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Dimension Functions of Self-Affine Scaling
Sets
Xiaoye Fu and Jean-Pierre Gabardo

Abstract. In this paper, the dimension function of a self-affine generalized scaling set associated with
an n×n integral expansive dilation A is studied. More specifically, we consider the dimension function
of an A-dilation generalized scaling set K assuming that K is a self-affine tile satisfying BK = (K +d1)∪
(K + d2), where B = At , A is an n× n integral expansive matrix with |det A| = 2, and d1, d2 ∈ Rn. We
show that the dimension function of K must be constant if either n = 1 or 2 or one of the digits is 0,
and that it is bounded by 2|K| for any n.

1 Introduction

Suppose A is an n × n integral expansive matrix, i.e., a matrix with integer en-
tries whose eigenvalues are all of modulus greater than one. A finite set Ψ =
{ψ1, . . . , ψM} ⊂ L2(Rn) is called an A-dilation orthonormal multiwavelet if the sys-
tem

{|det A|
j
2ψ`(A j · −k) : j ∈ Z, k ∈ Zn, ` = 1, . . . ,M}

forms an orthonormal basis for L2(Rn). If an A-dilation orthonormal multiwavelet Ψ
consists of a single element ψ ∈ L2(Rn), then we call ψ an A-dilation orthonormal
wavelet. For the general theory and characterization of orthonormal multiwavelets,
we refer the readers to [3,12,13]. The dimension function of an A-dilation orthonor-
mal multiwavelet Ψ = {ψ1, . . . , ψM} ⊂ L2(Rn) is defined by

(1.1) DΨ(ξ) =

M∑
`=1

∞∑
j=1

∑
k∈Zn

∣∣ ψ̂`(B j(ξ + k)
) ∣∣ 2

, ξ ∈ Rn,

where B = At and ĝ denotes the Fourier transform of g.
The (multi)wavelet dimension function, which was first introduced and investi-

gated by Auscher in [1], is an important tool in the theory of wavelets and it has been
extensively studied by many researchers for the class of integer dilations [3, 7, 19, 27]
and for the class of real dilations [5, 6]. Its importance is due to the fact that it can
be used to prove that certain wavelets are associated with a multiresolution analysis
(MRA [9, 26]). Initially, Lemarié-Rieusset [24, 25] used the wavelet dimension func-
tion to show that all compactly supported wavelets are associated with an MRA in the
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one-dimensional dyadic case. After that, Gripenberg [13] and Wang [29] indepen-
dently used it to characterize all wavelets that arise from an MRA and they proved
that a wavelet ψ is an MRA wavelet if and only if its dimension function Dψ(ξ) is
equal to 1 for almost every ξ ∈ R. Baggett, Medina and Merrill [3, 4] made a sys-
tematic study of the properties of the multiwavelet dimension function associated
with an n× n integral expansive matrix A, including the case where the wavelets are
not associated with an MRA. They showed that the dimension function DΨ of the
multiwavelet Ψ satisfies the consistency equation∑

d∈D

DΨ(ξ + B−1d) = DΨ(Bξ) + L, for a.e. ξ ∈ Rn,

where B = At and D is a complete set of coset representatives for the group Zn/BZn.
Furthermore, they exploited this consistency equation to provide a constructive pro-
cedure for producing all A-dilation wavelet sets in Rn. A measurable set Q ⊂ Rn

is called an A-dilation wavelet set if χQ is the Fourier transform of some single A-
dilation wavelet ψ. Dai, Larson and Speegle [8] proved the existence of wavelet sets
associated with any n× n real expansive matrix. Bownik, Rzeszotnik and Speegle [7]
introduced the notion of (generalized) scaling set which can be associated with any
(multi)wavelet set and they showed that (generalized) scaling sets and (multi)wavelet
sets are determined by one another. Wavelet sets are also characterized as the support
sets of minimally supported frequency (MSF) wavelets (see [11, 18]).

The connection between the theory of compactly supported wavelet bases and
the theory of self-affine tiles was first provided by Gröchenig and Madych [16]. Af-
ter that, many authors studied the connection between self-affine tiles and wavelets,
more particularly, in relation with the construction of multi-dimensional wavelet
bases having compact support, or Haar-type wavelets (e.g., [10, 14, 20, 28]). More-
over, Lagarias and Wang [21–23] gave an in-depth study of the structure and tiling
properties of self-affine tiles, since these problems concern the construction of or-
thonormal wavelet bases in Rn. With a view toward constructing wavelets which are
compactly supported in the frequency domain, Gabardo and Yu [17] considered the
problem of constructing wavelet sets using integral self-affine tiles and they gave some
necessary and sufficient conditions for an integral self-affine tile to be an A-dilation
scaling set.

