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POSITIVE SOLUTIONS OF FOURTH-ORDER SUPERLINEAR
SINGULAR BOUNDARY VALUE PROBLEMS

GUOLIANG SHI AND SHAOZHU CHEN

This paper investigates fourth-order superlinear singular two-point boundary value
problems and obtains necessary and sufficient conditions for existence of C2 or C*
positive solutions on the closed interval.

1. INTRODUCTION

In this paper, we are concerned with the fourth-order singular two-point boundary
value problem

) ' { u@(t) = f(t,u(t)), 0<t<l1,

w(0) = u(1) = w"(0) = u"(1) =0,

where f € C((0,1) x [0,+00), [0, +oo)) and is quasi-homogeneous with respect to the
second variable, namely, there are constants A, g, N, M with 1 < A € p < o0 and
O<NgL1gMsuchthatforall 0<t<1,u>0,

(2) c*f(t,u) < f(t,cu) < A f(t,u), if 0<c<N,
3) Af(t,u) < ft,cu) < P ftu), if c2 M.

A typical quasi-homogeneous function is f = fi(t)u* + -+ + f(t)u*m, where A
SAhgp,t=1,...,m.

Singular or nonsingular fourth-order boundary value problems have been exten-
sively studied by many authors (see [1, 2, 3, 4, 5, 6, 7] for nonsingular cases and (8, 9]
for singular cases). In [3, 4, 5] the right hand side function in the equation of (1) has
separated variables, namely, f(t,u) = Aa(t)g(u), and in [1, 6, 7, 8] the function f in-
volves the second derivative u”. O’Regan considered the singular case where f(t,u,u”)
is singular at « = 0 or w” = 0, while in [9] singularity occursat t =0 or t = 1. Using a
modified upper and lower solution method, Chen and Zhang [10] established necessary
and sufficient conditions for existence of positive solutions to second-order sublinear
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boundary value problems on a half-line. Using a similar method, Wei [9] obtained nec-
essary and sufficient conditions for existence of positive solutions to the fourth-order
problem (1) in the sublinear case. The results in [9, 10] involve integrability conditions
in terms of the function f and the Green’s function. To this connection, however, the
upper and lower solution method can hardly be used to treat the superlinear case.

" In this paper, based on a careful analysis of the Green’s function, we shall apply a
fixed point theorem in cones to the superlinear problem (1) and obtain necessary and
sufficient conditions for existence of a positive solution with different smoothness on the
closed interval.

2. MAIN RESULTS

Our main results are the two following theorems.

THEOREM 1. The boundary value problem (1) has a positive solution u
€ C?[0,1]n C*(0,1), if and only if,

(4) /01 t(1 = t)f(t,¢(1 — t)) dt < oo.

THEOREM 2. The boundary value problem (1) has a positive solution u
€ C3[0,1]n C*(0,1), if and only if,

(5) /01 f(t,t(1—t)) dt < oco.

We note that (5) implies (4). To prove Theorems 1 and 2, we shall prepare some
lemmas. First, we state a fixed point theorem in a cone as follows:

LEMMA 1. ([11, Theorem 2.3.4].) Let E be a Banach space and P a cone in E.
Suppose that ; and 2, are two bounded open subsets of E with 6 € Q;, Q; C 5.
IfT: PN (Q2\ Q) — P is a completely continuous operator satisfying

|Tz|| € ||zl for z € PN 3Ry and ||Tz| = ||z|| for x € PN 8y,

then T has a fixed point in PN (02 \ ;).

Let E = {u € C?0,1] : u(0) = u(1) =0, w”(0) = u”(1) = 0}. Define the norm
[lu|| for every u € E by |lul]l = Julo + [v")o, where |- |o is the usual sup-norm for
continuous functions over [0,1]. It is seen that E equipped with the norm || -|| is a
Banach space.

Let G(t,s) be the Green’s function of the second-order boundary value problem

—u"(t) = 0,
u(0) = u(1) =0,
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that is,

Glt.s) s(t1—t), 0<s<t<],
t,s) =
t(1 - s), 0g<tgsgl.

N IN

Let s
h{t, s) =/0 G(t, 7)G(, s)drt.

