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GROWTH OF FUNCTIONS IN HP

HWAI-CHIUAN WANG

There are two Hardy and Littlewood theorems which describe the

rate of growth of functions in W on the unit circle T . In

this paper we first establish their analogues on Euclidean space

R and then apply them to solve multiplier and factorization

problems on if (RW) .

0. Introduction

Hardy and Littlewood [6], [7] gave two fundamental inequalities to

describe the rate of growth of functions in If on the unit circle T .

The inequalities can be stated as follows.

THEOREM 0.1. if f € flP(r) , o < p s 2 , then

T. nP-2\a\P < - andn=l n'

where o depends only on p , and a = f{n) .

Theorem 0.1 is usually called the Hardy-LittIewood inequality for

0 < p £ 2 and the Hardy inequality for p = 1 .

THEOREM 0.2. If f € #{T) , 0 < p 2 1 , then, for n > l ,
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\%\ - <- - ,.„,.

where a is independent of n, f and where a = fin) .

Theorem 0.2 is due to Hardy and Littlewood [7] although Soviet

Mathematicians ascribe it to G.A. Fridman.

The original proofs of Theorems 0.1 and 0.2 are complicated and use

complex methods which cannot be extended to higher dimensions. In this

article we use real methods to establish analogues on Euclidean space R

of Theorems 0.1 and 0.2. Moreover our real methods could be applied to

give a simple proof of Theorems 0.1 and 0.2. Finally we apply our results

to solve multiplier and factorization problems on If (R ) . The main tools

of our proofs are from Peetre [70], Fefferman and Stein [4] and Latter [S]

(see Theorem 0.3 below).

For the later use we recall that, for 0 < p 5 1 , a p-atom is a

function a on R satisfying

(i) a is supported in a cube I in R ,

(ii) ||a|| m 5 III"
1^ . where \l\ is the volume of I ,

L

(iii) a{x)xadx = 0 for any multi-index a with

Rn

|a| 5 n((l/p)-l) .

THEOREM 0.3. A distribution f is in if (R") , 0 < p 2 1 , if and

only if

1/P

0=1
A .a .
3 3

< oo

where a. are p-atoms and \ . are complex numbers. Moreover} there are
0 0

positive constants c and c which are independent of functions f

with
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if
2 inf I |X,IP

3

The "inf" runs over all representations

oo

/ = T X.a. .

Theorem 0.3 was established by Latter [S] for n > 1 and 0 < p 5 1 ,

by Fefferman [3] for p = n = 1 , and by Coifman [/] for 0 < p < 1 and

n = 1 .

Throughout this article, ve will use a to denote a constant which

may be different in the same proof.

1. Hardy and Littlewood inequalities

In this section we prove analogous results on R of Hardy and

Littlewood inequalities for Fourier coefficients.

THEOREM 1.1. If f € if (Rn) , 0 < p 5 1 , then the Fourier

transform f of f satisfies

| ? ( 5 ) | 5 C | 5 |
n ( ( l / p ) - l } l l / | l for 0 # £ € R n

IF

where a depends only on n and p .

We need the following lemma.

LEMMA 1.2. Let a be a p-atom, 0 < p 5 l , and ty a rapidly

decreasing function on FT such that 4> does not vanish anywhere on the
unit disk. Let tyAx) = t~ni>[t^x) for t > 0 and u(x, t) = a * 4>,(x) .

v t

Then

SUP |M(X, t)\ < ct~n/p\\a\\ . t > 0 .
x3T if

Proof. Denote the nontangential maximal function u* of u by

u*(x) = sup \u(y, t)\ .
\y-x\St
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By Fefferman and Stein [ 4 ] , u* € Z/ (R ) and there are constants a and

a with a \\a\\ 2 ||w*|| 5 c l|a|| . Fix t > 0 , x € i f ; we have
IF IF W

\u(y, t)\ 5 u*(x) for |z/-a? | < t . Thus

\uHy) \Pdy

^ | | u | |
LJ

5 o\\af
IF

where ^ is the volume of the unit ball in FT . We obtain

SUD |u(x, t) I S Ct-"/p| |a| | .

This proves our assertion.

Proof of Theorem 1.1. We divide the proof into several steps.

(l) Let a be a p-atom and ^ as in Lemma 1.2. Let

M = min |$(C) I ; then M > 0 . For t > 0 we have

151=1

< I \u(x, t)\dx

F\

C||a| |P t - ( M / p ) ( l - p ) | | a | | 1 : P by Lemma 1.2

V

The last equality is due to the fact ||a|| 5 a for some c > 0 and al l
IF
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p-atoms a . Choose t > 0 wi th | i £ | = 1 , s i n c e

51

5: M ,

\aU)\ <c|?|"

(2) Let f €

1/P

and

N
with / = X A .a. , where a. are p-atoms

2 a\\f\\ . By ( l ) , t h e i n e q u a l i t y (a+b)P 5 cp +

(1.3)

for 0 < p S l , a ^ O , i > > 0 , and Theorem 0 . 3 , we have

y ix i r

||

ff

Set

T ~ ^ 3a3*

1/P

, fe = 1 , 2 ,

Fix C € Ft" . By inequality (1.3), the mapping U : f ->• /(?) is a

continuous linear functional on 0 . By Theorem 0.3, D is dense in FF .

