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ABSTRACT. A model of a local magnetic field within a white dwarf is constructed 
by the use of quantum statistics. The polarized Fermi, Bose and Maxwell statistics is 
calculated within a Heisenberg magnetism model by the use of Jones calculus. With 
a mesoscopic description the quantum mechanical dynamo can be discussed. The 
result is an efficient excitation mechanism, based on Lorentz time transformations 
and magnetic interactions. An Ap star as progenitor of a polarized white dwarf may 
loose its field and can generate a stronger one due to an intrinsic dynamo on a time 
scale of 107 years. 

1. I n t r o d u c t i o n 

The presence of magnetic fields in white dwarfs is commonly believed to originate 
from their formation. Due to momentum or magnetic flux conservation the magnetic 
energy is concentrated within a smaller volume of the white dwarf (Chanmugam 
1992). Time dependent electric fields, which may occur within the plasma, destroy 
the momentum conservation microscopically. Thus a large magnetic field of a white 
dwarf may be generated afterwards by a dynamo mechanism or by crystallization 
of the electrons. First we consider electrons and photons within a microscopic 
picture. Afterwards a mesoscopic theory is constructed, which accounts for the 
quantum statistics of the electrons and the partial degeneration of the plasma. The 
enhancement of a magnetic field within a non-degenerate plasma is discussed with 
possible consequences for the long-term evolution. 

2. Q u a n t u m Sta t i s t ics 

The microscopic picture of the interaction of two electron states and one photon 
is discussed. The electron interacting with a magnetic field may be described by a 
Dirac spinor of j = 1/2 within Euler coordinates, e.g.: 

where the magnetic field vector points into 0 = 0 direction. Two electron states 
combine to one photon state, e.g. Ψ7 = * The quadratic expectation value 
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of the momentum may be written in terms of density matrices, e.g.: 

* = , ρ γ = χ ) φ 7 * φ + ι (2) 
t i 

where the matrices are averaged in terms of degenerate states i. The + symbol 
denotes Hermite conjugation of the Dirac spinor. This procedure ensures a complete 
description of the discrete quantum mechanical momentum of electron and photon. 

The thermal Boltzmann distribution may be defined within the transfer matrix 
(T) formalism, e.g.: Τ = exp(-ßH) where β denotes the inverse temperature and 
Η the Heisenberg operator, e.g.(Grosse 1988): 

Hij = J i j ^ i ^ + h u = Qijhuj. (3) 

Jij denotes an effective weight of the spinor components and Κω is the energy 
of the particle. The transfer matrix is used for the calculation of the expectation 
value of the energy with respect to the various statistics, 

< H > - { e X p ( ß ^ e t ^ ) ± u J h U ' ( 4 ) 

where the plus sign denotes the Fermi Dirac distribution and the minus sign the 
Bose statistics of the photons, μ' is a matrix interaction term of the electrons, the 
chemical potential of the photons is equal to zero. For simplification we assume 
μ' ex μρ, where μ is scalar. 

The matrix functions are calculated within Jones calculus (1941), which was 
introduced for the description of photons within a crystal. The method takes 
advantage of the fact, that the function of a matrix must be similar to the matrix 
itself. It may be verified, that the function f of 

fJ + Q u \ 
6 = \ U I — Q)' W 

where I,Q,U are Stoke's components, may be written as 

f W - i / 2 * y {\\-x'2)u/p λ'1 + λ ' 2 - ( λ ; - λ ' 2 ) ( ? / ρ ; W 

where AJ = /(λ,·) (scalar), A, are two eigenvalues λ, = I ± P , and Ρ = y/Q2 + U2 

the total polarization. The complete description avoids interference effects which 
occur for usual solid body expansions of exp(ç). 

We discuss now the Fermi - Dirac distribution in terms of the temperature. At 
low temperatures the electrons crystallize similar to the photons β —* oo :< Η > = 
ρ βχρ(—βΚωρ). For β —• 0 the Maxwell limit is approached < Η > = ρΚω , e.g. 
the energy in terms of the Maxwell distribution is not dependent on temperature. 
In Fig.l the ferromagnetic phase transition, occuring for μ < 0, is visualized by a 
plot of the magnetization Q versus temperature in terms of different μ. This proves 
the validity of Maxwells equations. In contradiction to the boson distribution, the 
antisymmetric character of the wave function survives the classical limit. 
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3. Q u a n t u m Dynamics 

A complete set of mesoscopic equations is necessary for the quantum mechanical 
description. Within the usual MHD formalism a set of equations for the mass, the 
first velocity momentum, the electric and the magnetic field, the electrical current 
and the pressure is used. Within the quantum mechanical theory the description of 
the electromagnetic field (E_,BJ) is unified by the coupling of the four dimensional 
vector potential A to the momentum of the electron. The total variation of a 
mesoscopic quantity may be written in a quasi classical formulation of quantum 
dynamics, e.g.: 

άρ/dt = i/h[H, ρ} + θρ/dt (7) 

ρ is an arbitrary quantum mechanical operator, for example a quadratic form of wave 
functions. The sense of (7) is justified by the validity of the temperature independent 
Maxwell energy. 