Then h(t,s) is the Green’s function of the homogeneous fourth-order boundary value
problem corresponding to (1). It is easily seen that

(6) G(t,s) <G(s,8), 0<t s<1
and for 1/4 <t < 3/4,
(7) Glt,s) > iG(s,s), 0<s<l.
Denote
P={ueE|u(t)>0, u"(t) <0, 0<t<1;
u(t) > glulo, —u"(t) > 1"l,

It can be easily seen that P is a cone in F.
Next, we define an operator T': P — E by

(8) ‘ (Tu)(t) = /0 h(t,s)f(s,u(s))ds, ueP

We observe that a fixed point of T in E is indeed a positive solution of the boundary
value problem (1).

Using the Green’s function, for every u € P, we shall have an estimate for u(t) in
terms of the magnitude of its second derivative, namely, for ¢ € [0, 1],

u(t) = /01 G(t,s)(—u"(s)) ds < (/Ot s(L—t)ds + /tl t(l-s) ds>'|u"|o

(9) = 241~ )u]o.

Let u € P and let ¢ be a positive number such that ¢ > M and |u"]o/(2¢) €
From (9), u(s)/(cs(1 — s)) < |u”lo/(2¢) £ M. Then, from (2) and (3),

|Tu(t)| </0 G(s, s)c* f(s,u(s)/c) ds
_ [ u(s)
= C“/o‘ G(S, S)f(S, mS(l - S)) ds

lu”|0 ,\/1
< - —
< c“( 5 ) A s(1 - s)f(s,s(1—s))ds
Hence, T is well defined on P provided that (4) or (5) holds.
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LEMMA 2. If (4) holds, then T(P) C P.

PROOF: Let u € P. Obviously, Tu(t) > 0 and —(Tu)"(t) > 0. For 1/4 < t

< 3/4, we claim that
.o 1

Tu(t) 2 ZlTu|0.

Indeed, from (4), by Fubini’s theorem, (8) can be rewritten as
1 1
(10) (Tu)(t) =/ G(t,r)/ G(r,s)f(s,u(s)) dsdr.
0 0
It follows from (6) that
1 1
(11) |Tulo S/ G(r, 'r)/ G(r,s)f (s,u(s)) dsdr.
0 0
On the other hand, for 1/4 <t < 3/4, (7) together with (11) gives
' 1! ! 1
(12) (Tu)(t) 2 Z/ G(r, 1')/ G(r,8)f(s,u(s)) dsdr > ZITUIO'
0 0

Next, we claim that —(Tu)”(t) > (1/4)'(Tu)"|0

for ¢ € [1/4,3/4). In fact, from
~ru)" () = [ 66,5)1(s,u(s) db,
it follows from (6) and (7) that
" 1
|(Twy"|, < /0 Gls,5)f (s, uls)) ds
and, for 1/4 < ¢ <3/4,

(13) —(Tw)"(t) > %/0 G(s,5)f(s,u(s)) ds > %I(Tu)"lo.

We now conclude that T': P — P from (12) and (13) and complete the proof. 1
LEMMA 3. If (4) holds, then T is a completely continuous operator on P.

Proor: If u, € P and u, = ug in E as n — oo, then we have that ﬁo € P by
the definition of the cone P and that {||u,||} is bounded, say, |lus|| < Co, n > 1. As
a result, from (9), we have

(14) un(t) < 21 - o)
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Let ¢ be a positive number such that ¢ > M and Co/2c < N. From (2) and (3),

|(Tun)(t)| < / s(1 —5)f (s, un(s)) ds
0
S/o s(1 — s)c*f(s,un(s)/c)ds

< /01 s(1— s)c“(;—(uln%;))‘f(s,s(l —s))ds

LehA (%)A /01 s(1—8)f(s,s(1 - s)) ds.

Now, from (4), an application of Lebesgue’s dominant convergence theorem gives the
continuity of T’ on P.