This paper is devoted to characterizing the properties of the dimension function of
all A-dilation generalized scaling sets in Rn that satisfy a self-affine equation, where
A is an n × n integral expansive matrix with |det A| = 2 which is both necessary
and sufficient for the existence of an A-dilation MRA wavelet (e.g., see [2, 15]). The
problem can also be considered when |det A| > 2 for self-affine generalized scal-
ing sets associated with the matrix A. However, using (iv) of Theorem 2.9, we have∑

d∈D e−2πik·d = 1 for k ∈ Zn \ {0} such that χ̂K (k) 6= 0, where D is the digit set.
In the general case, an explicit relation between digits in D just as (2.11) cannot be
obtained and the techniques used in the case |det A| = 2 cannot be generalized. In
view of this fact, we restrict our discussion to dilations A with |det A| = 2 in our
manuscript.

The paper is organized as follows. In Section 2, we introduce some notations and
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review some known results about generalized scaling sets and multiwavelet sets. We
also define the dimension function of a generalized scaling set associated with an
n × n integral expansive matrix. In Sections 3 and 4, we prove that the dimension
function of any A-dilation self-affine generalized scaling set K is a constant and is
equal to the Lebesgue measure of the set K in R and in R2 respectively, where A is an
n×n integral expansive matrix with |det A| = 2. This result shows that all A-dilation
self-affine scaling sets must be A-dilation MRA scaling sets in dimensions one and
two. In Section 5, we consider our problem in arbitrary dimension and prove that
the dimension function of a self-affine generalized scaling set is bounded by twice its
Lebesgue measure.

2 Notations, Definitions and Preliminary Results

Let M(2)
n (Z) be the set of all n×n integral expansive matrices with determinant equal

to 2 or−2. In this section, we will always assume that A is an n×n integral expansive
matrix and we let B = At . We write E ∼= F for two measurable sets in Rn if their
symmetric difference, (F \ E) ∪ (E \ F), has zero Lebesgue measure. The Lebesgue
measure of a measurable set K ⊂ Rn is denoted by |K|. The Fourier transform of any
function f ∈ L1(Rn) ∩ L2(Rn) is defined by

F( f )(ξ) = f̂ (ξ) =

∫
Rn

e−2πix·ξ f (x) dx

where x · ξ is the standard inner product of the vectors x, ξ ∈ Rn. The inverse Fourier
transform will be denoted by F−1.

Definition 2.1 A measurable set Q ⊂ Rn is called an A-dilation multiwavelet set of
order M if Q =

⋃M
i=1 Qi for some almost disjoint sets Qi ⊂ Rn, 1 ≤ i ≤ M, with the

property that the finite collection Ψ := {F−1(χQ1 ), . . . ,F−1(χQM )} is an A-dilation
orthonormal multiwavelet.

A multiwavelet set of order 1 is called an A-dilation wavelet set, and it is called
an A-dilation MRA wavelet set if F−1(χQ) is associated with an MRA. An A-dilation
multiwavelet set of order M can be characterized by its tiling properties.

Theorem 2.2 ([7]) A measurable set Q ⊂ Rn is an A-dilation multiwavelet set of
order M if and only if

(i)
∑

k∈Zn χQ(ξ + k) = M for a.e. ξ ∈ Rn,
(ii)

∑
j∈Z χQ(B jξ) = 1 for a.e. ξ ∈ Rn.

If M = 1, then Theorem 2.2 is reduced to the criterion given by Dai, Larson and
Speegle [8] for a measurable set Q ⊂ Rn to be an A-dilation wavelet set. Under this
case, the condition (i) in Theorem 2.2 is equivalent to saying that

(2.1)
⋃

k∈Zn

(Q + k) ∼= Rn and Q ∩ (Q + `) ∼= ∅ for ` 6= 0.

We call Q ⊂ Rn a Zn-tiling set if Q satisfies (2.1).
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Definition 2.3 A measurable set K ⊂ Rn is called an A-dilation scaling set if BK \K
is an A-dilation wavelet set.

Definition 2.4 For fixed M ∈ N, a measurable set K ⊂ Rn is called a generalized
scaling set of order M associated with an n× n integral expansive matrix A if BK \ K
is an A-dilation multiwavelet set of order M.

