H2 = 2î(De-J>i) 

(9) Xx = ï D g + D s + ^ l - i i ) ^ *2 = 1 2 ) 2 - ^ 3 + ^ 4 + ^ 5 
7X = -iD2+Dz+D^+iDb9 Y2 = -ïZ)2-Z)3+i)4-îD5 

Defining / , to be FXi@FYi@FHi9 i= l , 2, one verifies first that £ i~ / i©/ 2 , and 
then notes tha t / iCf /^^ . 

For L2, we have (Dt, D{)= —16, /=7 , . . . , 20, and 

(D12, D14> = <D10, D16> = (D1Z, D1S) = <D7, D20) = - 8 ; 
( } (Dm D1B> = (D99 D17) = (D8, D19) = 8 

From this, it is again easy to check that L2 is semi-simple, and that H=FD7+FD20 

is a Cartan subalgebra. Letting 0^(2)7)=/, ^(2)20)=—/, a2(i)7)=0, a2(D20)=/, 
and extending ax and a2 to i / by linearity, it is straightforward to show that the 
positive roots of L2 are al5 a2, ai+a2, ax+2a2, a!+3a2, 2a1+3a2, and hence 
L2~G2. 
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