To prove T is a compact operator, we shall show that for every bounded sequence
{un} in P, the sequence {Tu,} C P has a convergent subsequence in E. Since {Tu,}
is bounded in E, {|(Tu,)"|,} is bounded and hence {Tun(t)} is equicontinuous. By
Ascoli—Arzela’s lemma, it suffices to show that {(Tw,)"”(t)} is equicontinuous. Let
Cy be a positive number such that ||lu,ll < Co, n=1,2,.... Then (14) holds from (9).
Again, choose a ¢ > max{M,Co/(2N)}. Then

1

(Tu)""(t) = /0 sf(s,u(s)) ds - /t (1-38)f(s,u(s)) ds
< /0 sf(s,u(s)) ds +/t (1-35)f(s,u(s)) ds

< Cl(/otsf(s,s(l—— s)) ds+/t1 (1-s)f(s,s(1—25)) ds)
=: F(t),

where C; = ¢#~*(Co/2)*. Since, in view of (4),
1 1 gt 1,1
/ F(t)dt = C1/ / sf(s,u(s)) dsdt+C1/ / (1—3)f(s,u(s)) ds
0 0 Jo 0 Jt
‘ 1
= 2C1/ s(1 - s)f(s,s(1 — s)) ds < o0,
0
we have the equicontinuity of the sequence {(Tun)”(t)} from the uniform continuity

of the convergent integral of F'(t) with respect to the Lebesgue measure over [0,1].
Therefore, T is a compact operator on P and the proof of Lemma 3 is complete. 0

We are now in a position to prove our main results.
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PROOF OF THEOREM 1: Necessity. Let u € C2[0,1] N C*(0,1) be a positive
solution of (1). Obviously, u”(t) < 0 for 0 < ¢t < 1 and hence u(t) is concave. It
follows from u(0) = u(1) = 0 that »'(0) >0 and u’ (1) < 0. Consequently, there must
be a positive number k such that u(t) > kt(1 —t). Let ¢ > max{M,1/(kN)}. Then,
for 0 <t <1, t(1-1t)/(cu(t)) < N, and we get '

161 - 1) < f (811 - Bu(t)/ (cut)))
(15) S AR (L u(t)) = T (8.

Since »”(0) = u”(1) = 0, there is a to € (0,1) such that u"/(tg) = 0. Then

to to rto to
(16) u’(to) = / u'"(s)ds = -/ / u®(r)drds = —/ ru® (1) dr.
: 0 o Js 0

On the other hand,

1 1 s
u”(to) = —/ u'"'(s)ds = —/ / u® (1) drds
to to Yo

an N

Therefore,

/Olt(l —t)u®(t)dt = (/Oto +/t1>t(1 - t)u(t) dt

’ u® - ut
g/o ¢ (t)dt+/(1 £us(t) dt

to

(18) : = 2(—u"(to)) < oo.

We now obtain (4) from (15) and (18), and complete the proof of the necessity.
Sufficiency. Let Q@ = {u € E| |lul| < r}, where

(19) r < rmn{ZN 2(/01 s(1—s)f(s,s(1—s)) ds) 1/(1_,\)}.

Let u € 89 N P. Then ||u|| = |u|o + |u”|o = 7, and |ulo < 7, |u”|o < 7. It follows
from (9) that

(20) u(t) < %t(l ~Dllo < T2~ 1) < Ne(1 1)
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In view of (2), (3), and (20), we have
Tu(t) = / b, 5)f (5, u(s)) ds
S/o h(t, )( (11‘(8) ) f(s,8(1—s))ds
< 2= / s(1 - 9)f (s, 5(1 — 5)) ds
0
and
1
(21) [Tulo < 2-r> / s(1—5)f(s,5(1—8))ds, wedNP
0
On the other hand,
1
—(Tw)" () ='/ G(t,s)f(s,u(s)) ds
/ G(t,s) u(s) )'\f(s, s(1-s))ds

- 3)
<27 ’\/0 s(1 —s)f(s,s(l —s)) ds,

and so
1
(22) |(T'u)"|0 < 2”\1')‘/ s(1 - 8)f(s,s(1—s)) ds
0
Thus, from (21), (22), and (19),
1
ITull = |Tulo + |(Tw)"|, < 21"’\7'"‘/0 s(1-8)f(s,5(1—s))ds
(23) <r=|ull, vedUnNP

Next, set Q2 = {u € E| |lu|| < R}, where

' 3/4
(24) R= ma.x{288M, 2(9A+1)/(A=1) (/

1/(1-2)
» s(1—s)f(s,s(1 —s)) ds) }

Let u € 802N P. Then ||ul| = |ulo + |[v”|o = R, |ulo < R, |u"|o < R. From (9),
we have

R.