Definition 2.5 A self-affine tile in Rn is a measurable set K with positive Lebesgue
measure satisfying the set valued equation BK =

⋃
d∈D(K + d) for some n × n real

expansive matrix B with |det B| = m ∈ Z and D = {d1, d2, . . . , dm} ⊆ Rn is a set of
m digits.

In this paper, we will restrict our discussion to the self-affine A-dilation general-
ized scaling sets K, where A ∈ M(2)

n (Z) is expansive, i.e., the set K is an A-dilation
generalized scaling set and it satisfies the set equation BK = (K + d1) ∪ (K + d2), for
some vectors d1, d2 ∈ Rn.

The notion of an A-dilation (generalized) scaling set, introduced by Bownik, Rzes-
zotnik and Speegle [7], can be defined in several equivalent ways. The following result
(see Proposition 3.2 of [7]) can also serve as a definition.

Lemma 2.6 A measurable set K ⊆ Rn is an A-dilation generalized scaling set of order
M if and only if K =

⋃∞
j=1 B− jQ for some A-dilation multiwavelet set Q of order M.

Since Q = BK \ K, if K and Q are as in the previous lemma, it follows that an
A-dilation generalized scaling set can be associated with a unique A-dilation mul-
tiwavelet set and vice-versa. In the following, we will deduce, for the reader’s con-
venience, the definition of dimension function of an A-dilation generalized scaling
set K as provided by Bownik, Rzeszotnik and Speegle in Section 3 of [7]. Given an
A-dilation generalized scaling set K of order M, we can define an A-dilation multi-
wavelet set Q := BK \ K of order M. By the definition of multiwavelet set, we can
find essentially disjoint sets Qi , i = 1, . . . ,M with Q =

⋃M
i=1 Qi such that the set

Ψ := {F−1(χQ1 ), . . . ,F−1(χQM )} is an A-dilation orthonormal multiwavelet. Thus
the dimension function of Ψ is well defined and, using (1.1), we have

DΨ(ξ) =

M∑
`=1

∞∑
j=1

∑
k∈Zn

|χQ`

(
B j(ξ + k)

)
|2

=

M∑
`=1

∞∑
j=1

∑
k∈Zn

χQ`

(
B j(ξ + k)

)
for a.e. ξ ∈ Rn.

Using the representation given in Lemma 2.6 of the generalized scaling set K associ-
ated with the multiwavelet set Q, we have

DΨ(ξ) =

∞∑
j=1

∑
k∈Zn

χQ

(
B j(ξ + k)

)
=
∑
k∈Zn

χK (ξ + k) for a.e. ξ ∈ Rn.

Motivated by this last identity, we have the following definition.
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Definition 2.7 The dimension function of an A-dilation generalized scaling set K is
the function D : Rn −→ Rn defined by

D(ξ) =
∑
k∈Zn

χK (ξ + k), ξ ∈ Rn.

As we mentioned before, the condition |det A| = 2 is necessary and sufficient
for the existence of an A-dilation MRA wavelet. Gu and Han [15] proved that there
exists an A-dilation wavelet set associated with an MRA for any expanding matrix
A ∈ M(2)

n (Z). We will call any such wavelet set an A-dilation MRA wavelet set and
its corresponding scaling set is called an A-dilation MRA scaling set. An A-dilation
MRA scaling set can also be characterized by its dimension function.

Theorem 2.8 ([7, 29]) Let A be an expansive matrix in M(2)
n (Z) and K be an A-

dilation generalized scaling set. Then K is associated with an MRA if and only if its
dimension function D(ξ) =

∑
k∈Zn χK (ξ + k) = 1 for a.e. ξ ∈ Rn.

We now state the following criterion of Bownik, Rzeszotnik and Speegle [7] for a
measurable set K ⊆ Rn to be an A-dilation generalized scaling set of order M.

Theorem 2.9 Let A be an n × n integral expanding matrix with |det A| = q. A
measurable set K ⊂ Rn is an A-dilation generalized scaling set of order M if and only if

(i) |K| = M
q−1 ,

(ii) K ⊂ BK,
(iii) limm→∞ χK (B−mξ) = 1 for a.e. ξ ∈ Rn,
(iv)

∑
d∈D D(ξ + B−1d) = D(Bξ) + M a.e., where D(ξ) =

∑
k∈Zn χK (ξ + k) and D

is a complete set of coset representatives for the group Zn/BZn.

Lemma 2.10 below, which is well known, characterizes the condition (i) of Theo-
rem 2.2 in the Fourier domain and will be used in later sections.