The formalism may be used to calculate the magnetic pressure. The Hamilton 
operator of one Dirac electron is given by 

Η — ca Π -b eAo -f 74 mc2, (8) 

where Π is the total momentum Π = p — e/cA and a = 775 corresponds to the 
velocity within the classical theory written in terms of a complete set of 7 matrices. 
The commutator gives: 

</ft[H,n] = e(E + a χ Β), (9) 

where the electric field is defined by the gradient of — Ao and the magnetic field 
| = V x A. The Lorentz force is to be compared to the gravitational pressure. This 
results in a depolarization of the momentum. 

Next we consider the derivative of a magnetic field,e.g. 

dB/dt = i/h[H, B] + dB/dt (10) 

dB_/dt = 0 corresponds to van Alfvén's theorem, e.g. 

i/h[H,B\ = - V x ( a x 5 ) (11) 

If we consider an explicit time dependence of B_ as B_(t) = B_(tx) * exp(iH(i — t{)/h) 
then a diffusion term iHJB(ti)/h is found which corresponds to the Maxwell picture, 
since α Π represents a quadratic form of the momentum operator. Therefore 
magnetic diffusion may occur if there are perturbations in phase. 

The solution of the commutator equation without an explicit time dependence of 
2? is well known within quantum theory, e.g. 

£ ( t ) = exp{iHi/h) B(t = 0) exp(-iHt/h). (12) 

For discussion of 13(t) we add, that Η and B_ are vector spherical harmonics of rank 
one or may be written in terms of £e · If the matrices Η and Β are identical then 
the functions of Β and Η interchange and £( t ) = constant. If Η and Β are not 
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identical, and not dependent on Φ, no change in Β occurs either. In this case the 
matrices are diagonal and the matrix functions interchange. Only if one operator 
depends on Φ, e.g. a second magnetic field interacts with Β, the magnetic field 
changes. This effect is due to interferences between Q and Ϊ7, the Stoke parameter I 
remains constant. This behaviour is similar to the a effect (Steenbeck et al., 1969). 
The expression (12) may be regarded as Lorentz transformation. The enhancement 
of the field is proportional to cosh(iHt/h)2. Since this term causes an enhancement 
of the magnetic field if phase perturbations occur, the field may decay only due to 

t e m p e r a t u r e in Κ 

F i g u r e 1: The magnetization Q normalized to one versus temperature in terms 
of μ. The microscopic Q equals 0.245, U equals zero. The electrons (20 eV) are 
crystallized below a critical temperature, whereas Q approaches the microscopic 
limit very fast at higher temperatures. 

4. Discussion 

A formalism has been discussed, which describes the secular evolution of a magnetic 
field under the conditions of non-relativistic temperatures Τ < 2 * 105 Kelvin and 
non-crystallized electrons of positive kinetic energy. A dynamo excitation has been 
found, which needs a second magnetic interactor, e.g. a second dynamo for the 
conservation of quantum mechanical momentum. 

A possible scenario of the magnetic field of a star in its Ap state and the white 
dwarf state may be the following: An initial magnetic field may exist in an Ap star 
due to a dynamo within a deeper convection zone. Mass loss may carry magnetic 
energy away. Shell burning may mix different volume elements and therefore a 
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macroscopic magnetic field may be destroyed, since momentum is not conserved due 
to electric fields and the explicit time dependence of the plasma. The magnetic 
fields, remaining on a smaller scale, may interact with each other. By the quantum 
mechanical time evolution of the momentum a local twin dynamo may be excited, 
which leads to a strong enhancement of small scale magnetic fields and a global 

F igure 2: |j?| * Q and |J3| * U versus time. At i = 0 U = 0 and Q = 1.0, 
IB(i = 0)| * Q = 1 Tesla. Then the matrix iE is disturbed by SU = 10~5 and 
SQ — 10"5. The energy per electron is 4 eV, the temperature is 20kK and the 
volume consists of 1010 electrons. When the U perturbation approaches Q after a 
time scale of 107 years, then the magnetic momentum increases very rapidly. 
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