Nl o o)

1
(25) julo < gl'lo, [u”lo >
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Also, by the definition of the cone P, we have that for 1/4 < t < 3/4,

3/4

1
u(t) = / G(t,s)(—u"(s)) ds > G(t,s)(—u"(s)) ds
0 1/4
> | G(s,s)ds > —~|u"|
= 42 0 1/ ) = 98 0

and hence,

1 "
(26) lulo > Z5lu”lo-
Since u € P, from (26), we have

u(s 1
(27) s ) > fude > el

s(1—s)
and so, from (24) and (25), for 1/4 < s £ 3/4,

u(s) 18
s(1—s) ”~ 289

(28) R>M.
For 1/4 < t £ 3/4, from (27) and (28), we have

Tu(-t)=/0 G(t,‘r)/0 G(r,8)f (s, u(s)) dsdr

3/4 3/4
2 G(t, 1) G(r,8)f (s, u(s)) dsdr
1/4 1/4
1 [3/4 3/4 u(s) \A
Z 5 » (1 - 1)dr ./1/4 s(1- s)(m) f(s,5(1—s))ds
> g (e 1-5))d
(29) > geluld | 2951 ) ds

On the other hand, from (27),

—(Tu)"(t) = /0 G(t,s)f(s,u(s)) ds

3/4 u
> [ G s(l(j)s)

1/4

A
) f(s5,5(1~s))ds

3/4
N T
1/4
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and hence,
3/4

(30) [(Tw)"|, = 2732 2)u" |y / s(1 — $)f(s,s(1 - 5)) ds.
1/4

Now, from (29), (30), and the fact that a* + b* > 2'"*(a+b)* for A > 1 and a,
b > 0, we arrive at

3/4

. /
I7ull > (2% + 2752 ) [ s(1 = )1 (5,502 - ) ds
1/4

" 3/4
> 27822 (Jufy + |u [9) / s(1—5)f(s,s(1—s))ds
1/4
L, [3/4
> 279 (jufo + [u”|o) / s(1—38)f(s,s(1 - s))ds.
1/4
Consequently, by the definition of R, we have

3/4
ITull = |Tulo + |(Tw)"|, > 27°*"'R> / s(1—s8)f(s,s(1 ~s))ds
1/4
(31) 2R=|ul, uednP

Finally, from (23) and (31), by Lemma 1, the operator T has at least one fixed point
u € PN (Q2\ ) which is a positive C2[0, 1] solution to the boundary value problem

(1).
The proof of Theorem 1 is complete. |

PROOF OF THEOREM 2: We prove the sufficiency first. Since (5) implies (4),
Theorem 1 provides a C2[0, 1] solution u € P. From (9), u(t) < (1/2)t(1 — t)|u"|o.

To prove that u € C3[0,1], choose a positive number ¢ > max{M, |u"|o/(2N)}.
Then, from (2) and (3), we have

/01|u(4)(8)| ds = /01 f(s,u(s)) ds < /01 f(s, E(ci)) N
< c"(_lﬂ)z\ /1 f(s,5(1 —5)) ds.
0

2c
Now, u(¥)(t) is absolute integrable over [0,1] from (5), and hence, u € C3[0,1].

To prove the necessity, let there be a positive solution u € C3[0,1] of (1). The same
reasoning at the beginning of the proof of Theorem 1 asserts that u(t) > k;t(1 —t) for
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all ¢t € [0,1] and for some constant ki > 0. Let ¢ > max{M, 1/(k1N)}. Then, from
(2) and (3),

Ft.t(1 - 1) < (5 (01 - ul) /(cu(®)) ) < T (2 u(t)),

and hence,

/1 (6,10 —t))dt < #2kTH /01 f(t, u(t)) dt = kT /()lu(4)(t) dt
’ ‘ = c*2kT u(1) — u"(0)] < +oo.
Thus, (5) holds and the proof of Theorem 2 is complete. 0
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