Lemma 2.10 Let K ⊆ Rn be a measurable set with finite Lebesgue measure. Then the
identity

∑
k∈Zn χK (x + k) = L holds for a.e. x ∈ Rn if and only if χ̂K ( j) = Lδ j,0 for all

j ∈ Zn.

It follows from Lemma 2.10 that if the dimension function of an A-dilation gen-
eralized scaling set of order M is a constant, then it is equal to the measure of the
set K. That is, we have D(ξ) =

∑
j∈Zn χK (ξ + j) = M

q−1 for a.e. ξ ∈ Rn using (i) of
Theorem 2.9. In this case, the condition (iv) in Theorem 2.9 holds automatically.

From Theorem 2.8 and Theorem 2.9, we obtain an equivalent criterion for a mea-
surable set K ⊆ Rn to be an A-dilation MRA scaling set, where A ∈ M(2)

n (Z) is
expansive.

Corollary 2.11 Let A ∈ M(2)
n (Z) be expansive. A measurable set K ⊂ Rn is an

A-dilation MRA scaling set if and only if

(i) K is a Zn-tiling set,
(ii) K ⊂ BK,
(iii) limm→∞ χK (B−mξ) = 1 for a.e. ξ ∈ Rn.
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In the following, our goal will be to consider the dimension function of a gen-
eralized scaling set associated with an expansive dilation A ∈ M(2)

n (Z), which is a
self-affine tile. For short, we call such dimension function the dimension function of
an A-dilation generalized self-affine scaling set.

Assume that K is an A-dilation generalized self-affine scaling set of order L.
Then K satisfies the set equation BK = (K + d1)∪ (K + d2), for some d1, d2 ∈ Rn and
K satisfies (i), (ii), (iii) and (iv) of Theorem 2.9. Moreover, (iv) of Theorem 2.9 can
also be written as

(2.2)
∑
d∈D

D
(

B−1(ξ + d)
)

= D(ξ) + L for a.e. ξ ∈ Rn.

Then, since D is a complete set of coset representatives for Zn/BZn, we have∑
d∈D

D
(

B−1(ξ + d)
)

=
∑
d∈D

∑
k∈Zn

χK

(
B−1(ξ + d) + k

)
=
∑
d∈D

∑
k∈Zn

χBK (ξ + d + Bk)

=
∑
k∈Zn

χBK (ξ + k).

(2.3)

Since K satisfies that BK = (K + d1) ∪ (K + d2), for some d1, d2 ∈ Rn, (2.3) implies
that

(2.4)
∑
d∈D

D
(

B−1(ξ + d)
)

=
∑
k∈Zn

χK+d1 (ξ + k) +
∑
k∈Zn

χK+d2 (ξ + k).

It follows from (2.2) and (2.4) that∑
k∈Zn

χK (ξ − d1 + k) +
∑
k∈Zn

χK (ξ − d2 + k) =
∑
k∈Zn

χK (ξ + k) + L for a.e. ξ ∈ Rn.

Since D(ξ) is Zn-periodic, it can be expanded as the Fourier series

D(ξ) =
∑
k∈Zn

ake2πik·ξ,

where ak = χ̂K (k), k ∈ Zn. Thus, we obtain∑
k∈Zn

χ̂K (k)e2πik·ξ(e−2πik·d1 + e−2πik·d2 ) =
∑
k∈Zn

χ̂K (k)e2πik·ξ + L for a.e. ξ ∈ Rn,

or equivalently,

(2.5) (e−2πik·d1 + e−2πik·d2 )χ̂K (k) = χ̂K (k) + Lδk,0, k ∈ Zn.
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We deduce from (2.5) that χ̂K (0) = L and

(2.6) e−2πik·d1 + e−2πik·d2 = 1 for k ∈ Zn \ {0} such that χ̂K (k) 6= 0.

Note that if z1, z2 are two complex numbers with |z1| = |z2| = 1 and z1 + z2 = 1,
then |z1 + z2|2 = 1 implies that Re(z2z1) = − 1

2 or z2 = e±2πi/3z1. If z2 = e2πi/3z1, we

have z1(1 + e2πi/3) = 1 and thus z1 = e−πi/3, z2 = eπi/3. Similarly, if z2 = e−2πi/3z1,
we have z1 = eπi/3, z2 = e−πi/3. It follows thus from (2.6) that, if k ∈ T :=

{
j ∈

Zn \ {0} : χ̂K ( j) 6= 0
}

, then{
k · d1 ∈ 1

6 + Z,

k · d2 ∈ − 1
6 + Z,

or

{
k · d1 ∈ − 1

6 + Z,

k · d2 ∈ 1
6 + Z.