For general / € , take a sequence W I
in D w i t n

fi^ . Therefore {/, }r̂ _-, is a Cauchy sequence in IF . As a consequence

of inequality (1.3), [ M ^ L , is a Cauchy sequence in the complex

numbers C . Take I € C with I = lim ?,(?) . Define

We have
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< lim e | e | n ^ ( l / p ) ' ^ H A l l n by inequality (1.3)

= e | ? | | | / | | _
IF

Note that since fu+f i n ^ implies that /V "*" / a n d fu^f i n t h e

sense of d is t r ibut ion, and / i s locally integrable, the Fourier transform

/ defined here and the Fourier transform f in the sense of distribution

coincide.

Next we come to another description of the rate of growth of Fourier

transforms of functions on IF .

THEOREM 1.4. Let f € H? [ft1] , 0 < p 5 2 . Then

ffu
Proof. (l) 0 < p 5 1 . Let a be a p-atom supported in a cube Q

with sides

length I . Then

in R with sides parallel to the axes centered at 0 and with side

\a(E,}\ 2 \a(x)\ \

= c
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\a{x)\2dx\

= ol(np/2)-nln-{np/2)

= a .

Combining the above inequalities we have

(1.5) (f |5|M(p-2)|a

Note that the translation of a p-atom does not change inequality (1.5).

Let f £ D , where D is as in the proof of Theorem 1.1. From (1.5)

we get

ff
IF

For general f (. If [R ) , since D is dense in if'(R") , if we apply the

Fatou Lemma, we have the desired inequality.

(2) 1 < p 5 2 , The operator

fl : /-> ff |5|B(P-2)|?U)|P#

is a bounded sublinear operator of type [H , L ) and [L , L ) . By a

result of Macias (see Coifman and Weiss [2, p. 597])

(f
This completes the proof.

2. Multiplier and factorization problems

The following multiplier theorem is a consequence of Theorem 1.1.
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THEOREM 2 .1 . For 0 < p £ 1 , m is a multiplier of if (RM) into

L°°(R") if and only if

) foP z t 0 .

Proof. Let |m(?)| < e |g [-«U1/p)-1J f o r £ ̂  o . By Theorem 1.1,

|l for f€flP and all £ * 0 .
W

We obtain

| ? ( ? ) m ( 5 ) | S o\\f\\ , for a l l 5 ^ 0 .

T h e r e f o r e m(C) i s a m u l t i p l i e r of ft i n t o L .

T) 00

Conversely, suppose m is a multiplier of W into Zi . We have

(2.2) |mU)/(5) | S ell/H for / € fl? (tf1) and ? € Rn .

Let ip € i (R") such that supp I(I c S (0) , where B (0) is the unit

tall centered at 0 , ijj(x)xada; = 0 for |a| S ff = n((l/p)-l) ,

Ĥ ll „ = 1 and ij) never vanishes on 5 (0) . Let ty,{x) = t~MiJ;(t~ x) for
//

t > 0 . Routine arguments reveal that we can decompose 41, into
v

where fc(x) is a p-atom and |a(t)| 5 otn^ & ' . By Theorem 0.3,

and

Choose / = tp in inequality (2.2). We have

Take t > 0 with |t£| = 1 for 5 * 0 ; then
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This proves the theorem.

We next give an application of Hardy inequality to factorization

problem of H1 (RW) .

DEFINITION 2.3. A homogeneous Banach algebra on R is a Banach

algebra (5, || ||) of integrable functions on R satisfying

II II 5 II II , , a n d
LL

H I . f o r a l l / 6 B , x € R " t h e n f € B a n d \\f || = | | / | |
X X

where fjy) = f(y-x) for all y € R* ,

H2. the mapping x -*• f is continuous from R into (B, || ||) .

X

L (K J is the largest homogeneous Banach algebra on K . Moreover

a (R ] is a homogeneous Banach algebra on R (see Neri [9], Wigley [73],

Wang [ H ] , [72]). Therefore we have H1 (R") * ff1 (Rn) C fl1 (RW) . Wigley

[73] asked if ff1 (R") * ff1(R") = ff1 (R") . The answer is negative just by

Theorem 1.1* for p = 1 and the following result of Feichtinger, Graham and

Lakien [5].

THEOREM 2.4. Let B be a homogeneous Banaoh algebra on R 3 and

d\i an unbounded regular measure on FT . If B * B = B , then there is

f € B with f £ Lp(d\i) for all p } 0 < p < » .
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