On the other hand, (2.3) implies that
∑

d∈D D
(

B−1(ξ + d)
)

=
∑

k∈Zn χBK (ξ + j) is
also Zn-periodic. Denoting its Fourier series by

∑
k∈Zn bk e2πik·ξ , then as before, we

get bk = χ̂BK (k) = 2χ̂K (Bt k). Then (2.2) is also equivalent to the following equation

(2.7)
∑
k∈Zn

2χ̂K (Bt k)e2πik·ξ =
∑
k∈Zn

χ̂K (k)e2πik·ξ + L for a.e. ξ ∈ Rn.

From (2.7), we have χ̂K (0) = L and

(2.8) 2χ̂K (Bt k) = χ̂K (k) for k ∈ Zn \ {0}.

(2.8) implies that χ̂K (Bt k) 6= 0 for k ∈ T, and iteratively that, χ̂K

(
(Bt )mk

)
6= 0 for

any m ≥ 0 and k ∈ T. Thus, if k ∈ T, we have

(2.9)

{
(Bt )mk · d1 ∈ 1

6 + Z,

(Bt )mk · d2 ∈ − 1
6 + Z,

or

{
(Bt )mk · d1 ∈ − 1

6 + Z,

(Bt )mk · d2 ∈ 1
6 + Z,

for any m ≥ 0.
Note that if 0 is one of the digits, then the equation (2.9) cannot hold for any k 6= 0

and thus the dimension function must be equal to the constant L. This is true in any
dimension. We have the following theorem.

Theorem 2.12 Let A be an n×n integral expansive matrix with |det A| = 2 and let K
be a self-affine tile satisfying BK = K ∪ (K + d) for some d ∈ Rn. If K is a generalized
scaling set, then its dimension function D(ξ) is constant and equal to |K|.

Then, in the following sections, we will concentrate on dealing with the much
more difficult case where both digits are not zero.

3 The Dimension Function of Self-affine Generalized Scaling Sets
in R

We first consider the one-dimensional problem. In dimension one, since |det A| = 2,
we have two possibilities: A = 2 or A = −2.
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Theorem 3.1 Let A ∈ M(2)
1 (Z) and K be a self-affine tile satisfying the set-valued

equation BK = (K + d1) ∪ (K + d2) for some d1, d2 ∈ R. If K is a generalized scaling
set, then its dimension function D(ξ) is a constant and equal to |K|.

Proof A ∈ M(2)
1 (Z) implies that A = 2 or A = −2. Here we only consider the case

A = 2. The proof of the case A = −2 is similar. Assume that |K| = L. To prove that
D(ξ) = |K| = L for a.e. ξ ∈ R, we only need to prove that χ̂K ( j) = 0 for j ∈ Z \ {0}
since χ̂K (0) = |K| = L by Lemma 2.10. Assume that there exists j0 ∈ Z \ {0}
such that χ̂K ( j0) 6= 0. Since K is a generalized scaling set and K is a self-affine tile
satisfying BK = (K + d1) ∪ (K + d2) for some d1, d2 ∈ R, we have, using (2.9), that{

2m j0d1 ∈ 1
6 + Z,

2m j0d2 ∈ − 1
6 + Z,

or

{
2m j0d1 ∈ − 1

6 + Z,

2m j0d2 ∈ 1
6 + Z,

for any m ≥ 0. In particular, j0 · d1 ∈ 1
6 + Z or j0 · d1 ∈ − 1

6 + Z, but in that case, if
m = 1, we have 2 j0 · d1 /∈ 1

6 + Z and 2 j0 · d1 /∈ − 1
6 + Z, which is a contradiction. This

proves our statement.

4 The Dimension Function of Self-affine Generalized Scaling Sets
in R2

In this section, we deal with the two dimensional case. Consider the following matri-
ces:

C1 =

(
0 1
2 0

)
, C2 =

(
0 −1
2 0

)
, C3 =

(
1 −1
1 1

)
, C4 =

(
0 −1
2 1

)
.

Two n × n integral matrices A and Ã are called integrally similar if there exists
an n × n integral matrix P with |det P| = 1 such that P−1AP = Ã. Lagarias and
Wang [20] completely classified all integral expansive matrices A ∈ M(2)

2 (Z) and they
showed that there are exactly six integrally similar classes of such integral matrices.
Representatives from each of these classes are given by C1,C2,C3,−C3,C4,−C4, re-
spectively.

Proposition 4.1 ([20]) Let A ∈ M(2)
2 (Z) be expansive. If det A = −2, then A is

integrally similar to C1. If det A = 2, then A is integrally similar to one of the matrices
C2,±C3,±C4.

Theorem 4.2 Let A ∈ M(2)
2 (Z) be expanding and K be a self-affine tile satisfying the

set equation BK = (K +d1)∪(K +d2) for some d1, d2 ∈ R2. If K is a generalized scaling
set, then its dimension function D(ξ) must be a constant and equal to |K|.

Proof Since A ∈ M(2)
2 (Z), the characteristic polynomial of matrix B, where B = At ,

has a general form λ2 + bλ + c = 0, where b = − tr B ∈ Z and c = det B = 2 or −2.
Assume that |K| = L. To prove that D(ξ) = |K| = L for a.e. ξ ∈ R2, we only need
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to prove that χ̂K ( j) = 0 for j ∈ Z \ {0} since χ̂K (0) = |K| = L. Assume that there
exists j0 ∈ Z2 \ {0} such that χ̂K ( j0) 6= 0. By assumption, (2.9) holds, i.e.,

(4.1)

{
(Bt )m j0 · d1 ∈ 1

6 + Z,

(Bt )m j0 · d2 ∈ − 1
6 + Z,

or

{
(Bt )m j0 · d1 ∈ − 1

6 + Z,

(Bt )m j0 · d2 ∈ 1
6 + Z,

holds for any m ≥ 0. Since two similar matrices have the same eigenvalues, Propo-
sition 4.1 implies that for any expansive matrix A ∈ M(2)

2 (Z), the matrix B has two
distinct eigenvalues. Let λ0, λ1, λ0 6= λ1, be the eigenvalues of matrix B and v0, v1 be
the corresponding eigenvectors respectively, i.e., Bv0 = λ0v0 and Bv1 = λ1v1. Then
C2 = span{v0, v1} and thus d1 ∈ R2 can be represented as a linear combination of v0

and v1, i.e., there exist some c0, c1 ∈ C such that d1 = c0v0 + c1v1, and

Bmd1 = c0Bmv0 + c1Bmv1 = c0λ
m
0 v0 + c1λ

m
1 v1 = λm

0 c0v0 + λm
1 c1v1.

From the above equality, we obtain

(4.2) (Bt )m j0 · d1 = j0 · Bmd1 = λm
0 c0 j0 · v0 + λm

1 c1 j0 · v1.

Let a0 = c0 j0 · v0, a1 = c1 j0 · v1 and rm = (Bt )m j0 · d1. From (4.1) and (4.2), we have

(4.3) rm = a0λ
m
0 + a1λ

m
1 ∈

1

6
+ Z or − 1

6
+ Z for any m ≥ 0.

Thus for each m ≥ 0, there exists some δm ∈ {−1, 1} and some km ∈ Z such that

(4.4) rm =
δm + 6km

6
.

Using the representation of the characteristic polynomial of the matrix B, for any
m ≥ 0 and i = 0, 1, we have

λ2
i + bλi + c = 0⇐⇒ λ2

i = −bλi − c,

⇐⇒ λ2+m
i = −bλm+1

i − cλm
i .

(4.5)

For any m ≥ 0, it follows from (4.3), (4.4) and (4.5) that

(4.6) rm+2 = −brm+1 − crm =
−bδm+1 − cδm

6
− bkm+1 − ckm ∈ ±

1

6
+ Z.

Since b, c, km, km+1 ∈ Z, (4.6) implies that for any m ≥ 0,

(4.7) −bδm+1 = ±1 + cδm mod 6, where δm, δm+1 ∈ {−1, 1}.

Since two similar matrices have the same characteristic polynomial, it follows from
Proposition 4.1 that the characteristic polynomial of the matrix B ∈ M(2)

2 (Z) can be
expressed as λ2−2 = 0 if det B = −2 and λ2+bλ+2 = 0, where b ∈ {0,−1, 1,−2, 2}
if det B = 2.
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Case 1 det A = −2. In this case, b = 0, c = −2. (4.7) cannot hold for any m ≥ 0
since 0 6= ±1− 2δm mod 6 for any m ≥ 0 and δm ∈ {−1, 1}.

Case 2 det A = 2. In this case, b ∈ {0,−1, 1,−2, 2} and c = 2. It follows from
(4.7) that the possible values for b are−1 and 1. Suppose that

r0 =
δ0 + 6k0

6
, r1 =

δ1 + 6k1

6
,

where δ0, δ1 ∈ {−1, 1} and k0, k1 ∈ Z. We obtain, using (4.7), that

(4.8) r2 ∈ ±
1

6
+ Z⇐⇒ −bδ1 − 2δ0 = ±1 mod 6,

and

(4.9) r3 ∈ ±
1

6
+ Z⇐⇒ (b2 − 2)δ1 + 2bδ0 = ±1 mod 6,

for some δ0, δ1 ∈ {−1, 1}.
If b = 1, (4.8) implies that δ0 = −1,δ1 = 1 or δ0 = 1, δ1 = −1. Substituting these

values into the right hand side of (4.9), we get (b2 − 2)δ1 + 2bδ0 = 3 or −3. Hence,
r3 /∈ ± 1

6 + Z, which contradicts (4.3). If b = −1, (4.8) implies that δ0 = δ1 = 1
or δ0 = δ1 = −1. Substituting these values into the right hand side of (4.9), we get
(b2−2)δ1 + 2bδ0 = −3 or 3. Hence, r3 /∈ ± 1

6 + Z, which again yields a contradiction.
This proves our claim.

From Theorem 3.1 and Theorem 4.2, we have the following corollary.

Corollary 4.3 Let A ∈ M(2)
n (Z) be expansive and K be a self-affine tile satisfying the

set equation BK = (K + d1)∪ (K + d2) for some d1, d2 ∈ Rn, where n = 1, 2. If K is an
A-dilation scaling set, then K must be an A-dilation MRA scaling set.

5 The Dimension Function of Self-affine Generalized Scaling Sets
in Rn, for n ≥ 3

Unlike the one or two dimensional case, in dimension n ≥ 3 we do not know if the
dimension function of a self-affine generalized scaling set must be a constant. The
method used in dimension one and dimension two could, in theory, be applied in
any dimension if there were a characterization such as in Proposition 4.1 for each
dimension n. Even if this were the case, the method could become impractical as
each distinct equivalence class would have to be handled separately and their number
would increase with the dimension. However, we will show that, when n is arbitrary,
the dimension function is always bounded above by 2|K|.

Theorem 5.1 Let A ∈ M(2)
n (Z) be expansive and K be a self-affine tile satisfying the

set equation BK = (K +d1)∪(K +d2) for some d1, d2 ∈ Rn. If K is a generalized scaling
set, then its dimension function satisfies D(ξ) ≤ 2|K|.
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Proof Assume that |K| = L. Let T =
{

j ∈ Zn \ {0} : χ̂K ( j) 6= 0
}

. Let

Λ = { j ∈ Zn : (d1 · j, d2 · j) ∈ Z2},

Γk =
{

j ∈ Zn : (d1 · j, d2 · j) ∈
( k

6
,−k

6

)
+ Z2

}
, k = 0, 1, 2, 3, 4, 5.

Then Γ0 = Λ, Γ1 = j1 + Λ, Γ5 = − j1 + Λ, where j1 ∈ Γ1, and T ⊆ Γ1 ∪Γ5. Since Λ
is a subgroup of Zn, there exists an integral matrix C such that Λ = CZn. From the
discussion above and that in Section 2, we have, using (2.9) with m = 0, that

D(ξ) =
∑
j∈Zn

χ̂K ( j)e2πi j·ξ

= L +
∑
j∈Zn

χ̂K ( j1 + C j)e2πi( j1+C j)·ξ +
∑
j∈Zn

χ̂K (− j1 −C j)e−2πi( j1+C j)·ξ

= L + Re{2e2πi j1·ξ
∑
j∈Zn

χ̂K ( j1 + C j)e2πiC j·ξ}.

(5.1)

The last equality is obtained from the fact that χ̂K (−ξ) = χ̂K (ξ), ξ ∈ Rn. Let

Λ∗ = {x ∈ Rn : C j · x ∈ Z, for all j ∈ Zn},

and
S(ξ) =

∑
j∈Zn

χ̂K ( j1 + C j)e2πiC j·ξ.

Then, for any x ∈ Λ∗, S(ξ + x) = S(ξ). The fact that j1 ∈ Γ1 implies that 6 j1 ∈ Λ
and thus e2πi6 j1·x = 1, if x ∈ Λ∗, which implies that

e2πi j1·x ∈ {e kπi
3 , k = 0, 1, 2, 3, 4, 5}.

By the definition of Λ, d1, d2 ∈ Λ∗. Hence, e
πi
3 , e−

πi
3 ∈ {e2πi j1·x, x ∈ Λ∗} using the

definition of Γ1. Therefore, we have

{e2πi j1·`x : ` ∈ Z, x ∈ Λ∗} = {e2πi j1·`x : 0 ≤ ` ≤ 5, ` ∈ Z, x ∈ Λ∗}

= {e kπi
3 , 0 ≤ k ≤ 5, k ∈ Z}.

(5.2)

Let z = 2e2πi j1·ξS(ξ). Consider the functions D(ξ + `x), where x ∈ Λ∗ and ` ∈
{0, 1, 2, 3, 4, 5}. By (5.1), we have

D(ξ + `x) = L + Re{2e2πi j1·(ξ+`x)S(ξ + `x)} = L + Re{2e2πi j1·ξS(ξ)e2πi j1·`x}

= L + Re{ze2πi j1·`x}.

From the definition of D(ξ), D(ξ) ≥ 0 for a.e. ξ ∈ Rn. Hence, we deduce from (5.2)
that

(5.3) L + Re{ze
πi`
3 } ≥ 0 for each ` ∈ {0, 1, 2, 3, 4, 5}.

(5.3) implies that |Re(z)| ≤ L and thus D(ξ) ≤ L + |Re(z)| ≤ 2L = 2|K| for ξ ∈ Rn.
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From Theorem 5.1, we can get the following result.

Corollary 5.2 Let A ∈ M(2)
n (Z) be expansive and K be a self-affine A-dilation scaling

set satisfying the set equation BK = (K +d1)∪ (K +d2) for some d1, d2 ∈ Rn. If K is not
an A-dilation MRA scaling set, then its dimension function D(ξ) will take values 0, 1,
and 2.

There exist many self-affine A-dilation scaling sets in dimension bigger than 2
whose dimension function is a constant. We give such an example next.

Example 5.1 In dimension 3, consider the self-affine set K which satisfies

BK = (K +d1)∪(K +d2), where B =

0 0 1
2 0 0
0 1 0

 , d1 =

 0
−1/2

0

 and d2 =

 0
1/2

0

.
In this example, B is an expansive matrix and det B = 2. It is easy to see that K is

the unit cube [− 1
2 ,

1
2 ]3 and that K ⊂ BK. Then, obviously, K is a Z3-tiling set and

K contains a neighborhood of 0. Thus K is an A-dilation MRA scaling set and its
dimension function DK (ξ) = 1 a.e. ξ ∈ R3, where A = Bt .

We know that the equality (2.9) is necessary for the dimension function of a self-
affine generalized scaling set to be a non-constant. In higher dimension, it is not
easy to find an example of a self-affine generalized A-dilation scaling set, where A ∈
M(2)

n (Z), satisfying (2.9). Below, we show an example, found with the help of Matlab,
of a self-affine tile K associated with an expansive matrix B ∈ M(2)

n (Z) in dimension 4
which satisfies (2.9). However, we are unable at this point to prove whether or not this
self-affine tile is an A-dilation generalized scaling set, where A = Bt . In particular, we
do not know if the inclusion K ⊂ BK holds or not.

Example 5.2 Let K be a self-affine set satisfying BK = (K + d1) ∪ (K + d2), where

B =


0 1 0 0
0 0 1 0
0 0 0 1
−2 −1 −1 −1

 and d1 =
1

6


0
0
0
1

 , d2 =
1

6


−1
−1
−2
−2

 .

For this example, it is easy to prove that the matrix B ∈ M(2)
n (Z) is expansive and

the digit set D := {6d1, 6d2} is a complete set of coset representatives for the group
Z4/BZ4. Let K(B,D) be the set satisfying BK =

⋃
d∈D K + d. Thus, |K(B,D)| is a

positive integer by Theorem 1.1 in [21]. Therefore, |K| = 1
6 |K(B,D)| > 0 and K is a

self-affine tile. If we take j =
( 4

3
2
1

)
, we can also check that for any m ≥ 0,

(Bt )m j · d1 ∈
1

6
+ Z and (Bt )m j · d2 ∈ −

1

6
+ Z.
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To summarize, if an A-dilation generalized scaling set is a self-affine tile, then its
corresponding dimension function must be bounded in Rn and particularly, it is a
constant in R and in R2. On the other hand, if we remove the self-affine condition,
the corresponding dimension function can be arbitrary large, as some examples in
Section 5 of [7] illustrate.
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[14] K. Gröchenig and A. Haas, Self-similar lattice tilings. J. Fourier Anal. Appl. 1(1994), 131–170.
http://dx.doi.org/10.1007/s00041-001-4007-6

[15] Q. Gu and D. Han, On multiresolution analysis (MRA) wavelets in RN . J. Fourier Anal. Appl.
6(2000), 437–447. http://dx.doi.org/10.1007/BF02510148
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